
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1117

Abstract—A Data Warehouses is a repository of information

integrated from source data. Information stored in data warehouse is

the form of materialized in order to provide the better performance

for answering the queries. Deciding which appropriated views to be

materialized is one of important problem. In order to achieve this

requirement, the constructing search space close to optimal is a

necessary task. It will provide effective result for selecting view to be

materialized. In this paper we have proposed an approach to re-

optimize Multiple View Processing Plan (MVPP) by using global

common subexpressions. The merged queries which have query

processing cost not close to optimal would be rewritten. The

experiment shows that our approach can help to improve the total

query processing cost of MVPP and sum of query processing cost

and materialized view maintenance cost is reduced as well after views

are selected to be materialized.

Keywords—Data Warehouse, materialized views, query

rewriting, common subexpressions.

I. INTRODUCTION

data warehouse (DW) is a repository of subject-oriented,

integrated, time-variant, and non-volatile data collected

from multiple, possibly very large, distributed, heterogeneous

sources and makes information readily available for querying

and analysis. The main reason for defining and storing the

materialized views is to avoid accessing the original data

source and to increase the efficiency of query processing. The

design of data warehouse is one of the most important

problems called materialized view selection problem. It is

defined as how to select an appropriate set of views to be

materialized [1]. There are two concerning majority tasks to

solve the materialized view selection problem. First is

generating a search space and second is designing the

optimization algorithm for selecting the appropriate set of

views to be materialized. The appropriated data structure and

view selection methodologies have been considered in order to

optimize the query cost, view maintenance cost, or both. For

the first task the various well known frameworks have been

proposed i.e. Lattice Framework [2], [3], AND-OR dag [1],

[4] and Multiple View Processing Plan (MVPP) [5]-[7]. The

second task can be classified into four categories i.e.

deterministic, randomized, evolution and hybrid algorithm [6].

In this paper we focus on search space construction.

Boontita Suchyukorn and Raweewan Auepanwiriyakul are with the School

of Applied Statistics, National Institute of Development Administration

(NIDA), Bangkok, Thailand (e-mail: boontiitas@hotmail.com raweewan@

as.nida.ac.th).

To generate the search space, common subexpressions for

among the queries have to be detected and exploited. Thus the

original queries will be rewritten using the global common

subexpressions. The concept of common subexpressions has

been applied to several areas of query processing and

optimization [8], [10], [11], [13], and materialized view

selection problem [9], [11], [12]. In [10], the general concept

of common subexpression was introduced. They described the

generally term of common subexpression between the queries

and it can be used for rewriting the queries either completely

or partially. As the common subexpression between a pair of

queries was constructed then original queries were rewritten by

using the given common subexpressions. In [11], authors

presented the algorithm that exploited common subexpression

for multi-query optimization and materialized view selection in

conventional database. They presented a comprehensive

mechanism for detecting sharable subexpression and

constructing candidate covering subexpression that cover a set

of similar subexpressions. In [12], authors proposed the

technique called closest common subexpression derivator for

constructing candidate views to be materialized. Once closest

common subexpression derivators between the queries were

defined, they exploited them to rewrite the queries.

In order to generate the search space, it is practically

impossible to consider all common subexpressions between

among queries because of the numerous numbers of possible

common subexpressions. The MVPP is one of the several

approaches to construct the optimal search space for view

selection problem proposed by Yang in [5]. It was generated

by using the multiple query processing (MQP) technique.

Based on our observation, as the generating of MVPP is

constructed by the merging of individual plan in ordering of

query weight thus merging of incoming query has to use the

global common subexpressions of the previous merging. The

benefit of this approach is to avoid a huge search space which

some combination would not be considered. However it will

lose the global optimization. Therefore some queries should be

rewritten by using common subexpression among queries to

gain more optimal query processing cost. In this paper, our

proposed approach is re-optimization task which is the

improvement of query processing cost of cheapest MVPP [5]

by rewriting the query using common subexpressions.

