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Abstract—The paper deals with the estimation of amplitude and 

phase of an analogue multi-harmonic band-limited signal from 
irregularly spaced sampling values. To this end, assuming the signal 
fundamental frequency is known in advance (i.e., estimated at an 
independent stage), a complexity-reduced algorithm for signal 
reconstruction in time domain is proposed. The reduction in 
complexity is achieved owing to completely new analytical and 
summarized expressions that enable a quick estimation at a low 
numerical error. The proposed algorithm for the calculation of the 
unknown parameters requires O((2M+1)2) flops, while the 
straightforward solution of the obtained equations takes O((2M+1)3) 
flops (M is the number of the harmonic components). It is applied in 
signal reconstruction, spectral estimation, system identification, as 
well as in other important signal processing problems. The proposed 
method of processing can be used for precise RMS measurements 
(for power and energy) of a periodic signal based on the presented 
signal reconstruction. The paper investigates the errors related to the 
signal parameter estimation, and there is a computer simulation that 
demonstrates the accuracy of these algorithms. 
 

Keywords—Band-limited signals; Fourier coefficient estimation; 
analytical solutions; signal reconstruction; time.  

I. INTRODUCTION 
STIMATING the amplitude and phase of a signal 
accurately is very important in many areas, even when the 

frequencies contained in the signal are already known [1]. 
These include the dual-tone multiple frequencies (DTMF) 
signal detection in digital communications, ECG sinusoidal 
interference cancellation, recovery of biomedical signals, and 
pitch detection in automated transcription. In power systems, 
estimation of the harmonic components is necessary to ensure 
the quality of power supply. 

In signal processing, reconstruction usually means 
determination of an original continuous signal from a 
sequence of equally spaced samples. It is a well-known fact 
that any real signal which is transmitted along a channel-like 
form will have a finite bandwidth. As the result, the received 
signal's spectrum cannot contain any frequencies above a 
maximum value, fmax=Mf (f is the fundamental frequency). 
Consequently, M frequencies provide a specification of 
everything we know about the signal spectrum in terms of a 
DC level plus the amplitudes and phases of just— i.e. all the 
information we have about the spectrum can be specified by 
2M +1 numbers. Many attempts have been made in respect to 
application of sampling techniques supported by optimal 
methods of reconstruction of band-limited signals in the form 
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of a Fourier series (trigonometric polynomials) [2-5]. 
This paper analyses the sampling of an analogue multi-

harmonic input signal, as opposed to the method based on the 
integration of the input analogue signal [6], along with the 
problem of subsequent reconstruction of the processed 
signals. It was noticed in [7] that the ac signal integration 
method produces a regular form of system matrix in the 
derived system of equations, provided an adequate choice is 
made regarding the time parameters within which the 
integration is done; this makes it possible to have much more 
efficient reconstruction procedure subsequently. If the 
samples were assumed to be measured without errors, the 
presented algorithm, without any further modifications, can be 
used for signal reconstruction of periodic band-limited signals, 
which is the situation that occurs in a simulation. In a real 
environment and when the measuring is performed in practice, 
the samples are measured with error. In this case, the 
suggested algorithm must be modified, in order to be able to 
determine the best signal estimate, according to the criterion 
assumed, just like in [5, 6, 8-11].  

The proposed algorithm for estimation is based on the use 
of the values that were obtained as a result of the sampling of 
the continual input signal. This kind of processing must be 
done as many times as was needed to enable the determination 
of the unknown signal parameters. The obtained system of the 
linear equations can be simply solved by using the derived 
analytical and summarized expressions. For the estimation of 
amplitude and phase of a complex ac signal, the algorithm 
requires O((2M+1)2) flops, while the straightforward solution 
of the obtained equations takes O((2M+1)3) flops. For this 
reason, the proposed method offers a significant improvement 
in computational efficiency over the standard reconstruction 
algorithms, at a lower numerical error. The method is 
designed for very accurate RMS measurements of periodic 
signals, and can be applied for precise measurements of other 
important quantities such as power and energy. They can also 
be applied in signal reconstruction, spectral estimation, system 
identification, as well as in other important signal processing 
problems. 

