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Adaptive Fourier Decomposition Based Signal
Instantaneous Frequency Computation Approach

Liming Zhang

Abstract—There have been different approaches to compute the
analytic instantaneous frequency with a variety of background rea-
soning and applicability in practice, as well as restrictions. This paper
presents an adaptive Fourier decomposition and (α-counting) based
instantaneous frequency computation approach. The adaptive Fourier
decomposition is a recently proposed new signal decomposition
approach. The instantaneous frequency can be computed through the
so called mono-components decomposed by it. Due to the fast energy
convergency, the highest frequency of the signal will be discarded by
the adaptive Fourier decomposition, which represents the noise of
the signal in most of the situation. A new instantaneous frequency
definition for a large class of so-called simple waves is also proposed
in this paper. Simple wave contains a wide range of signals for which
the concept instantaneous frequency has a perfect physical sense.
The α-counting instantaneous frequency can be used to compute the
highest frequency for a signal. Combination of these two approaches
one can obtain the IFs of the whole signal. An experiment is
demonstrated the computation procedure with promising results.

Keywords—Adaptive Fourier decomposition, Fourier series, signal
processing, instantaneous frequency

I. INTRODUCTION

THE the time-frequency literature, frequency is defined as
the derivative of the phase of the signal. The physical

meaning of the frequency at a time moment t is the averaging
vibrating times of a certain vibration during the 2π-length
interval. It is a non-negative quantity varying along with time.
Based on this idea people found the Fourier type, including
window Fourier transforms; the wavelet type; and other types
of frequencies. Some of these mentioned types of frequencies
cannot give the time-varying amplitude frequency represen-
tation of signals. A sophisticated but delicate way of defin-
ing time-varying amplitude-phase representation and therefore
instantaneous frequency is through an application of Hilbert
transformation. Due to connection of Hilbert transformation
and complex analytic functions, such defined instantaneous
frequency (IF) is called analytic IF [8], [9].

In Fourier analysis, each exponential has a precise fre-
quency. The frequencies and the spectra of those frequencies
can be easily calculated. This provides a broad overview
of the characteristics of the signal, which is important for
theoretical considerations. However, Fourier analysis suffers
from the absence of time localization, especially the time-
varying frequencies, of the given signal. In this situation, IF is
interpreted as the average frequency of the component signal at
each time. To make the representation more local, one started
with window Fourier transforms. Lately wavelet transforms
were studied, where frequencies correspond with the dilation
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parameters [14]. However, these mentioned types of frequen-
cies cannot give the time-varying frequency representations or
instantaneous characteristics of signals. Another restriction of
the Fourier decomposition is that the decomposition may lead
to slow convergence due to the fact that the principal sine and
cosine components contributing significant shares of the total
energy of the original signal may arrive late.

A novel signal decomposition approach – Adaptive Fourier
Decomposition (AFD) is proposed recently [11], [12] with
proven mathematical foundations. The AFD is designed to
treat the above mentioned two restrictions of Fourier transfor-
m. The decomposing components which make up the signal
are adaptively selected under the principle of fast convergence
in energy (Maximal Projection Principle). Such decomposi-
tions, therefore, can represent certain characteristic properties
of the given signal.

The mathematical foundation of AFD is built up based
on two important concepts. One is analytic function, the
other is mono-component. Analytic function is a well known
concept with good properties [4], [7]. The mono-component
is defined as follows [9], [10]. A function (or signal), s(t), no
matter being complex- or real-valued, is said to be a mono-
component, if s(t)+iHs(t) is the boundary value of a function
in the Hardy space H2, where H is the Hilbert transform of
s; and, furthermore, with the amplitude-phase representation
s(t)+ iHs(t) = ρ(t)eiθ(t) there holds θ

′
(t) ≥ 0. The analytic

phase derivative θ
′
(t) is called the IF if and only if the

requirement θ
′
(t) ≥ 0 is met, or, equivalently, s is a mono-

component.
The Hilbert transformation involved in the definition is a

crucial subject [5], [13]: a function s = u+ iv, where u, v are
real-valued with certain integrability property, is the boundary
value of an analytic function in the corresponding Hardy space
if and only if v = Hu [11].

Fourier transform is well accepted because it has mathemat-
ical roots in analytic functional theory, representing complicat-
ed signals into the physically realizable basic signals of mean-
ingful IFs. Physically realizable signals are identical with those
being boundary values of analytic functions; while meaningful
IF amounts to say that in their polar coordinate representations
their phase derivatives are non-negative functions. Different
from Fourier transform which decomposes a given signal into
fixed sin and cosine functions, AFD decomposes a given signal
into mono-components, which are boundary values of analytic
functions. Sin and cosine functions are particular examples
of mono-components. In this situation, Fourier transform is
a special case of mono-component decompositions. There is
a large pool of mono-components. To different signals, the
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decomposed mono-components by AFD are not fixed ones like
Fourier decomposition. The decomposing mono-components
are selected based on the given signal. That is the reason that
the decomposition is said to be adaptive.