Re-Optimization MVPP Using Common

Subexpression for Materialized View Selection

Boontita Suchyukorn and Raweewan Auepanwiriyakul

A

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1118

II. MULTIPLE VIEW PROCESSING PLAN

The MVPP defined by Yang [5] is a directed acyclic graph

that presents the query processing plan of a set of queries. A

simple MVPP is shown in Fig. 1.

Fig. 1 The simple MVPP of three queries Q1, Q2 and Q3

The root node represents the query, the leaf nodes

correspond to the base relations and all other internal nodes

are selection, projection, join or aggregation function. A link

exists between two node, if the operator in the upper level, is

applied to the result derived by the operator in the lower level

in some queries. Each internal node in MVPP is marked by

relational operation and the cost of processing operation. Two

numbers are associated with the node. The number of rows

needed to be read is labeled on the right side and the number

of rows generated by each operation is labeled on the left side

of the node. The query access frequency is labeled on the top

of query. Because of above work and its characteristic, MVPP

can present the realistic SQL queries and can support the large

number of queries that reflect the real data warehouse

environment. The algorithm which is used to build an MVPP

is listed below:

1. For every optimal query processing plan push all the

select, project operation and aggregate function up along

the tree.

2. Create a list of queries in descending order based on the

result of their query access frequency multiplied by query

processing cost.

3. Merge all optimal query processing plans in the list

according to the following order:

3.1. pick up the first optimal query processing plan from the

list

3.2. incorporate the second query into the first query if they

share the same base relations

3.3. incorporate the third query into previous merging,

repeat this step until all optimal query processing plans

are merged.

4. Move the first optimal query processing plan to the end of

the list.

5. Repeat step 3 and 4 to generate all MVPPs.

6. Push down selection, projection and aggregation functions

as deep as possible.

7. Calculate the total query processing cost of each MVPP,

and select the one which gives the lowest cost.

III. USING COMMON SUBEXPRESSION

Normally for view selection problem, the search space is

constructed by using all common or similar subexpressions

among the queries. The concept of common subexpression is

initially referred to identical or equivalent expression, later the

term included expression subsumption. Thereafter

commonality between queries has included the possibility for

overlapping selection condition. Fig. 2 shows the

categorization of using common subexpression between the

queries. First, nothing is common. Second, totally overlapping

is called subsumption shown in Fig. 2 (a). In the figure shows

that Q5 is the intermediate query result for Q6. Third is shown

in Fig. 2 (b) which is the overlapping with another query. The

last is shown in Figs. 2 (c) and (d). It shows that Q1 has more

than one equivalent plan. Q1 has overlapping portion with Q4,

meanwhile Q1 has alternative equivalent plan that has

overlapping part with Q6. We use this concept of common

subexpression to answer new incoming queries, after common

subexpressions are detected then they are exploited to

construct the global optimal equivalent plan for multiple query

processing plans.

Q5

Q6

(a) (b)

Q4
Q1

(c) (d)

Fig. 2 The partially and totally overlapping of queries: (a) totally

overlapping, (b) partially overlapping, and (c) and (d) overlapping

more than one query

IV. PROPOSED APPROACH TO IMPROVE MVPP

In generally construction search space for a view selection

problem by considering all possible equivalent plans for all

queries is too huge. Constructing MVPP shows that it is the

practically possible method to generate the search space.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1119

However the cheapest MVPP [5] can be adjusted to reduce the

total query processing cost, as the method of merging

described in Section II not consider the common

subexpressions of among queries. In our approach, we select

the cheapest MVPP to adjust the query processing cost. We

find out the alternative equivalent plan of considered queries

by using concept of common subexpression. We match the

adjusted queries with exists optimal global equivalent plan and

those queries are matched in bottom-up way.

A. Re-Optimization to Improve MVPP

The algorithm of the proposed approach is described as Fig.

3.

Algorithm: Re-Optimization Improvement

1. Select cheapest MVPP.

2. Initial list LV = φ.

3. Compare Cq(i) of cheapest MVPP with Cqn′(i) of other

MVPPs. If Cqn′(i) less than Cq(i) then insert query i into

LV.