II. PROBLEM FORMULATION 
Let us assume that the input signal of the fundamental 

frequency f is band limited to the first M harmonic 
components. This form of continuous signal with a complex 
harmonic content can be represented as a sum of the Fourier 
components as follows: 

( ) ( )∑
=

++=
M

k
kk ftkaats

1
0 2sin ψπ           (1) 

By sampling the signal (1), and by forming a system of 
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equations of the same form, in order to determine the 2M+1 
unknowns (amplitudes and phases of the M harmonic, as well 
as the average value of the signal), we obtain: 

( ) ( )∑
=

++=
M

k
klkl ftkaats

1
0 2sin ψπ           (2) 

where l = 1, 2,..., 2M+1. The tl is time moment in which the 
sampling of the input analogue signal is done. The s(tl) value 
represents the value of the processed signal at the moment 
when the sampling is performed. The obtained relation can be 
represented in the short form as: 

( ) ( )l

M

k
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,,0 sincoscossin ψαψα      (3) 

where: 
( ) ( )12,...,2,1;,...,2,1;2, +==== MlMkkftk lllk απα   (4) 

The αk,l are the variables determined by the moment at 
which the sampling is done, as well as by the frequency of the 
corresponding harmonic of the input periodic signal. The 
system determinant for the system of 2M+1 unknown 
parameters (equation (3)), can be represented as: 
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A similar form of the obtained determinant (6) was the 

object of study in [7]. In its form, determinant (6) resembles 
the well-known Van der Monde determinant. This determinant 
was the subject of a very intensive analysis [12-15]. However, 
all of these papers were proposing only the procedures that 
relied on program procedures (mostly iterative ones) in 
determining the value of the original and inverted Van der 
Monde’s matrix with an improved efficiency. In this paper, 
we derive completely new analytical and summarized 
expressions for exactly solving the system of equations (3) by 
using this determinant as the starting point of the analysis. 
Owing to relations derived in this way, it is not necessary to 
use the standard procedure for solving the system of 
equations, as suggested in [6]. This procedure, in the case of 
an extremely complex spectral content of a signal, would 
require a powerful processor and enough time for processing. 

The given determinant (equation (6)) can be transformed in 
the following way (by using Euler’s formulas and derivations 
in [7]): 
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The cofactors that correspond to the observed system of 
equations (3) are: 
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and so on. The cofactors given above based on the 
following development can be written as: 

( ) ( ) ( ) 1
1212

1
22

1
111,12 ... +++ +++= MMM tststs XXXX     (10) 

1
12
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1
1 ,...,, +MXXX  are the cofactors, obtained from cofactor 

X2M+1,1 after the corresponding row as well as the first column 
has been eliminated. The second cofactor is derived from the 
expansion of X2M+1 along such a column. For this purpose, we 
must determine q

pX  as cofactors of X2M+1. After the intensive 
mathematical calculation (similar as in equation (7)) we 
obtain: 
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(the summing is done by all of the M’s of the set 
{ }1221 ,...,, +Mααα ). 

For 12 +≤≤ Mq : 
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Based on (analytical) relation derived in this way the 
unknown parameters of the signal (amplitude, phase), can be 
determined through a simple division of the expression that 
represents a solution of the adequate co-determinants with the 
expression that represents an analytical solution to the system 
determinant: 
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As shown in relation (14), the proposed processing method 
can be used to perform an estimation of the unknown 
parameters of the periodic band-limited signal, based on the 
explicit and summarised analytical expressions. It is a fact that 
the obtained system of equations (3) can be described, after 
the processing, by a special form of the determinant (which is 
summarized as the Van der Monde’s determinant). This fact 
enables factoring and application of transformations that can 
be applied only on determinants. Any other procedure would 
lead to a much more complex calculation and to relations that 
are mathematically much more demanding. Owing to this, any 
subsequent calculation conduct towards reconstructing a 
periodic signal will not be related either to determinants 
themselves or to the procedures that are typically used in their 
solving. The obtained result clearly suggests that it is not 
necessary to use the standard procedure for solving the system 
of equations, as suggested in [6]. 

