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Optimization of Performance and Power

Consumption in Data Centers
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Abstract—With data centers, end-users can realize the pervasive-
ness of services that will be one day the cornerstone of our lives.
However, data centers are often classified as computing systems
that consume the most amounts of power. To circumvent such a
problem, we propose a self-adaptive weighted sum methodology
that jointly optimizes the performance and power consumption of
any given data center. Compared to traditional methodologies for
multi-objective optimization problems, the proposed self-adaptive
weighted sum technique does not rely on a systematical change of
weights during the optimization procedure. The proposed technique is
compared with the greedy and LR heuristics for large-scale problems,
and the optimal solution for small-scale problems implemented in
LINDO. the experimental results revealed that the proposed self-
adaptive weighted sum technique outperforms both of the heuristics
and projects a competitive performance compared to the optimal
solution.

Keywords—Meta-heuristics, distributed systems, adaptive meth-
ods, resource allocation.

I. INTRODUCTION

Power consumption is one of the most critical design criteria
of the modern-day computing system. Because data centers are
a collection of multiple computing systems, power consump-
tion is even more critical of an issue. System performance is
affected by supply voltage scaling because circuit delay and
maximum system clock frequency depend on the supply volt-
age. Utilizing the available dynamic voltage scaling modules,
the supply voltage to a computing system can be altered so
that the computing system consumes lesser power. However,
to make digital circuits that make up a processing element
work correctly, the frequency of the clock must also be altered.
This results in an altered performance. As a consequence, the
processing element operates on a slower speed, which in turn
results in poor system performance. That is to say, if power
consumption is reduced for a system, then the performance
must degrade. However, in data centers the optimization of
power consumption and performance is considered to be
equally important. Therefore, we must concurrently optimize
power consumption and performance as a multi-objective
optimization problem. A traditional method for multi-objective
optimization is the weighted sum technique that seeks Pareto
optimal solutions one by one by systematically changing
the weights between the objective functions. Research has
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shown that this method often produces poorly distributed
solutions along a Pareto front [9]. Moreover the weighted
sum methodology cannot find Pareto optimal solutions in
convex regions [8]. For this purpose, we propose a self-
adaptive weighted sum technique that can circumvent the
above mentioned problems.

The proposed self-adaptive weighted sum methodology ef-
fectively explores the search regions by changing the weights
adaptively compared to the traditional multi-objective opti-
mization methods. As a consequence, the proposed method
produces good quality solutions. Moreover, the proposed
method finds Pareto optimal solutions in non-convex regions.
Furthermore, non-Pareto optimal solutions are negated. The
proposed methodology is successfully applied to solve the data
center multi-objective power consumption and performance
optimization problem. The proposed technique is compared
with the greedy and LR heuristics for large-scale problem
sizes. The proposed technique also is compared with the
optimal solution implemented in LINDO for small-scale prob-
lem sizes. The experimental results reveal the competitive
performance of the proposed methodology compared to other
techniques.

The rest of the paper is organized as follows. In Section
II, we formulate the optimization problem for data centers.
Section III details the proposed self-adaptive weighted sum
methodology. In Section IV, the proposed technique is ex-
perimentally compared the greedy and LR heuristics, and the
optimal solution implemented in LINDO. The related work
and concluding remarks are provided in Sections V and VI,
respectively.

II. DATA CENTER SYSTEM MODEL AND OPTIMIZATION
PROBLEM DESCRIPTION

A. The System Model
Consider a data center comprising of a set of machines,

M = {m1, m2, · · · , mm}. Assume that each machine is
equipped with a DVS module and is characterized by:

1) The frequency of the CPU, fj , given in cycles per unit
time. With the help of a DVS, fj can vary from fmin

j

to fmax
j , where 0 < fmin

j < fmax
j . From frequency,

it is easy to obtain the speed of the CPU Sj that
is approximately proportional to the frequency of the
machine [15].

2) The specific machine architecture, A(mj). The archi-
tecture would include the type of CPU, bus types, and
speeds in GHz, I/O, and memory in bytes.
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Consider a metatask, T = {t1, t2, · · · , tn}. Each task is
characterized by:

1) The computational cycles ci that it needs to complete.
The assumption here is that the ci is known a priori.

2) The specific machine architecture A(ti) that it needs to
complete its execution.

3) The deadline, di, before it has to complete its execution.
Moreover, we also assume that the metatask, T , also has
a deadline D that is met if and only if the deadlines of
all its tasks are met.

The number of computational cycles required by ti to
execute on mj is assumed to be a finite positive number,
denoted by cij . The execution time of ti under a constant
speed Sij , given in cycles per second is tij

cij
= Sij . For the

associated data and instructions of a task, we assume that the
processor always retrieves it from the level-1 (primary) data
cache. A task, ti, when executed on machine mj draws, pij

amount of instantaneous power. Lowering the instantaneous
power will lower the CPU frequency and consequently will
decrease the speed of the CPU and hence cause ti to possibly
miss its deadline.