Suppose that Cq(i) presents the query processing cost of

query i of cheapest MVPP, Cqn′(i) presents the query

processing cost of query i of n
th
 MVPP.

Cqn′(i) less than Cq(i) imply that there is more optimal

execution plan for query i.

4. For queries in LV, consider the possible commonalities

with exists global equivalent plan as following:

4.1. If there is nothing in common with global equivalent

plan then skip to the next query.

4.2. If there is the overlapping in the form of Figs. 2 (c)-(d)

then

rewrite this query using exists common subexpression in

MVPP in bottom-up way

else

 skip to the next query.

5. Pushing down selection and projection operation as deep

as possible.

Fig. 3 Re-Optimization algorithm for improving the cheapest MVPP

B. Rewriting Queries using Common Subexpression

If a view V is defined as a common subexpression of a set

of queries. Each query Q in set of queries called a parent of the

view V if it can be answered using V. For example node Tmp4

in Fig. 1 is a common subexpression of Q1, Q2 and Q3, it is

defined as view V then Q1, Q2 and Q3 are called parent of

Tmp4. The answering using view is known as query rewriting

using view [14]. It is defined that there is a set of view V1, V2,

...,Vm and given a query Q, then a rewriting of query Q using

views V is a query that reference V and/or base relations. For

example Q1 in Fig. 1, there is more than one equivalent plans

i.e. {(orders ⋈ lineitem) ⋈ customer}, {lineitem ⋈ (orders ⋈

customer)}. Its query processing cost is 7,531,979,700,000 if

its equivalent plan is {lineitem ⋈ (orders ⋈ customer)},

whereas if we rewrite Q1 using tmp4, its query processing cost

is 1,502,168,638,116. We use the cost model for finding query

processing cost introduced by Yang [5]. After rewriting the

query, the result shows that execution plan using Tmp4 is less

than the previous one. We can conclusion that the execution

plan providing minimal query processing cost should be

chosen. In our approach we rewrite the query identified by our

algorithm by comparing its individual plan with common

subexpression in MVPP. The query rewriting will be

processed in bottom-up way which is calculated from the base

relations to the root of the equivalent plan. The process is

listed as following:

1. Match individual plan of query with MVPP from base

relation to the root node as following:

1.1. Divide the individual plan into several disjointed

subtrees.

1.2. If there is subtree containing the set of leaf nodes that

are already joined conjunctively in MVPP

then

this subtree has been selected.

else

the set of leaf nodes that are not joined in

MVPP but joined in query has been selected.

2. Find the common ancestor node that provide the minimal

query processing cost of elements of each subset either in

MVPP or in query, create new node(s) to join these

ancestor nodes, and associated edges in query.

C. Cost Model for Materialized View Selection Problem

According to [5], a linear cost model is used to calculate the

processing cost of query Q. The cost of answering Q is the

number of rows in the base relations used to construct Q.

Denote M be a set of materialized views,)(MC
iq

be the cost

to compute qi from the set of M,)(vCm be the cost of

maintenance when v is materialized, and fa , fu are querying and

updating frequency respectively. Then the total query

processing cost is)(MCf
Qq qq

i ii∑ ∈
. The total maintenance cost

 is)(vCf
Mv mu∑ ∈

Therefore the total cost of materialized views M is

)()(vCfMCf
Mv muQq qq

i ii ∑∑ ∈∈
+

Our goal is the value of total cost will be minimal among all

feasible sets of materialized view.

V. EXPERIMENT STUDIES

In order to validate our approach, we have run tests on TPC-

H database of size 1GB. This database consists of 8 tables i.e.

region, nation, supplier, customer, orders, lineitem, part and

partsupp. We use around 50 complex read-only queries as

running example. Most of them are large, and perform

different operations.

The example of our tested queries is shown as Fig. 4. The

cost model proposed by [5] has been used to compute query

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1120

processing cost, materialized view maintenance cost and total

cost. But no constraint has been considered for this evaluation.

The queries are denoted as Q1, Q2, Q3, Q4, Q5, Q6 and Q7.