Table I presents the results obtained through the application 
of the derived relations for solving the observed system of 
equations (3), taking that M=7, f=50 Hz, tl=0.001 s. This 
results were compared with the solution obtained from GEPP 
algorithm (Gaussian elimination with partial pivoting), offered 
in the Matlab program package itself (all of the calculations 
are done in IEEE standard double floating point arithmetic 
with unit round off 16101.1 −×≈u ). 

The values in columns separated by commas correspond 
to the solution for derived relations with different orders. This 
means that in the column for 1

lX  values 77.3751539; 
65.8192372; -96.0730198; 82.9370773; etc. correspond to 

1
1X =77.3751539; 1

2X =65.8192372; 1
3X =-96.0730198; 

1
4X =82.9370773, respectively. The difference in the obtained 

values (Table 1) and results obtained with GEPP algorithm 
was equal to 14101 −× . The derived relations produce solutions 
that are practically identical to the procedure that is most 
commonly used in solving systems of linear equations. 

III. PROPOSED RECONSTRUCTION ALGORITHM AND 
UNCERTAINTY ANALYSIS 

The proposed algorithm for signal reconstruction is 
presented in the form of a flow-chart in Fig. 1. 

When using the proposed algorithm, the first step to be 
taken is to ensure that the order of the highest M harmonic 
component in the processed signal spectrum is known in 
advance or adopted in advance, accepting that an M 
determined in this way is bigger than the expected (real) 
value. One of the well-known methods can be used to estimate 
the frequency spectrum. Two accurate frequency estimation 
algorithms for multiple real sinusoids in white noise based on 
the linear prediction approach have been developed in [16]. 
The first algorithm minimizes the weighted least squares 
(WLS) cost function, subject to a generalized unit-norm 
constraint. At the same time, the second method is a WLS 
estimator with a monic constraint. Both algorithms give very 
close frequency estimates whose accuracies attain Cramér–
Rao lower bound for white Gaussian noise. A modified 
parameter estimator based on a magnitude phase-locked loop 
principle was proposed in [17]. It showed that the modified 
algorithm provided tracking improvements for situations in 
which the fundamental component of the signal became small, 
or disappeared for certain periods of time. 

In order to recalculate unknown parameters (amplitude and 
phase) of the processed periodic signals, it is necessary to 
have the results of the sampling of the input analogue signals 
s(tl), (equation (2)). The sampling of the input signal must be 
done in 2M+1 points, so as to be able to re-calculate all of the 
unknown values. The samples of the input signal are obtained 
by means of sampling in a precisely defined time moments, 
which are referred in relation to the detected moment of zero 
crossing. The values of the derived expressions depend on the 
measured frequency f (Fig. 2), because the values of the 
determinant elements are calculated based on coefficient αl, 
according to equation (4). Apart from this, other parameters of 
the derived system of equations will not be dependent on the 
frequency of the carrier signal and the starting moment of 
integration of the input signal, as was the case in [7]. 

Due to the presence of the error in determining the samples 
s(tl) and variables αl, which is caused by their dependence on 
the carrier frequency f of the processed signal, in the practical 
applications of the proposed algorithm we need to have the 
best estimate of the given values, according to the criterion 
assumed. This can be done by the means of recalculation of 
the values s(tl) and αl, through N passages, (N is arbitrary). In 
this process we form series s(tl)n and αln (n=1,...,N), as it is 
given in the proposed algorithm (Fig. 1). The random errors 
Δn of measurements are unbiased, E(Δn)=0 have the same 
variance var(Δn)=σ2, and are not mutually correlated. Under 
these assumptions, we can use the weighted average 
procedure for decreasing random errors in determination of 
observed values. The weighted average is used for 
measurements that are not correlated and have a varying 
degree of accuracy. The averages llts α̂),(ˆ  of the values s(tl) 

