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Abstract—In this paper, an Interactive Compromise Approach 

with Particle Swarm Optimization(ICA-PSO) is presented to solve the 
Economic Emission Dispatch(EED) problem. The cost function and 
emission function are modeled as the nonsmooth functions, 
respectively. The bi-objective including both the minimization of cost 
and emission is formulated in this paper. ICA-PSO is proposed to 
solve EED problem for finding a better compromise solution. The 
solution methodology can offer a global or near-global solution for 
decision-making requirements. The effectiveness and efficiency of 
ICA-PSO are demonstrated by a sample test system. Test results can 
be shown that the proposed method provide a practical and flexible 
framework for power dispatch. 
 

Keywords—Interactive Compromise Approach, Emission Control, 
Economic Dispatch, Particle Swarm Optimization.  

I. INTRODUCTION 
HE primary objective of the economic dispatch (ED) is a 
scheme to minimize total fuel cost subject to several unit 

and system constraints. For a more effective operation, efficient 
strategies have been developed in [1-6]. Those strategies are 
mainly operated in such a way that the operating cost is 
minimized regardless of emissions produced. The passage of 
the 1990 U.S. Clean Air Act Amendments[7] has forced the 
utilities to modify their operating strategies to meet 
environmental standards set by legislation. In recent year, some 
operating strategies including emissions dispatch and fuel 
switching have been developed in[8-12]. Emissions dispatch 
adds a second objective to the operating problem, which can 
obtain both emissions reduction and minimizing power 
production cost. Fuel switching uses the fuel co-firing 
technique to reduce the emissions. These techniques not only 
intended to reduce emission into atmosphere but also want to 
minimize the operation cost.  

Due to the conflicting and noncommeasurable natures of fuel 
cost and emission control, a single objective function seems not 
appropriate for this problem. Considering the emission, a 
trade-off between economy and environment need to be 
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considered in the optimization process. With increased 
requirements for environmental protection, alternative 
strategies are required. It is a complicated problem, which 
includes two objectives. An efficient and reliable technique is 
needed to solve this Economic Emission Dispatch(EED) 
problem. Most previous studies[8-12] formulated this problem 
with only a single objective and emissions are treated as 
binding constraints. Since the emissions are important to both 
the power utilities and customers, it is beneficial to tackle the 
emissions as another objective function instead of just 
constraints. Various optimization techniques had been 
developed to solve the bi-objective problem[13-15]. The major 
disadvantage in solving the EED problem is that they are 
incapable of handing nonsmooth fuel cost and emission 
functions. An efficient and reliable technique is needed. This 
paper proposes the use of Particle Swarm Optimization(PSO) 
[16] to solve the nonsmooth functions. PSO searches from a 
population of points, not a single point. The population can 
move over hills and across valleys. It can search a complicated 
and uncertain area to find the solution. Therefore, PSO can 
discover a globally or near globally optimal point. Since PSO is 
a global searching technique, it is more capable of getting away 
from the local minimum to improve the quality of solution. 

In this paper, an Interactive Compromise Approach[17] with 
Particle Swarm Optimization(ICA-PSO) is presented to solve 
the Economic Emission Dispatch(EED) problem. The 
bi-objective function considered the economy and emission 
level. Nonsmooth fuel cost functions, nonsmooth emission 
functions, and the transmission losses are taken into account. 
The PSO is used to seek for a global or near-global optimal 
solution when the ICA procedure interacted with the Decision 
Makers(DMs). The type of information such as trade-offs can 
make available to DMs in the interactive procedure. DMs also 
adjusted single-objective dependent upon their satisfactory 
strategies. By using the ICA-PSO, it easily enables the 
Decision Makers(DMs) to alternative a paerto-optimal solution. 
Effectiveness of the proposed method is demonstrated on an 
example system. Results show that the proposed method 
provides a set of flexible best selection for operation dispatch 
by following the instructions of DM’s. 
 