A qualified IF should satisfy the following three conditions.
The first is the time varying property; the second is non-
negativity; and the third is that it should reflect the vibrating
frequency. The last requirement amounts to require that the
definition of the IF should give rise to n if it is applied to
cosnt. The analytic signal method to define (analytic) IF
satisfies the three required conditions with the reservation
that not every signal has analytic IF [3], [8], [10]. In this
paper we also define for a large class of signals called simple
waves (SWs) the α-Counting Instantaneous Frequency (α-
CIF). This definition is straight forward and easy to apply.
The α-CIF satisfies the three mentioned conditions. For each
mono-component decomposed by AFD, we can obtain its IF.
In some situation, a signal cannot be fully approximated by
the reconstruction of AFD due to fast convergency, the α-CIF
is used to compute the IF of the residue. Some experiment
results are illustrated in this paper. The results show that the
IF of any given signal can be computed through AFD and
α-CIF combination.

This paper is organized as follow. The mathematical foun-
dation of the AFD based IF computation algorithm and α-CIF
computation algorithm principles is introduced in section II.
AFD based IF computation algorithm is presented in section
III. The experiment results are shown in section IV. The
conclusions are drawn in section V.

II. MATHEMATICAL FOUNDATION

A. Mathematical Foundation Of The AFD Based IF Compu-
tation

Let G(z) be a function in H2, or, equivalently, an analytic
signal of finite energy. Assume that Bn are of the form

Bn(z) =

√
1− | an |2
1− anz

n−1∏

p=1

z − ap
1− āpz

, n = 1, 2, . . . , (1)

where an are complex numbers inside the unit circle, an =
x+iy, which are the parameters to be adaptively chosen in the
algorithm. The system {Bn} is called a Takenaka-Malmquist
(TM) system or a rational orthogonal system [1], [2]. Since
the parameters an will be adaptively chosen, the study of the
TM system does not fall in the traditional one [11].

Note that in the expression

Bn(z) = OnIn, (2)

where

On(z) =

√
1− | an |2
1− anz

,

and

In =
n−1∏

p=1

z − ap
1− āpz

,

the part In as a Blaschke product, is always a mono-
component [10]. But the part On can be in some cases, a

pre-mono-component. A complex-valued signal is called a pre-
mono-component if there exists a positive number M such
that eiMts(t) is a mono-component. In the signal processing
language, it means that riding on a carrier frequency eiMt, or
after a phase modulation by eiMt, M > 0, the signal becomes
a mono-component. Obviously, every mono-component is a
pre-mono-component [10]. Therefore, their product, i.e. Bn,
is always a pre-mono-component, and sometimes a mono-
component.

It can be easily verified that if an0 = 0 , then all Bn, n ≥
n0, are mono-components. The Maximal Projection (matching
pursuit) Principle is as follows. Denote

e{a} = B1(z) =

√
1− | a |2
1− az

.

the reproducing kernel of the Hardy space. Then for any G ∈
H2, there exists a1 in the open unit disc D such that

∣∣< G(z), e{a1} >
∣∣ = max{∣∣< G, e{a} >

∣∣ : a ∈ D} (3)

The AFD decomposition stands for the expansion

G(z) =
∞∑

p=1

cpBp(z), (4)

where cp are the coefficients

cp =< G,Bp >=

∫ 2π

0

G(eit)Bp(eit))dt (5)

where the parameters a1, . . . , ap are consecutively determined,
by means of the Maximal Projection Principles [11].

If compulsorily selecting all an = 0, then (4) becomes the
Fourier series decomposition. Thus AFD is an improvement
of the Fourier decomposition. The essence of the algorithm
is to select the parameters according to the given signal to
be decomposed. The Maximal Projection Principle is in spirit
of the so called, and developed, matching pursuit or greedy
algorithm [6]. But it is a realizable variation of the latter [11].