TABLE I 
RESULTS OBTAINED THROUGH THE APPLICATION OF THE DERIVED 

EXPRESSIONS (7) AND (11)-(13) 

12 +MX  15,...,1;1 =llX  

 
 
 
 
96.2746562 

77.3751539; 240.7369977; 
585.7387744; 1048.6023899; 
1601.6571515; 2122.6636989; 
2515.8984526; 2655.5007221; 
557.8121810; 2190.4815359; 
1686.1064501; 1129.5098525; 
644.9058063; 279.7307319; 
94.0066154 
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and αl are calculated for all l=1, 2,..., 2M+1 and n=1, 2,..., N 
as: 
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where ,, nsn ww α are non-negative weights of series s(tl), αl . 

The , ,sN Nα defines the numbers of different values in above 
series through N passages. The same result (equation (15)), 
given the adopted suppositions, will be produced by the last 
square (LS) estimator, after performing the minimisation of 
the residual sum of squares [18]. The value of N will depend 
on the required speed of processing – the higher the N, the 
more precise the estimation of the value is. In the concrete 
case, the estimation procedure does not require the matrix 
inversion and is considerably less demanding from the 
processor aspect, than the methods described in [19]. In 
addition to this, when the proposed algorithm is used in 
simulations, the estimation of the given variables (equation 
(15)) will not be necessary, which will significantly reduce the 
processing time needed for its realization. The proposed 
solution can be modified, in order to reduce the error in 
determining the samples of the input signal. In [20] it was 
shown that implementation of sampling and reconstruction 
with internal antialiasing filtering radically improves 
performances of digital receivers, enabling reconstruction 
with a much lower error. 

It is necessary to note that the frequencies of the proposed 
signal may show some differences in relation to the given 
ones – that is to say that a large or a small frequency mismatch 
(FM) may exist in real applications. In [21, 22], a new least 
mean squares (LMS) based Fourier analyser is proposed. This 
analyser works simultaneously – on one side, it estimates the 
discrete Fourier coefficients (DFCs) and on the other side, it 
accommodates the FM. This analyzer can very well 
compensate for the performance degeneration due to the FM. 
With every passage of the described algorithm (Figure 1), the 
moment of sampling is referred to the detected zero-crossing 
of the processed signal, and its basic frequency is also 
calculated at the same time. In this way, the determination of 
the unknown parameters of the processed periodic signal is 
less dependent on the possible FM, when compared to the 
algorithm analyzed in [21, 22] (the parameters analyzed in this 
paper are less inter-dependent). However, if the signal-to-
noise ratio were to be very low and accompanied by a marked 
FM, it would still be possible to modify the described 
estimation procedure in a way presented in [21, 22], without 
adding any requirements to the realization. 

After using the procedure described above to perform the 
estimation of the value of samples s(tl) and variables αl, it is 
necessary to perform the re-calculation of the unknown 
amplitudes and phases, based on the relation (14), and for all 
of the harmonic components of the processed band-limited 
periodic signal. According to the Fourier coefficients 

determined in this way, it is possible to perform the 
calculation of the effective value of the signal, the active 
power and energy. When this is done, it is possible to start 
again the sampling of the processed signal.  
 

 
Fig. 1 Flow-chart of proposed reconstruction algorithm 

 
Fig. 2 shows the influence of the error in determining the 

frequency of the carrier signal on the relative error in 
determining the value of system determinant, for various 
harmonic contents of the input periodic signal. It is this very 
type of error that has the greatest impact on the calculated 
value of determinants and co-determinants (equations (7) and 
(11)-(13)), due to the manner in which the values of the 
elements in these determinants are defined (equation (4)). The 
immunity of algorithm could be improved by applying a more 
complex algorithm for the detection of signal zero-crossing 
moments [23]. In [24] special attention is given to uncertainty 
analysis for the calibration of high-speed calibration systems. 
The effect of the uncertainty created by the time base 
generator (jitter) can be modelled as non-stationary additive 
noise. The paper [24] also develops a method to calculate an 
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uncertainty bound around the reconstructed waveform, based 
on the required confidence level. The error that appears 
because of the supposed non-idealities that exist in the 
suggested reconstruction model is within the boundaries 
specified by [24] and [25]. A sensitivity function is commonly 
formulated assuming noise-free data. This function provides 
point-wise information about the reliability of the 
reconstructed signal before the actual samples of the signal are 
taken. In [25], the minimum error bound of signal 
reconstruction is derived assuming noise data. 