The architectural requirements of each task are recorded as
a tuple with each element bearing a specific requirement. We
assume that the mapping of architectural requirements is a
Boolean operation. That is, the architectural mapping is only
fulfilled when all of the architectural constraints are satisfied.

B. Problem Formulating

Find the task to machine mapping, where the cumulative
instantaneous power consumed by the data center, M and the
makespan of the metatask, T , is minimized.

Mathematically, we can say

minimize

⎛
⎝

n∑
i=1

m∑
j=1

pijxij and max
j

n∑
i=1

tijxij

⎞
⎠ (1)

subject to xij ∈ {0, 1}, (2)

ti → mj ; ifA(ti) = A(mj) then xij = 1, (3)

tijxij ≤ di|xij = 1, (4)

(tijxij ≤ di) ∈ {0, 1}, (5)

n∏
i=1

(tijxij ≤ di) = 1|xij = 1. (6)

Constraint (2) is the mapping constraint. When xij = 1, a
task, ti, is mapped to machine, mj , and xij = 0 otherwise.
Constraint (3) elaborates on this mapping in conjunction to
the architectural requirements, and it states that a mapping
can only exists if the architecture is mapped. Constraint
(4) relates to the fulfillment of the deadline of each task,
and constraint (5) tells us about the Boolean relationship
between the deadline and the actual time of execution of the
tasks. Constraint (6) relates to the deadline constraints of the
metatask that will hold if all of the deadlines of the tasks, di,
are satisfied.

The above problem formulation is in a form of multi-
objective optimization problem. In the literature, there are two
standard ways to tackle such multi-objective problems: (a)
optimize objectives concurrently or (b) optimize one objective
first, then make that as a constraint for the rest of the
objectives.

To optimize one objective first, then make that as a con-
straint for the other objectives, the only plausible framework
is when one can ensure that the objective functions have an
acceptable overlap [7]. Because, the multi-objective problem
(described in this paper) has the objectives of optimizing
instantaneous power and makespan that are are opposite to
each other, we must choose to optimize both the objectives
concurrently.

III. THE MULTI-OBJECTIVE WEIGHTED SUM TECHNIQUE

The weighted sum is a traditional technique to achieve
optimization for multi-objective problems [9]. However, the
traditional weighted sum technique has the following two
major drawbacks.

1) The even distribution of weights towards the objective
functions do not warrant an even distribution of solutions
for each of the objective function.

2) The traditional approach cannot find non-convex solu-
tions. This is often the reason that solutions of multi-
objective problems are complex, time consuming, and
non-convergent.

The proposed self-adaptive weighted sum technique circum-
vents the above mentioned problems and can effectively solve
multi-objective optimization problems that have non-convex
regions for Pareto front. The data center optimization problem
described in the previous section is of that nature; hence it can
be very effectively solved with the proposed technique. The
proposed technique finds its roots in previous works, such
as [8] and [9], and is adapted to truly reflect an applicable
solution to the joint power and makespan optimization problem
of a data center. (Due to the lack of space, we assume that the
reader has basic knowledge of multi-objective optimization,
and in particular the weighted sum technique. If the reader
wishes to refresh knowledge about the weighted sum technique
for multi-objective problems, then we strongly recommend
reading articles [8] and [9].) Below we detail the steps of
the procedure.

Let xi represent the solution to an objective function ζi,
and let xi∗ denote the optimal solution of ζi. Moreover, let
ζu represent the utopia (saddle) point of any number (two in
our case) of objective functions.

Step 1: Normalize objective functions as: ζ
i
= ζi − ζu.

Step 2: Utilizing minute divisions, η0, perform multi-objective
optimization using the standard weighted sum approach (an
example of which can be found in [9]). The weights are
adjusted relative to η0, i.e., the step size is determined to be:
Δξ = 1

η0
.