Suppose that all base tables are updated once a time and the

frequencies of Q1 to Q7 are 2,6,7,2,5,9,3 respectively. The

individual accessing plans for each query are shown as Fig. 5.

We use the algorithm proposed by [5], described in section II,

to generate MVPPs for these 7 queries.

Query1

select min(ps_supplycost)

from part, partsupp, supplier,

nation, region

where p_partkey = ps_partkey

 and s_suppkey = ps_suppkey

 and s_nationkey =

n_nationkey

 and n_regionkey =

r_regionkey

 and r_name = ‘ASIA’;

Query2

select max(o_totalprice)

from customer, orders, lineitem,

nation, region

where c_custkey = o_custkey

 and o_orderkey = l_orderkey

and c_nationkey =

n_nationkey

and n_regionkey =

r_regionkey

and r_name = ‘ASIA’

and o_orderdate >= ‘1994-01-

01’

and o_orderdate < ‘1995-01-

01’;

Query3

select n_name, sum(l_quantity)

from orders, lineitem, supplier,

nation, region

where o_orderkey = l_orderkey

and l_suppkey = s_suppkey

and s_nationkey =

n_nationkey

and n_regionkey =

r_regionkey

and r_name = ‘ASIA’

and o_orderdate >= ‘1994-01-

01’

and o_orderdate < ‘1995-01-

01’

group by n_name;

Query4

select avg(c_accbal)

from partsupp, supplier, customer,

 nation, region

where ps_suppkey = s_suppkey

 and c_nationkey = n_nationkey

 and s_nationkey = n_nationkey

 and n_regionkey = r_regionkey

 and r_name = ‘ASIA’;

Query5

select count(ps_suppkey)

from partsupp, part

where p_partkey = ps_partkey

 and p_brand <> ‘Brand#45’

 and not p_type like

‘%BRASS%’

 and p_size in (9,19,49);

Query6

select variance(ps_supplycost)

from supplier, partsupp, part

where s_suppkey = ps_suppkey

 and p_partkey = ps_partkey

 and p_brand <> ‘Brand#45’

 and not p_type like

‘%BRASS%’

 and p_size in (9,19,49);

Query7

select stddev(l_tax)

from customer, orders, lineitem

where c_custkey = o_custkey

 and o_orderkey = l_orderkey

 and o_orderdate >= ‘1994-01-

01’

 and o_orderdate < ‘1995-01-

01’;

Fig. 4 The queries for experiment

Thus these 7 queries we can generate 7 MVPPs. Therefore

ordering for merging of first MVPP is {Q4, Q7, Q3, Q2, Q6,

Q1, and Q5} and the final MVPP is {Q5, Q4, Q7, Q3, Q2, Q6,

and Q1}. Next selection, projection and aggregation function

are pushed down as deep as possible for all MVPPs. Finally

the total query processing costs of each MVPP will be

calculated to find out the cheapest one. The ordering for

merging cheapest MVPP is {Q3, Q2, Q6, Q1, Q5, Q4, and

Q7}. The cheapest MVPP is shown as Fig. 6. In meanwhile

query processing cost of all queries of each MVPP are

calculated.

Next step our approach is applied to re-optimize the

cheapest MVPP. First, we initial empty list LV. Next query

processing cost Cq of each query in cheapest MVPP are

compared with query processing cost Cq′ of other MVPP. The

query will be put into LV, if its query processing Cq′ of n
th

MVPP less than Cq of cheapest MVPP. For our experiment,

the comparison of query processing cost of each MVPP shown

as Table I. The details of the result are described as following.