 
Fig. 2 Relative error in calculation of the system determinant as 

function of error in synchronization with frequency of fundamental 
harmonic of the input signal (f=50 Hz, tl=0.001 s) 

 
Unlike the procedure described in [7], the algorithm 

proposed here is much less sensitive to the variation in the 
frequency of the carrier signal. The moments tl in which the 
sampling of the input signal is done can be completely random 
(asynchronous) and independent of the frequency of the 
processed signal, due to the way in which they are defined in 
equation (4). The interval between two consecutive samples is 
actually dependent primarily on the speed of the S/H (sample 
and hold) circuit and the AD (analogue to digital) conversion 
circuit, with which a numeric equivalent to the sample of the 
input signal is formed. However, due to the practical 
realization and the way in which real sigma-delta ADC 
function, the tl moments can be defined as tl=ltsample, where 
tsample =1/fS (fS is the sampling frequency). The start of the 
sampling must be referred in relation to the detected zero 
crossing of the input signal. 

A. Numerical complexity of proposed algorithm 
Based on the type of the derived relations ((7) and (11)-

(13)), the conclusion is that their realization requires a total of 
( )( )12412 3 +++ MMM  multiplications and 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

M
M

M M 2
2
1212 2  additions. However, due to the 

method used to determine the unknown parameters of the 
processed signals (equation (14) and Fig.1); the necessary 
number of numeric operations is significantly reduced. When 

the form of the derived relations (11)-(13) is observed, it can 
be noticed that they contain products that are almost 
completely identical. In other words, only the products in the 
denominators of the derived relations have a slightly different 
form. After the calculation defined in (14), the common 
factors in the formed products are abbreviated during the 
division operations. For this reason, the total number of 
operations is reduced to 21218 2 ++ MM , meaning that the 

proposed algorithm required ( )212
2
9

+M  flops. This number 

of operation counts was obtained for the case involving N=1 
(without an estimation procedure, the equation (15)), which 
requires the additional ( )( )1222 ++ MN  multiplications 

and ( )124 +MN  additions to be realized. If, in addition to 
this, the described estimation procedure is performed, then the 
proposed algorithm takes only ( ) ( )( )21212 +++ MMNO  
flops. 

The analytical expressions (11)-(13) are correct, while the 
error that occurs in their implementation appears because of 
the numeric procedure used in their calculation (in realizing 
adding and multiplication). The values of the possible error 
are defined and analyzed in [26], while it was also proved that 
the algorithms that solve the Vandermond-like systems 
(equation (3)) are much more accurate (but no more backward 

stable) than GEPP (which requires ( )312
3
2

+M flops) or 

algorithm with QR factorization (which requires ( )312
3
4

+M  

flops). It follows that proposed algorithm has a higher 
efficiency than other well-known methods used for solving 
system of equations like the systems obtained here (3), [26]. 

While the computational load of one iterative step involving 
FFTs (which requires O((2M+1)log(2M+1)) flops) does not 
change with the number of sampling values for some of the 
non-matrix implementations, the speed of convergence is 
improved if more points are available [27]. This also 
corresponds to the natural intuition that the knowledge of 
more sampling values should lead to better convergence. A 
larger number of sampling points or a larger spectrum forces 
to deal with larger matrices. Therefore the computational load 
for standard matrix methods (either iterative or those using 
pseudo-inverse matrices) increases quickly. Thus they may be 
extremely efficient for the situation with a few sampling 
points, but fairly slow if there are many sampling points. 
Quite the contrary happens for the methods proposed here. 
The suggested algorithm is non-iterative and therefore much 
faster. Also, only the number of the unknowns defines the 
number of samples required by the proposed algorithm in 
order to perform the reconstruction in the observed system (3) 
(2M+1 unknown is parameters). This is opposed to the FFT, 
where the precision increases with the increased number of 
samples. This is the main reason why derived analytical 
solution is more computationally attractive for moderately 
sized problems [26]. Moreover, this feature makes it feasible 
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for large reconstruction problems. In addition, the method is 
free from the effects of spectral leakage, which a common 
problem in reconstruction algorithm based on the use of FFT 
[27]. 