In practice the analytic signal to be decomposed is given
by a set of discrete data on the boundary. Denote

G(eitk) = xk, k = 1, 2, · · · ,M, (6)

where
tk = 2πΔk, Δ =

1

M
, tk ∈ [0, 2π]. (7)

First we need calculate the energy of the given signal in terms
of the data. Denote the energy of signal G by ‖G‖2, that is
given by the norm of G in the Hilbert space. The discretization
of the integral formula for ‖G‖2 is

‖G‖2 ≈ 2πΔ

M∑

k=1

|uk|2. (8)

Through discretization of the integral formula (4), we have

|c1|2 =

∣∣∣∣∣Δ
√
2π(1− |a1|)2

M∑

k=1

uk
1

1− a1e−i2πΔk

∣∣∣∣∣

2

. (9)

According to the Maximal Projection Principle, an a1 exists
in D that gives rise to the maximal value of |c1|2. To find a1
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maximizing |c1|2 is to solve a global extreme problem of a
differentiable function in the unit disc. This can be done by
the standard method in calculus. It can be done by matlab.
Denote such |c1|2 by max |c1|2, which is the energy of the
first decomposition component G1, where

G1 = c1B1 (10)

B1 =

√
1− |a1|2√

2π

1

1− ā1eit
, (11)

and c1 = 〈G,B1〉.
Comparing the energy between the given signal and the

output signal, ‖G‖2 − max |c1|2, we can judge how close it
is from the first partial sum to the original given signal. Then
repeat this process.

We have the following general relations.

|cp|2 = |Δ
√
2π(1− |ap|2)

M∑

k=1

uk

1− ape−i2πΔk
(12)

p−1∏

q=1

1− āqe
ei2πΔk

ei2πΔk − aq
|

Gn =
n∑

p=1

cpBp, (13)

where
cp = 〈G,Bp〉. (14)

The energy difference is calculated by the equation

‖G‖2 −
n∑

p=1

max |cp|2. (15)

ADF for non-analytic, and in particular, real-valued signals,
is based on the relation s = 2Re{s+} − c0, where s+ is the
1
2 multiple of the analytic signal associated with viz. s+ =
1
2 (s+ iHs). The algorithm is subject to some changes. Now
the data (7) is given for the non-analytic signal s, but the
formula (8) that is suitable for data of G = s+ now is not
suitable. The energy formula should be data of s not s+. We
first deduce [10]

‖G‖2 ≈ πΔ

M∑

k=1

|uk|2 + πΔ

∣∣∣∣∣

M∑

k=1

uk

∣∣∣∣∣

2

. (16)

In terms of the original data uk the formula (14), and therefore
(13), will remain to be valid for computing 〈G,B〉, for the
inner product automatically eliminates the role of s− = s−s+.
That is, owing to the orthogonality property between the inner
and outer Hardy spaces,

< S,Bn > = < S+, Bn > + < S−, Bn >

= < S+, Bn > (17)
= < G,Bn > . (18)

Once we have the decomposition for s+ we have that for s.

An alternative algorithm strategy is to reduce the inner
product (14) between the given analytic function G, or the
Hardy space projection G = s+ of the given non-analytic
signal s, and the entries Bk to one between some recursively
induced analytic signals gk and the evaluator e{ak}. The two
strategies have their respective merits of which we refer to the
fundamental literature [10].

The IF could be computed by the following formula.

(ϕn)
′
(t) =

n−1∑

k=1

1− |al|2
1− 2|al|xos(t− θl) + |al|2 . (19)

where al = |al|eiθl , l = 1, 2, ..., n.

B. Mathematical Foundation Of The α-CIF Computation Al-
gorithm

Definition II.1. We call a function on a finite or an infinite
interval a simple wave (SW) if it is a continuous function with
finitely many strict local extrema.

Fig. 1. The example of SW

The example of SW is shown in Fig. 1. We say that f has
a strict local maximum at t0 if

f(t0 +Δt) < f(t0)

for all sufficiently small Δt > 0. Strict local minimum is
defined similarly. By saying that f is monotone in an interval
we mean

f(t+Δt) ≥ f(t) for all t and Δt > 0

whenever both t and t+Δt are in the interval; or

f(t+Δt) ≤ f(t) for all t and Δt > 0

whenever both t and t+Δt are in the interval. The above two
cases are said to be, respectively, monotonously increasing
or, monotonously decreasing, or, in brief, increasing or
decreasing.

For any α > 0, the quantity

1

2
[max{2k : t− α ≤ t2k ≤ t+ α}
−min{2k : t− α ≤ t2k ≤ t+ α}] (20)

represents the (integer) number of the vibrations that f has
in the interval [t − α, t + α]. Then the average of the above
quantity over the interval of length 2α multiplied by 2π
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represents the number of vibrations over the interval of length
2π. The last quantity is given by

π

2α
[max{2k : t− α ≤ t2k ≤ t+ α}
−min{2k : t− α ≤ t2k ≤ t+ α}] (21)

that is defined the α-counting frequency of f at the moment t.
Note that it is technical to choose α > 0 for practical problems.
If α is chosen too large, then what we are about average of
the frequency, that dose not the time-varying property; and if
α is chosen too small, say, smaller than the time needed to
have a full vibration, then we get θ′α(t) = 0.