II. PROBLEM FORMULATION 
The bi-objective function including cost model( )C( • ) and 

emission model( )E( • ) can be formulated by 
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2. Generating capability constraints 
 

      max,min, iii PPP ≤≤   (3) 

 
Where iii cba ,,  are the fuel cost coefficients of the thi −  unit, 

and ii fe ,  are the fuel cost coefficients with valve-point effects. 

iiiii δηγβα ,,,,  are the emission coefficients of the thi −  
unit, iP  is the real power of the thi −  unit(MW). DP  is defined 
as the total load demand(MW). min,iP  and max,iP are lower 
and upper limits of the real power of the thi −  unit(MW). N is 
the number of generation unit. LP  is the total power losses,  
which are approximated on terms of B-coefficients as shown in 
Equation (4). 
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III. BRIEF OF PARTICLE SWARM OPTIMIZATION 
When birds forage, they exchange information to find 

targets. Individuals provide messages to the population, thus 
influence the group behavior, which is a normal social 
phenomenon in nature. If the message provided by an 
individual is regarded as a local solution, the foraging process 
could be regarded as problem solving.  

PSO is a random search method, but it does not contain 
complicated mechanisms such as crossover or mutation. PSO 
generates a set of initial solution through the initialization 
mechanism, known as particles and searches the optimal value 
through iterative evolution. More importantly, every particle 
has a memory capacity, and can provide one-way message to 
the population. Thus, the search process of PSO is the process 
of following current optimal solution. For example, if food 
distance is known to the population but location is unknown, 
the simplest way to find the food is to search the peripheral 
regions of the birds that are closest to the food. The solution 
program first sets the end condition (number of iterations or 
error tolerance), and obtains the optimal solution lastly.  

PSO can have several solutions at the same time, each 
solution is called a particle, and particles have a cooperative 
relationship for sharing messages. Through specific equations, 
each particle adjusts its position and determines the search 

direction according to its search memory and those of others. In 
other words, it tries to reach compatibility between local search 
and global search. The search memory of a particle is the 
objective function and the optimum position found by the 
particle.  

In the search space, the velocity and position influence the 
search behavior of PSO. The number of particles are numbered 
as PSi ,,2,1 K= , where PS (Population Size) is the total 
number of particles, and each particle is assumed to have N 
dimensions. Particle i is defined by its position that 

 
],,,[ 121 Niii xxxX K=                                  (5) 

 
The current optimal position of each particle is defined by 
 

],,,[ 121 Niii pbestpbestpbestPbest K=                   (6) 
 

The current global optimal position of the particle among all 
particles in the population is defined by: 

],,,[ 21 gNggg gbestgbestgbestGbest K=                 (7) 

The velocity of each particle is defined by  

],,,[ 121 Niii vvvV K=                                 (8) 
  

Each particle updates its velocity and position as expressed 
in Equation(9) and Equation(10).  
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where l

iV  is the speed of particle i of the current l generation. 
1+l

iV  is the speed of the next l+1 generation of particle i. 
)1,0(Rand  is a random number between 0 and 1. C1 and C2 are 

learning constants which influence the forward speed of the 
particle. In this paper, C1 and C2 are 2.05. W is the speed weight 
of current generation, small W means a small variance when the 
particle changes the position, otherwise the variance is large.  

Fig. 1 is the search mechanism of PSO. Each particle moves 
from the current position to the next one according to the 
present fitness function values. Generally, the fitness function 
is same the objective functions. The local best of other particles 
in the population should be changed if the present fitness 
function value is better than the previous. Repeat the new 
searching points until the maximum number of generations 
reached. 100 generations are set in this paper as the stopping 
criteria.   
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Fig. 1 The Search Mechanism of PSO 
  

IV.    SOLUTION METHODOLOGY AND IMPLEMENT 
The objective function shown in Equation(1) is a 

bi-objective function. The improvement of one objective can be 
only reached by retarding the other. The ICA approach is 
developed to deal with the dilemma by using PSO.  
 