B.  Computing time 
The suggested algorithm can be applied in operation with 

sigma-delta ADC, thus enabling high resolution and speed in 
processing of input signals. This is an important difference to 
be taken into consideration when comparing its 
implementation in this approach (to processing), to the results 
presented in [7]. The time needed to perform the necessary 
number of samplings of the input signal that is the object of 
reconstruction can be defined as ( ) sampletM 12 + , which 
represents the value approximate to the time needed for 
reconstruction (in simulation). In practical applications of the 
proposed algorithm, the determined time for the 
reconstruction of the processing signal ought to be increased 
by the time necessary to estimate the variables s(tl) and αl (this 
time is directly dependent on the value N), and the time 
interval Δt which is necessary to perform all the other re-
calculations according to the proposed algorithm. Due to all 
that has been said, the reconstruction time can be defined as 

( ) t
f

NttMN sample Δ+≈Δ++
112 , because of the necessary 

synchronization with the zero crossing of the input signal. The 
speed of the proposed algorithm makes it as fast as the 
algorithms analyzed in [28, 29].  

In order to demonstrate the efficiency of the new procedure 
there is a comparison of the computing time of the proposed 
algorithm to GEPP algorithm in solving the system of 
equations (3), Table II (using Matlab program package, 
version R2006a). The circumstance of verifying real-time 
characteristic is in computer with Intel Pentium 2.0G Dual 
CPU, 2Gb RAM, and Windows XP 2002 operation system. 
The results given in Table II practically present the estimate 
value of the time interval Δt. The proposed procedure shortens 
the time needed for calculation by 2 to 3 times, depending on 
the number of the harmonic components of the processed 
signal. With a more powerful hardware platform and a 
different program environment, the time for the realization of 
the proposed algorithm will be many times shorter. 

 
Reference [30] gives a measurement of the required 

processor time, in the realization of the matrix method in the 

reconstruction of signals, in the form in which it is 
implemented in many program packages. The method 
suggested by this paper does not require any special 
memorization of the transformation matrix, nor does it require 
recalculation of the inversion matrix. In this way, it is much 
more efficient in implementation and it is not limited only to 
sparse matrices. 

IV. SIMULATION OF THE PROPOSED RECONSTRUCTION 
ALGORITHM 

Additional testing of the proposed algorithm was carried 
out by simulation in the program package Matlab and 
SIMULINK. Since measurement is corrupted by noise, the 
reconstruction is an estimation task, i.e. the reconstructed 
signal may vary, depending on the actual noise record. We 
investigate the issue of noise and jitter on the estimation 
method. The presence of the noise and jitter causes false 
detection of signal zero-crossing moments, giving an incorrect 
calculation of derived relations. Apart from this, an error 
occurs in determining the value of the samples of the 
processed signal. This error appears as a result of the 
imprecision in determining the time moment at which 
sampling is done, as well as a result of the error introduced by 
the real ADC. 

Since the suggested reconstruction algorithm is practically 
based on the standard hardware components with which the 
sampling of the input analogue signal is done, the model that 
was used in simulation was the system shown in Fig. 3. A 
sigma-delta ADC with corresponding circuit for S/H was used 
to perform the conversion [31]; at the same time, the 
measuring of the frequency of the carrier signal was done in 
the way suggested in [23], i.e. by using comparator (Schmitt-
triggers), we can detect the passing of the multi-harmonic 
input signal through zero and in this way detect this 
frequency. 