Step 3: Once a set of solutions is obtained from Step 2,
the lengths of segments between all of the “neighboring”
solutions is computed. This is done to remove any duplicity of
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overlapping solutions that is the norm of the standard weighted
sum technique.
Step 4: This step determines the number of refinements per re-
gion. The refinement is obviously directly related to the length
of the segment. That is, the longer the segment, the more of
refinement is needed. There is no golden rule to predetermine
the number of refinements; however, decreasing the step size,
Δξ, in Step 2 can help in achieving higher resolution of the
segmented regions. The refinement numerology that we used
took into account the relative correlation of the average length
to the length of the segment under question. In other words,
we normalized the length of all of the segments relative to the
average length of the segments.
Step 5: Once the refinement of Step 4 is achieved, we must
in each of the feasible regions (identified through Steps 1–4);
(a) force the inequality constraints, and (b) sub-optimize using
the standard weighted sum technique. This can be achieved by
utilizing the step size, Δξ, in Step 2, and the distance between
the optimal solution, xi∗, which may be obtained by solving
the singleton optimization, and the achievable solution, xi,
when inequalities are forced. The distance, δi is understood to
be equal to xi − xi∗. Hence, we can restate the optimization
problem in the following generic form:

min
(
ξ × ζpower + (1 − ξ) × ζmakespan

)
(7)

subject to x1∗ ≤ x1 + δ1, (8)

x2∗ ≤ x2 + δ2. (9)

Step 6: Similar to Step 4 determine overlapping solutions. If
no overlap is found, then output the solution. If an overlap
is identified, then refine the solution to the multi-objective (in
our case bi-objective) optimization problem by adjusting the
lengths of the segments by revisiting Step 4.

The proposed self-adaptive weighted sum technique en-
sures that the segments that do not have converged optimum
solutions, are removed from the solution space for further
refinement. This is the key property to identify accurate,
feasible, and effective solutions to otherwise cumbersome
multi-objective optimization problems.

IV. SIMULATIONS, RESULTS, AND DISCUSSION

We set forth two major goals for our simulation study: (a)
To measure and compare the performance of the proposed
technique against the optimal solution, greedy heuristic [15],
and linear relaxation (LR) heuristic [15]. (b) To measure
the impact of system parameter variations. We choose to
compare the proposed technique against the above mentioned
two heuristics because they have shown to perform extremely
well compared to several other heuristics [15]. Due to space
restrictions, we could not include the finer details of the greedy
and LR heuristics. However, we strongly encourage the readers
to review the referenced articles.

Based on the size of the problems, the simulations were
divided in two parts. For small-size problems, we used an In-
teger Linear Programming toolkit called LINDO [13]. LINDO
is useful to obtain optimal solutions, provided that the problem
size is relatively small. Hence, for small problem sizes, the

TABLE I
PROBLEM CHARACTERISTICS

Date No. of Requests High Low
10/12/92 322 169 153
10/13/92 302 165 137
10/14/92 311 165 146
10/15/92 318 176 142
10/16/92 305 163 142
10/17/92 299 155 144
10/18/92 297 155 142
03/07/02 483 258 225
03/20/02 457 263 194
03/26/03 426 243 183
04/02/03 431 246 185
05/02/03 419 241 178

relative performance of the proposed technique, greedy, and
LR techniques is compared against the LINDO implementa-
tion. For large-size problems, it is impractical to compute the
optimal solution. Hence, we consider comparisons only against
the greedy and LR heuristics. For the workload, we acquired
the data from the US Air Force Satellite Control Network
(AFSCN). The data is publicly available over the Internet
at [1]. The AFSCN is currently responsible for coordinating
communications between civilian and military organization
and more than 100 USAF managed satellites. Table I sum-
marizes the characteristics of the data.

There are two types of task requests that can be distin-
guished: (a) low-altitude and (b) high-altitude orbits. The low-
altitude tasks specify requests for low-altitude satellites; such
requests tend to be very short (on the average they are 5-10
minutes in duration) and have a tight visibility window (simply
because the relative velocity of low-altitude satellites is very
high compared to high-altitude satellites). High-altitude tasks
specify requests for high-altitude satellites; the durations for
these requests are more varied and usually longer, with large
visibility windows. A problem instance of AFSCN consists of
n task requests. Each task request ti, 1 ≤ i ≤ n, specifies
a required processing duration (i.e., the time to complete a
task) and the associated data file (i.e., the amount of memory
required to process a task). Each task request also specifies
a number of pairs of the form (ti, mj), each identifying
a particular alternative resource (i.e., an antenna or, in our
context, a machine mj) and time window, i.e., the deadline for
a task di. The deadlines for low-altitude tasks were relatively
tighter than high altitude tasks. The processing duration of the
task is the same for all possible alternative resources, and it
needs to be mapped to a resource and completed within the
time window.