For Q1 its query processing cost of cheapest MVPP is

323,207,240,592 whereas its query processing cost of 1st and

6th MVPP is 67,303,240,592. For Q2 and Q4 their query

processing cost of cheapest MVPP are less than or equal to

other MVPPs. For Q3 its query processing cost of cheapest

MVPP is less than other MVPPs. For Q5 its query processing

cost of cheapest MVPP is 800,009,181,380 whereas its query

processing cost of 1st and 6th MVPP is 36,282,181,380. For

Q6 its query processing cost of cheapest MVPP is

1,443,281,130,000 whereas its query processing cost of 1st

and 6th MVPP is 68,572,856,484. For Q7 its query processing

cost of all MVPPs is the same. Therefore the result of LV

contains {Q1, Q5, Q6}. Next we consider each query in LV

using step 4 in Fig. 3. Considering optimal query processing

plan of Q1 in Fig. 5, there are sharable base relations with Q3,

Q4, Q5 and Q6. Comparing the individual plan of Q1 in Fig. 5

with cheapest MVPP in Fig. 6, individual plan Q1 in Fig. 5 has

the partially overlapping with Q3 and Q4 at node Tmp6 and

Tmp22 in Fig. 6 respectively. Tmp6 in Fig. 6 is Tmp6 of Q1

and Q3 in Fig. 5. Tmp22 in Fig. 6 is Tmp8 of Q1 and Q4 in

Fig. 5. In Fig. 6, as Tmp22 is the upper level of Tmp6 then

Tmp22 is chosen to be common subexpression for Q1 and

Q4rather than Tmp6. Another node which is the overlapping

portion for Q1 with Q5 and Q6 is Tmp18 in Fig. 6. Because

Q1 is overlapping with other queries then Q1 is falling into the

condition at line 4.2 in Fig. 3. Therefore Q1 would be

rewritten as following. We match optimal query processing

plan of Q1 from leaf node to the root, we can match the node

in optimal query processing plan of Q1 with the nodes in

cheapest MVPP at node Tmp4, Tmp6 and Tmp22

respectively. Thus leaf nodes of Q1 that are already joined in

existing MVPP are region, nation, supplier, and partsupp. For

the relation part, we create the node to join it with node

Tmp22. We present the equivalent plan of Q1 before and after

rewritten as Fig. 7. Suppose that R, N, S, PS and P represent

the base relation region, nation, supplier, partsupp and part

respectively. The query processing cost of Q1 after rewritten

using sharable common subexpressions with Q4 is reduced

from 323,207,240,592 to 67,303,240,592. For Q5 and Q6 they

miss the condition at line 4.2 in Fig. 3 so there is no common

subexpression for Q5, Q6 in cheapest MVPP. Therefore we

skip the rewriting of Q5 and Q6. Finally step 5 we push down

selection, operation and aggregation as deep as possible for all

affected queries. The result of re-optimize cheapest MVPP is

shown as Fig. 8.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1121

region nation supplier partsupp part

Q1

[5][1]

[1][1]

r_name

=’ASIA’

r_regionkey

n_regionkey

n_nationkey

[25][25]

[25][5]
[10000][10000]

[50000][2003]

s_nationkey

s_suppkey

[800000]

[200000]

[800000]

[200000][160240] [1602400000]

[160240]

Tmp1

Tmp2

Tmp3

Tmp4
Tmp5

Tmp6 Tmp7

Tmp8 Tmp9

Tmp10

[32048000000]

[160240]

result

ps_suppkey
ps_partkey

ps_supplycost

p_partkey

partkey

suppkey

nationkey

regionkey

min

ps_suppltcost

part partsupp

b_brand<>’BRAND#45’

not p_type like ‘%BRASS%’

p_size in (9,19,49)

[200000][9069]

[9069][9069]

p_partkey
Tmp1

Tmp2

Tmp3

[800000] [800000]

ps_partkey
ps_suppkey
ps_supplycost

Tmp4

[36276] [7255200000]

supplier

Q6

[10000][10000]

s_suppkey

partkey

suppkey

Tmp5

Tmp6

[36276]

[36276]

[362760000]

result

variance

ps_availqty

order lineitem

[150000][227597]

o_orderkey

o_custkey
Tmp1

Tmp2

Tmp3

[6000000] [6000000]

l_orderkey

l_tax

Tmp4

[910519] [1365582000000

customer

Q7

[150000][150000]

s_custkey

orderkey

custkey

Tmp5

Tmp6

result

o_orderdate>=’1994-01-01'

o_orderdate<’1995-01-01'