The input signal is formed as a super-position of harmonic 
components within the „Multi-harmonic input signal“ block. 
Since the presence of the noise and jitter causes false detection 
of signal zero-crossing moments, there is a separate model 
that simulates their impact on the signal that is processed 
according to the proposed algorithm. All Taylor expansions of 
jitter are biased [32]; therefore, the correct way to include 
jitter is to include a variable delay in the signal path. The 
model by which the jitter presence is simulated is made of the 
Pulse Generator and Random Number, whose outputs are 
taken to the circuit with the Variable Transport Delay. Fig. 3 
shows the addition of the white Gauss noise to the complex 
periodic signal. In the original toolbox all, the possible noise 
sources (mainly the contributions of the operational amplifiers 
and of the voltage references) were supposed to be white. The 
noise power in the block „Band-Limited White Noise“ is the 
height of the PSD (Power Spectral Density), expressed in 
V2/Hz. By using the simple Relay block shown in Fig. 3, the 
signal formed in this way, is transformed into a series of right-
angle impulses, by the means of which the frequency of the 
fundamental harmonic was measured within the „S-Function“ 

TABLE II 
COMPARISON OF THE COMPUTING TIME 

Number of 
harmonic 

components, M 
PROPOSED ALGORITHM GEPP algorithm 

5 0.00087 s 0.00171 s 
7 0.00094 s 0.00215 s 
8 0.00098 s 0.00251 s 
9 0.00106 s 0.00297 s 
11 0.00121 s 0.00399 s 
15 0.00188 s 0.00564 s 
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block [23]. 
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Fig. 3 SIMULINK model of the circuit for the realization of 
proposed reconstruction algorithm 

 

A. Model of sigma-delta ADC 
In order to have a highly accurate simulation of the 

conversion circuit, a sigma-delta ADC model described in 
[33] was used (the effective resolution of the ADC during the 
simulation was 24 bit, and sampling rate fS=1 kHz). In order to 
have a better picture of the performances of the simulation 
model, Fig. 4 shows detailed models of the clock jitter noise, 
kT/C noise and the op-amp’s thermal and flicker noise at low 
frequencies. Considering that the noise power is additive, the 
PSD can be considered as the sum of a term due to flicker 
(1/f) noise and one due to thermal noise, associated to the 
sampling switches and the intrinsic noise of the operation 
amplifier. Here, k, T, and C are Boltzmann’s constant, the 
temperature in Kelvin, and the sampling capacitor, 
respectively. The Vn denotes the input-referred thermal noise 
of the op-amp. Flicker (1/f) noise, wide-band thermal noise 
and dc offset contribute to this value. The total noise power 
V2

n  can be evaluated, through transistor level simulation, and 
during the simulation it is assumed that Vn=30 μVrms, while 
the value of the sampling capacitance was C=2 pF. The effect 
of clock jitter was simulated by using a model separately 
shown in Fig. 4, under the assumption that the time jitter is an 
uncorrelated Gaussian random process having a standard 
deviation Δτ. This model of the jitter was described and 
analyzed in detail in [34], where it was shown that the noise 
floor is dependent on the input sinusoidal frequency. During 
the simulation, the value of jitter was 1ns (standard deviation 
Δτ). In the course of the simulation conducted in this way, the 
output PSD of the ideal, thermal noise affected and clock jitter 
affected was in the range of -100 to -170 dB for the signal-to-
noise distortion ratio (SNDR) ranged between 85 dB and 96 
dB. 

The block „Integrator DC Gain“ models the finite dc-gain 
(DCG). The finite DCG moves the pole of the ideal integrator 
from dc to another frequency and changes the integrator’s 
gain. This effect is known as a leakage in the integrator (a 
separate block in the developed model). Distortion is 
introduced by the integrator’s DCG nonlinearity resulting 
from its dependency on the output voltage as shown in Fig. 4. 
Slew rate (SR) and unity-gain bandwidth (UGBW) are the two 
distinct parts of the settling behavior of the op-amps, for 
which reason these are modelled separately. For an integrator, 
in presence of its op-amp’s UGBW and SR, its settling 

behavior will be linearly/nonlinearly affected [33]. The values 
of the coefficients of the amplifier circuits in Fig. 4 are a=1; 
a2=0.5; a4=0.25. 