A.  Initial Ideal and Non-ideal Solution 
In Equation (1), we first solve the single goal problem by 

using PSO procedure. The detailed PSO procedure is shown in 
Section III. The optimization can provide the best solution and 
then the worst solution of E( ) and C(‧ ‧) . The best solutions 
of C( ) and E( ) are defined as “Cost_ideal” and ‧ ‧
“Emission_ideal”, and the worst solutions of C( ) and E( ) ‧ ‧
are defined as “Cost_nonideal” and “Emission_nonideal”.                     
 
  The Best Solution     
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B. A Minimum Least Square Error Approach 
The minimum least square approach is defined by: 
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iX  is a particle as defined in PSO. If the minimization of 
)( iXT  occurs in min,iX , miniX  will be an ICA-PSO solution 

with  
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C.  Satisfaction Factor 
An ICA-PSO solution( miniX ) may not fit company police. 

To choose a desirable solution, miniX  should be judged by the 

DMs. A satisfaction factor is defined for DMs in Equation (13). 
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D.  Alternation of Decision Region 
For cases that )C(X i  needs further reduction, )E(X i  will 

be chosen as the compromised term and the parameters 
ealCost_nonid  and dealEmission_i  will be adjusted by 
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F.  Definition of Goal Index 
Following the above steps, the decision region will become 

smaller and smaller with the DMs’ an important decision factor. 
A goal index defined in Equation (16) could provide the 
information of the maximal improvement which the next search 
can attain. The DMs will then decide if further searching should 
continue or not. Fig. 2 shows the flowchart of the ICA-PSO 
approach. 
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Fig. 2 shows the flowchart of the ICA-PSO approach. 
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Fig. 2 The Flowchart of the ICA-PSO Approach 

V. CASE STUDY 
The proposed algorithm is tested on a 10-unit system. The 

associated coefficients for units are listed in Table I and Table 
II [18]. Table III shows the results of minimizing cost and 
minimizing emission by PSO. In the Table III, if the total cost 
achieves the best, the emission required is the largest.  
 

TABLE II 
THE ASSOCIATED COEFFICIENTS FOR EMISSION FUNCTIONS 

Generator α 
 (lb/h) 

β 
(lb/MWh) 

γ 
 

(lb/(MW)2h) 

η 
(lb/h) 

δ 
(1/MW)

1 360.001
2 -3.9864 0.04702 0.2547

5 0.01234

2 350.005
6 -3.9524 0.04652 0.2547

5 0.01234

3 330.005
6 -3.9023 0.04652 0.2516

3 0.01215

4 330.005
6 -3.9023 0.04652 0.2516

3 0.01215

5 13.8593 0.3277 0.00420 0.2497
0 0.01200

6 13.8593 0.3277 0.00420 0.2497
0 0.01200

7 40.2669 -0.5455 0.00680 0.2480
0 0.01290

8 40.2669 -0.5455 0.00680 0.2499
0 0.01203

9 42.8955 -0.5112 0.00460 0.2547
0 0.01234

10 42.8955 -0.5112 0.00460 0.2547
0 0.01234

 
 

TABLE III 
THE RESULTS OF SINGLE-OBJECTIVE PROGRAMMING 

 Minimal Cost ( )⋅C  Minimal Emission ( )⋅E  
 Cost ($/h) Emission(lb/h) Cost ($/h) Emission(lb/h)

P1 3631.8691 283.2018 3639.9064 283.3732 
P2 4831.8592 331.9080 4816.4782 330.9727 
P3 6222.9289 441.8854 4692.0231 319.5801 
P4 5844.9768 393.5508 4793.0090 318.0850 
P5 4922.4355 69.1040 10853.9355 175.4702 
P6 4786.7750 67.0031 17633.6546 338.8449 
P7 15932.1932 500.2547 15514.8099 474.8169 
P8 18030.8124 655.5568 15400.7342 478.9648 
P9 23447.5099 902.2280 19338.4030 592.9174 
P10 23347.9568 902.0944 19320.1188 593.8536 

Total 110999.3168 4546.7869 116003.0726 3906.8788 
 

Table IV and Table V show the interactive compromised 
procedure. In Table IV, it is shown that SR_Emi degraded from 
70.33% to 0% when SR_Cost improved from 37.58% to 100%. 
If the DMs find the result not to be suitable for the police of 
utilities, further compromise can be made according to the 
direction dictated by DMs. Similarly, if the DMs want to reduce 
the emission, the operation cost will be selected a compromised 
term as shown in Table V.  