[227597] [227597]

[910519] [910519]

[910519]

stddev

l_tax

Fig. 5 Individual Optimal Query processing plan

Fig. 6 The cheapest MVPP

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1122

TABLE I

QUERY PROCESSING COST FOR EACH QUERY OF EACH MVPP

Query
Cheapest MVPP

(3rd MVPP)
1st MVPP 2nd MVPP 4th MVPP 5th MVPP 6th MVPP 7th MVPP

Q1 323,207,240,592 67,303,240,592 323,207,240,592 323,207,240,592 323,207,240,592 67,303,240,592 323,207,240,592

Q2
1,697,558,231,91

6

9,013,034,785,98

0

9,013,034,785,98

0

1,697,558,231,91

6

9,013,034,785,98

0

9,013,034,785,98

0

9,013,034,785,98

0

Q3
1,997,769,797,07

9

9,571,896,175,75

1

9,571,896,175,75

1

9,571,896,175,75

1

9,571,896,175,75

1

9,571,896,175,75

1

9,571,896,175,75

1

Q4 53,213,858,672 53,213,858,672 53,213,858,672
19,352,927,718,6

72
53,213,858,672 53,213,858,672 53,213,858,672

Q5 800,009,181,380 36,282,181,380 800,009,181,380 800,009,181,380 800,009,181,380 36,282,181,380 800,009,181,380

Q6
1,443,281,130,00

0
68,572,856,484

1,443,281,130,00

0

1,443,281,130,00

0

1,443,281,130,00

0
68,572,856,484

1,443,281,130,00

0

Q7
4,506,505,914,34

8

4,506,505,914,34

8

4,506,505,914,34

8

4,506,505,914,34

8

4,506,505,914,34

8

4,506,505,914,34

8

4,506,505,914,34

8

(a) Before rewriting (b) After rewriting

Fig. 7 The black node represents the node for rewriting

Finally to evaluate our experiment, Deterministic Algorithm

introduced by [5] has been used for selecting view to be

materialized. We calculate the query processing cost,

materialized view maintenance cost and total cost of all-

virtual-views, all-materialized view and after select views to

materializes by Deterministic algorithm. All cost of cheapest

MVPP show in Table II and all cost of improved MVPP show

in Table III. The result shows that total cost for all value of re-

optimization MVPP are less than cheapest MVPP. The total

cost of All-virtual view reduced from 9,353,211,451,044 to

8,427,206,080,471, the total cost of All-materialized views is

reduced from 9,092,207,418,537 to 7,688,720,418,537, and

the total cost of selected materialized view using Deterministic

algorithm is reduced from 6,362,230,690,072 to

6,120,827,977,936.

VI. CONCLUSION

The MVPP is the practically possible search space structure

for realistic SQL queries for view selection problem. It

exploited the concept of MQP for constructing. We have

shown that MVPP will lose the global optimization because of

using common subexpression of the previous merging queries

rather than among queries.

In this paper, the approach to re-optimize the search space

MVPP for view selection problem has been proposed by using

concept of commonality of global common subexpression. The

evaluation shows that the total query processing cost of MVPP

is reduced and after selected views to be materialized the sum

of query processing cost and materialized view maintenance

cost is reduced as well.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1123

Fig. 8 MVPP after rewriting Q1 using common subexpressions with Q4

TABLE II

THE CHEAPEST MVPP, THE QUERY PROCESSING COST, THE MAINTENANCE AND TOTAL COST

 Cost of query processing Cost of maintenance Total Cost

All-virtual view 10,821,545,680,471 0 9,353,211,451,044

All-materialized views 1,940,978,234 9,090,266,440,303 9,092,207,418,537

Deterministic 469,452,759,788 5,892,777,930,284 6,362,230,690,072

TABLE III

THE IMPROVED MVPP, THE QUERY PROCESSING, MAINTENANCE AND TOTAL COST

 Cost of query processing Cost of maintenance Total Cost

All-virtual view 8,427,206,080,471 0 8,427,206,080,471

All-materialized views 1,940,978,234 7,686,779,440,303 7,688,720,418,537

Deterministic 533,527,267,652 5,587,300,710,284 6,120,827,977,936

REFERENCES

[1] H. Gupta and I. S. Mumick, “Selection of Views to Materialize in a

Data Warehouse,” IEEE Transactions on Knowledge and Data

Engineering, 2005, pp.24-43.