Switches are one of the major elements in switched-
capacitor (SC) circuits such as the sigma-delta ADC. Since the 
switches in CMOS technology are realized by using nMOS 
and pMOS transistor, they manifest some no idealities such as 
nonlinear on-resistance, clock-feed through, and charge 
injection (decreasing the S/H time constant) [33]. The block 
„Switches charge-injection“ comprise all of the listed non-
idealities. 

 
Fig. 4 SIMULINK models of clock jitter, kT/C and flicker noise, 

and op-amp noise 
 
A quantizer circuit is introduced in the ADC model, using a 

special block. The quantization error is a very important 
problem because the reconstruction algorithm proposed here 
is of a quite sophisticated form and some operations, like 
determinant calculation for example, are badly conditioned 
task and may considerably amplify the quantization errors. 

B.  Simulation results 
After the values of the input signals samples were 

determined through the above described ADC model, these 
were introduced in the „Subsystem3“ block (Fig. 3), together 
with the information about the measured frequency of the 
input signal, so that the values of the unknown amplitudes and 
phases of the input periodic signal can be established, based 
on the derived relations. During the simulation, the parameters 
of the input signal correspond to the values given in Table III. 
The execution time of the proposed algorithm on hardware 
platform described earlier was 0.0167s. 

A signal containing the first 7 harmonics was used, with the 
fundamental frequency f= 50 Hz. The superposed noise and 
jitter will, in simulation performed in this way, cause a 
relative error in detection on fundamental frequency of 0.0001 
%. It can be seen that the accuracy of the proposed algorithm 
is within the limits that are attained in processing a signal of 
this form, in [29], [35], and better then the one presented in 
[36]. In the time domain, the relative error between the signal 
and its reconstruction was 0.0025 %. The errors in the 
amplitude and phase detection are mainly due to the error in 
measuring of the input signal samples and the error in 
determining the value of the derived equations. 

The presented algorithm can be used for the spectral 
analysis as well, where it is possible to find out the amplitude  
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and the phase values of the signal harmonic, based on the 
set (predicted) system of equations. By taking a systematic 
approach in conducting the described procedure, it is possible 
to establish the exact spectral content and, after this has been 
done, to perform the optimization of the proposed algorithm. 
With this, the algorithm will be adapted to the real form of the 

signal. The accuracy of signal reconstruction can be 
guaranteed in practical applications in noisy environments 
with  the use of a powerful processor with adequate filtering. 

  

V. CONCLUSION 
The estimation procedure proposed in this paper is a new 

complexity-reduced algorithm for estimation of the Fourier 
coefficient. The derived analytical expression opens a 
possibility to perform fast calculations of the basic parameters 
of signals (the phase and the amplitude), with a low numeric 
error. The proposed algorithm for the calculation of the 
unknown parameters requires O((2M+1)2) flops, while the 
computing time is determined by the time that is necessary for 
the collection of the required number of samples of the 
processed signal and the estimation procedure itself. In any 
case, the time is much shorter than with any other known 
matrix methods used. All the necessary hardware resources 
can be satisfied by a DSP of standard features and real sigma-
delta ADC. The suggested concept can be used as a separate 
algorithm as well, for the spectral analysis of the processed 
signals. Based on the identified parameters of the ac signals, 

we can establish all the relevant values in the electric utilities 
(energy, power, rms values). The measurement uncertainty is 
a function of the error in synchronization with fundamental 
frequency of processing signal (because of the no stationary 
nature of the jitter-related noise and white Gaussian noise), 
and the error that occurs in determining the values of the 
samples of the processed signal. The simulation results show 
that the proposed algorithm can offer satisfactory precision in 
reconstruction of periodic signals in a real environment. 
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