Finally, to model the DVS modules, we make the generic
assumption that the task processing times were given when
machines were running at full instantaneous power (or at
a level of DVS equal to 100 percent). Because the task
processing time, as given in the AFSCN data, is uniform
across all machines, for this problem instance, we assume
that the machines have a clock speed of two GHz. We also
assume that a potential difference of one mV across a CMOS
circuit generates a frequency of one MHz. Altering any of
these assumptions will be a trivial task and will have no
significant impact on the simulation results. For this study,
we keep the architectural affinity requirements confined to
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Fig. 1. Makespan ratio over the optimal.
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Fig. 2. Energy consumption ratio over the optimal.

memory. Adding other requirements, such as I/O and processor
type, will bear no affect on our simulation setup. In all of the
simulation setups, the storage capacity of the machines was set
proportional to the total size of data items (TS). The capacity
of a machine was generated using a uniform distribution from
(0.5 × TS) and (1.5 × TS). For small-size problems, the
number of machines was fixed at five, while the number of
tasks varied from five to 50. The tasks were chosen on random
from each of the twelve days of the AFSCN workload and the
simulation plot is an average over the twelve runs. The number
of DVS levels per machine was set to four. For large-size
problems, the number of machines was fixed at sixteen, while
the number of tasks varied from 322 to 4,370. The bound of
the number of tasks reflect the sequential aggregation of the
tasks in the AFSN workload, i.e., for the first set, we use the
data from 10/12/92 having 322 tasks, for the second set, we use
the data as the aggregate of the data of 10/12/92 (322 tasks)
and 10/13/92 (302 tasks), giving us a total of 624 tasks, and
so on. The number of DVS levels per mj was set to sixteen.

The simulation results for small size problems with are
reported in Figs. 1 and 2. These figures show the ratio of the
makespan obtained from the three techniques and the optimal.
The plot in Fig. 1 shows that the proposed technique (acronym
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Fig. 3. Makespan.

AWS) performs extremely well by achieving a makespan
within ten percent of the optimal solution. Next, we compare
the overall energy consumption that is calculated as the time
interval a task takes to complete on a given machine multiplied
by the current instantaneous power of the given machine.
(Measuring energy instead of power is meaningful because
energy can directly be translated into monetary valuation.)
From Fig. 2 we can see that the proposed AWS technique
outperforms the other techniques in terms of energy savings
compared to the optimal allocation within a range of fifteen
percent.

Next, we record the performance of the techniques on
large-scale problem instances. Fig. 3 compares the makespan
identified by the AWS, greedy, and LR heuristics. The re-
sults indicate that proposed technique outperforms the greedy
and LR heuristics in identifying a smaller makespan. We
can observe that the AWS technique identifies a makespan
that is 21.07 percent smaller than greedy and 26.82 percent
smaller than the LR heuristic. Second, we compare the energy
consumption of the three techniques. Fig. 4 shows the relative
performance of the techniques. The proposed AWS heuristic
again outperforms the other heuristics by consuming lesser
energy when executing the tasks. We observe that the AWS
heuristic saves on average 20.63 percent of energy than the
greedy and 45.36 percent of energy than the LR heuristic.

Finally, we must analyze the runtime for both small and
large problem sizes. For completion, the runtime of the optimal
for small problem size is presented for comparisons. The
results are depicted in Figs. 5 and 6. The AWS technique
terminates many orders faster than the optimal, and the greedy
and LR heuristics. This suggests that the AWS technique not
only terminates faster but also delivers a superior solution
quality than the compared techniques.

V. RELATED WORK

Most DPM techniques utilize instantaneous power manage-
ment features supported by hardware. For example, Ref. [2]
extends the operating system’s power manager by an adaptive
power manager (APM) that uses the processor’s DVS capa-
bilities to decrease or increase the CPU frequency, thereby
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Fig. 5. Avg. execution time (small size problems).
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minimizing the overall energy consumption [3]. The DVS
technique at the processor-level together with a turn on/off
technique at the cluster-level to achieve high-power savings
while maintaining the response time is proposed in [12].
In [11], the authors introduce a scheme to concentrate the
workload on a limited number of servers in a cluster such that
the rest of the servers can remain switched-off for a longer
period of time.

While the closest techniques to combining device power
models to build a whole system has been presented in [4], our
approach aims at building a general framework for autonomic
power and performance management, where we bring together
and exploit existing device power management techniques
from a whole system’s perspective. Furthermore, while most
power management techniques are either heuristic-based ap-
proaches, such as [6] and [10] or stochastic optimization
techniques, such as [5] and [14], we use adaptive techniques
to seek radically fast and efficient solutions compared to the
traditional multi-objective optimization techniques.

VI. CONCLUSIONS

This paper presented a power-aware resource allocation
strategy in data centers. The solution quality of the proposed
technique was compared against the optimal for small-scale
problems, and greedy and linear relaxation heuristics for
large-scale problems. The simulation results confirm superior
performance of the proposed scheme in terms of reduction in
energy consumption and makespan compared to the heuristics
and the optimal solution obtained using LINDO. This work
leaves much to be desired of in terms of exploring prob-
lems of dynamic nature, precedence preserving workload, and
preemptive models. We encourage researchers to extend the
proposed model described in this paper to capture all of the
above desirables.
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