[2] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing Data

Cubes Efficiently,” In Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, Montreal, Quebec,

Canada, June 04-06, 1996 (SIGMOD '96). New York: ACM. pp.205-

216.

[3] P. Kalnis, N. Mamoulis, and D. Papadias, “View Selection Using

Randomized Search,” Data & Knowledge Engineering, vol.42 n.1,

2002, pp.89-111.

[4] D. Theodorators and T. Sellis, “Dynamic Data Warehouse Design,” In

Data Warehousing and Knowledge Discovery(DaWaK’99) of LNCS,

Springer-Verlag, 1999, vol.1676, pp.1–10.

[5] J. Yang, K. Karlapalem and Q Li, “Algorithms for Materialized View

Design in Data Warehousing Environment,” In Proceedings of the 23rd

International Conference on Very Large Data Bases, August 25-29,

1997(VLDB’97), 1997, pp.136-145.

[6] J. Yang, C. Zhang, and X. Yao, “An Evolution Approach to

Materialized Views Selection in a Data Warehouse Environment,”

IEEE, vol.31, 2001, pp.282-294.

[7] J. Phuboon-ob and R. Auepanwiriyakul, “Two-Phase Optimization for

Selecting Materialized Views in a Data Warehouse,” PWASET, vol.21,

2007, pp.277-281.

[8] F. F. Chen, M. H. Dunham, “Common Subexpression Processing in

Multipler-Query Processing,” IEEE Transaction Knowledge Data

Engineering, vol.10 n.3, May 1998, pp.493-499.

[9] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamrithan, “Materialized

view selection and maintenance using multi-query optimization,” In

Proc of the ACM SIGMOD International Conference on Management of

Data. Santa Barbara, California, United States, 2001, pp.307-318.

[10] W. Lehner, B. Cochrane, H. Pirahesh, and M. Zahatioudakis, “fAST

Refresh Using Mass Query Optimization,” In Proc. of the 17th

International Conference on Data Engineer, Washington, DC, USA:

IEEE Computer Society, 2001, pp.391-398.

[11] J. Zhou , P. Larson , J. Freytag , W. Lehner, “Efficient exploitation of

similar subexpressions for query processing,” Proceedings of the 2007

ACM SIGMOD international conference on Management of data,

June,2007, 11-14, Beijing.

[12] D. Theodoratos, W. Xu, “Computing Closest Common Subexpressions

for View Selection Problem,” In Proc. of the ACM international

workshop on Data warehousing and OLAP (DOLAP 2006),

Washington, USA, 2006, pp.75-82.

[13] Y. N. Silva, P Larson, and J. Zhou, “Exploiting Common

Subexpressions for Cloud Query Processing,” The 28th International

Conference on Data Engineering(ICDE), Washington DC. USA, 2012..

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1124

[14] A. Y. Halevy, “Answering queries using views: A survey,” VLDB

Journal, 10(4), 2001.

Boontita Suchyukorn received the B.Eng,(2nd Hons.) degree in Computer

Engineering and M.Sc. in Eletronic business from King Mongkut’s

University of Technology Thonburi, Thailand.

She is currently studying Ph.D. in Computer Science at School of Applied

Statistics, National Institute of Development Administration (NIDA),

Thailand. Her research interests include database, data warehouses and

software application development.

Raweewan Auepanwiriyakul received the B.Sc. degree on Radiological

Technology from Mahidol University, Thailand, and the M.S. and Ph.D.

degree in Computer Science from University of North Texas, U.S.A.

Currently she is an Associated Professor with School of Applied Statistics,

National Institute of Development Administration (NIDA). Bangkok,

Thailand. Her research interests include database, objected-oriented analysis

and design, and data warehouse.