Assumption the defined α-CIF satisfies the first two of the
required three conditions for IF, viz. the time-varying and non-
negativity conditions. Now we show that it also satisfies the
third condition. Simple computation shows that α-CIF θ′α(t) =
n for all t in cosnt.

III. AFD BASED IF COMPUTATION ALGORITHM

Based on the described principles in section II, the AFD
based IF computation method is proposed. As the convergency
of AFD is based on the energy. For fast convergency, we
only use the first fewer mono-components to reconstruct the
original signal. The most high frequency residue is discarded.
In most of the situation, the discarded part is usually the noise
of the signal. If the user really would like to compute the IF
of the residue, α-CIF is used as a supplementary for the AFD.
The flowchart of the AFD based IF computation algorithm is
shown in Algorithm 1. In the next section, we will give the
experimental results based on this procedure.

Algorithm 1 AFD Based IF Computation Method
Input: Original signal S.
Output: IFs.

1: Decompose S with AFD.
2: The number of the iterations is N .
3: for i = 1 : N do
4: Implementing the i−th decomposition;
5: Obtaining i−th mono-component Bi;
6: Getting the IF for each mono-component IFi.
7: end for
8: Reconstructing the signal with reverse AFD;
9: Obtaining the reconstructed signal Sr;

10: Obtaining the residue R of the signal through R = S−Sr;
11: Computing the α-CIF IFα for the signal R;
12: The IFs of the signal are IFi + IFα.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we demonstrate the procedure and effective-
ness of the proposed method on signal IF computation. The
experiment data is selected from closing price of Hong Kong’s
Hang Seng Index for the period from 2nd January, 2008 to
9th March, 2012. There were total 1056 stock market trading
days during the selected period. The original signal is shown
in Fig. 2. The closing price of Hong Kong’s Hang Seng Index
is selected as the experiment data due to the higher vibration
of the signal.

0 200 400 600 800 1000 1200
1

2

3
x 10

4 Original Signal

Fig. 2. The original signal

A. IF Computation Through AFD Decomposed Mono-
components

If we choose the energy difference between the original
signal and the reconstructed signal as 0.0005, 21 mono-
components are obtained through AFD decomposition. The
reconstruction signal is illustrated in Fig. 3. Some selected
decomposing mono-components are shown in Fig. 4. The
corresponding IFs of the mono-components are illustrated
in Fig. 5. All IFs of 21 decomposed mono-components are
illustrated together in Fig. 6. The spectrum of the signal
through AFD is shown in Fig. 7.

0 1 2 3 4 5 6 7
1

2

3
x 10

4 Reconstruction of 21 components

Fig. 3. The reconstruction signal

B. IF Computation Through α-CIF Algorithm

The residue of AFD decomposition can be obtained by
subtracting the reconstructed signal from the original signal.
It is illustrated in Fig. 8. From the reconstructed signal in Fig.
3, we can see that the 21 decompositions can approximate the
original signal quite well. In most of the situation, the residue
is the noise of the signal and could be discarded. In some
specific situation, if people really want to investigate the IF of
the residue, α-CIF algorithm can be used to compute it. After
applying the α-CIF algorithm, the IF of residue is obtained as
seen in Fig. 9.

C. The IFs of The Original Signal

Put together the IFs obtained through AFD and IF through
α-CIF Algorithm to obtain the IFs of the original signal. It
is illustrated in Fig. 10. As the IF of the residue is highest
frequency in the original image, the magnitude of the IF is
much more greater than the IFs computed through AFD, which
normally represent the comparatively lower frequencies. It is
hardly to see them all in the same graph due to the large
difference between the highest frequency and lower ones.

V. CONCLUSION

In this paper, two different types of IFs computation ap-
proaches are presented. The defined AFD IF and α-CIF satisfy
the required three conditions for IF. The IFs computed through
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AFD represent the normal lower frequencies, in which in
most of the applications it could be enough for use. The IF
computed through α-CIF represents the highest frequency of
the signal. Combination of the two types of the IFs, one can
obtain the whole IFs of the original signal. The effectiveness
of the proposed method is demonstrated by a practical signal
with high vibrations. Please note that the α-CIF is sensitive to
the signal noise. Denoising algorithm can be applied first to
smooth the signal in order to make the method more effective.
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Fig. 4. (a) The 1st mono-component (b) The 3rd mono-component (c) The 6th
mono-component (d) The 9th mono-component (e) The 12th mono-component
(f) The 17th mono-component (g) The 21th mono-component
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Fig. 5. (a) The IF of 1st mono-component (b) The IF of 3rd mono-component
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Fig. 6. The IFs computed through AFD
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Fig. 7. The spectrum of the signal through AFD
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Fig. 8. The residue signal
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Fig. 9. The IF of the residue signal
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Fig. 10. The IFs of the original signal