Fig. 3 shows the relationship between operation cost and 
satisfied factor. It provides the utility planners a wider range of 
alternatives showing the various feasible regions. Instead of 
using maximal allowable limits for emissions as constraints, an 
appropriate operating strategy can be chosen to meet the 
desired level of emission or cost. Two curves are intersected on 
57.16% and 57.99% for SR_Cost and SR_Emi, respectively. 
The intersection of two curves may be a suitable dispatch 
strategy for DMs. 
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Fig. 3 The Relationship between Operation Cost and Satisfied Factor 
 
 
 
 
 
 
 
 
 
 
 

 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:8, 2009

1515

 

 

TABLE I 
THE ASSOCIATED COEFFICIENTS FOR FUEL COST FUNCTIONS 

Gnerator Pmin 
(MW) 

Pmax 
(MW) 

a 
($/h) 

b 
($/MWh)

c 
($/(MW)2h)

e 
($/h) 

f 
(rad/MW) 

1 10 55 1000.403 40.5407 0.12951 33 0.0174 
2 20 80 950.606 39.5804 0.10908 25 0.0178 
3 47 120 900.705 36.5104 0.12511 32 0.0162 
4 20 130 800.705 39.5104 0.12111 30 0.0168 
5 50 160 756.799 38.5390 0.15247 30 0.0148 
6 70 240 451.325 46.1592 0.10587 20 0.0163 
7 60 300 1243.531 38.3055 0.03546 20 0.0152 
8 70 340 1049.998 40.3965 0.02803 30 0.0128 
9 135 470 1658.569 36.3278 0.02111 60 0.0136 
10 150 470 1356.659 38.2704 0.01799 40 0.0141 

 
TABLE IV  

THE INTERACTIVE COMPROMISED PROCEDURE FOR COST 

 Interactive Cost ( ( )•C ) 
Cost ($/h) 114122.86 113712.86 112745.10 112169.93 111866.95 110999.32

Emission(lb/h) 4096.76 4159.69 4217.48 4339.04 4390.39 4546.79 
SR_Cost (%) 37.58 45.77 65.11 76.61 82.66 100 
SR_Emi (%) 70.33 60.49 51.46 32.47 24.44 0 

 
TABLE V 

THE INTERACTIVE COMPROMISED PROCEDURE FOR EMISSION 

 Interactive Emission ( ( )•E ) 
Cost ($/h) 112212.23 112937.26 113581.26 114294.74 115044.48 116003.07

Emission(lb/h) 4339.31 4250.68 4124.87 4060.23 4002.53 3906.88 
SR_Cost (%) 75.76 61.27 48.40 34.14 19.16 0 
SR_Emi (%) 32.42 46.27 65.93 76.03 85.05 100 

 
Fig. 4 shows the convergent characteristics(Min )( iXT ) for 

cost compromise and emission compromise. Algorithm was 
implemented in the programming language Matlab 7.0 on a 
PIV-2.6GHZ computer with 512MB RAM. 

 

 
Fig. 4 The Convergent Characteristics(Min )( iXT ) of Cost 

compromise and Emission compromise 
 

VI. CONCLUSION 
A bi-objective function including cost and emissions is 

formulated for the economic emission dispatch. An ICA 
combined with PSO is used to solve the bi-objective problem 
while meeting the requirements of unit’s capacity and power  

 
balance. This approach was tested on a 10-units system. Results 
provide a practical and flexible framework for evaluating the 
emission strategies. The optimization generates trade-off’s 
process between cost and emission based on economic dispatch. 
With the introduction of this approach, it can support the DMs 
to know better where to look for improved solutions and how to 
recognize a final solution upon interactive procedure. 
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