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Abstract—The objective of this paper is to use the Pfaffian
technique to construct different classes of exact Pfaffian solutions and
N -soliton solutions to some of the generalized integrable nonlinear
partial differential equations in (3+1) dimensions. In this paper, I will
show that the Pfaffian solutions to the nonlinear PDEs are nothing but
Pfaffian identities. Solitons are among the most beneficial solutions
for science and technology, from ocean waves to transmission of
information through optical fibers or energy transport along protein
molecules. The existence of multi-solitons, especially three-soliton
solutions, is essential for information technology: it makes possible
undisturbed simultaneous propagation of many pulses in both direc-
tions.

Keywords—Bilinear operator, G-BKP equation, Integrable non-
linear PDEs, Jimbo-Miwa equation, Ma-Fan equation, N-soliton
solutions, Pfaffian solutions.

I. INTRODUCTION

THE aim of this work is to use the Pfaffian technique,
along with the Hirota bilinear method to construct dif-

ferent classes of exact solutions to various of generalized
integrable nonlinear partial differential equations. The analysis
of traveling wave solutions to integrable nonlinear partial dif-
ferential equations plays a pivotal role in the study of nonlinear
physical phenomena. Solitons [1], [2], [3], are among the most
beneficial wave solutions for science and technology.

The derivation and solutions of integrable nonlinear partial
differential equations in two spatial dimensions have been the
holy Grail in the field of nonlinear science since the late
1970s. The prestigious Korteweg-de Vries (KdV) and nonlin-
ear Schrödinger (NLS) equations, as well as the Kadomtsev-
Petviashvili (KP) and Davey-Stewartson (DS) equations are
prototypical examples of integrable nonlinear partial differ-
ential equations in (1+1) and (2+1) dimensions respectively.
However, one question remains: Do there exist Pfaffian and
soliton solutions to generalized integrable nonlinear partial
differential equations in (3+1) dimensions?

Generally, it is a difficult task to find exact solutions of
nonlinear partial differential equations. Moreover, even if one
manages to find a strategy for solving one particular nonlinear
partial differential equation, in general, such a strategy may not
be applicable to other nonlinear partial differential equations.

In this paper, I obtained a set of explicit exact Pfaffian
and N -soliton solutions to the (3+1)-dimensional generalized
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integrable nonlinear partial differential equations, including a
generalized B-type KP equation, soliton equations of Jimbo-
Miwa type and the nonlinear Ma-Fan equation, A set of
sufficient conditions consisting of systems of linear partial
differential equations involving free parameters and continuous
functions is generated to guarantee that the Pfaffian solves
these generalized equations.

Examples of the Pfaffian and N -soliton solutions are ex-
plicitly computed. The numerical simulations of the obtained
solutions are illustrated and plotted for different parameters
involved in the solutions (see [1]).

A. Bilinear forms

The Leibniz rule for normal derivatives is given by

∂m

∂tm
∂n

∂xn
α(x, t)β(x, t)

=
∂m

∂sm
∂n

∂yn
α(x+ y, t+ s)β(x+ y, t+ s) |s=0, y=0.

Similarly, the usual Hirota derivatives (or D-operators) are
defined by [2]:

Dm
t D

n
xα(x, t) · β(x, t)

=
∂m

∂sm
∂n

∂yn
α(x+ y, t+ s)β(x− y, t− s) |s=0, y=0,

or equivelently, by

Dm
t D

n
xα(t, x) · β(t, x)

= (∂t − ∂t′)
m
(∂x − ∂x′)

n
α(t, x)β(t′, x′) |t′=t, x′=x.

Writing out the last equation for the case of one variable, we
can obtain Hirota derivatives:

Dn
xα(x) · β(x) =

∂n

∂yn
α(x+ y)β(x− y) |y=0.

Further, we get a nice property of D-operators that normal
derivatives don’t have:

Dn
xϕ · ϕ = 0 for n is odd.

The following properties are easily seen from the definition:
•

Dm
ξ ϕ · 1 =

∂m

∂ξm
ϕ.

•
Dm

ξ ϕ · ψ = (−1)mDm
ξ ψ · ϕ.
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•
Dm

ξ ϕ · ϕ = 0, for odd.m.

•
Dm

ξ ϕ · ψ = Dm−1
ξ (ϕξψ − ϕψξ).

•
Dm

ξ ϕ · ϕ = 2Dm−1
ξ (ϕξ · ϕ), for odd.m.

•
DξDηϕ · ϕ = 2Dξ(ϕη · ϕ) = 2Dη(ϕξ · ϕ).

•
Dξ(ϕψ · ω) = ∂ϕ

∂ξ
ψω + ϕDξ(ψ · ω).

•
exp(εDξ)(ϕ · ψ) = ϕ(x+ ε)ψ(x− ε).

The relation between the normal derivative and the Hirota
D-operators can be found in Ref. [2], here we list some of
them:

2
∂2

∂x2
logϕ =

D2
xϕ · ϕ
ϕ2

, (1)

2
∂2

∂x∂t
logϕ =

DxDtϕ · ϕ
ϕ2

, (2)

2
∂4

∂x4
logϕ =

D4
xϕ · ϕ
ϕ2

− 3

(
D2

xϕ · ϕ
ϕ2

)2

. (3)

We would like to express integrable nonlinear partial differ-
ential equations in the Hirota Bilinear form as

P (D)ϕ · ϕ = 0, (4)

where P (D) is a polynomial in D, ϕ is a new dependent
variable for the bilinear form of the given partial differen-
tial equation. So, the first step of our work is to develop
appropriate transformations of nonlinear partial differential
and difference equations which require that the differential
equations are in quadratic form in dependent variables. For
example, let us consider the KdV equation

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0. (5)

Introducing the following dependent variable transformation:

u = 2(logϕ)xx, (6)

Eq. (5) becomes

2(logϕ)xt + 3 [2(logϕ)xx]
2
+ 2(logϕ)4x = 0. (7)

The second step in our work is to use Hirota D-operators
to find the bilinear form of the considered equation by a
polynomial of Hirota D-operator. For example, we proceed
to bilinearise the KdV Eq. (5). Using Eqs.(1), (2) and (3) in
Eq. (7), the KdV Eq. (5) becomes

DxDtϕ · ϕ
ϕ2

+ 3

(
D2

xϕ · ϕ
ϕ2

)2

+
D4

xϕ · ϕ
ϕ2

− 3

(
D2

xϕ · ϕ
ϕ2

)2

= 0. (8)

Cancelling the second and fourth terms, this is simplified to

(DxDt +D4
x)ϕ · ϕ = 0, (9)

or equivalently

Dx(Dt +D3
x)ϕ · ϕ = 0. (10)

Eq. (10) is the Hirota bilinear form of the KdV equation.

B. Pfaffians

In this work, we will use the Pfaffian identities to search
for exact solutions of the generalized B-type Kadomtsev–
Petviashvili equation. In what follows, we will introduce three
useful lemmas about the Pfaffian expansions and derivatives
formulation. Let us recall some basics about the Pfaffian. Let
Δ = det(δi,j)1≤i,j≤2N be the determinant of an 2N × 2N
skew-symmetric matrix, then the Pfaffian associated with Δ
is denoted conventionally by [9], [4]:

Pf (δi,j)1≤i,j≤2N = (α1, α2, ..., α2N )

=

| δ1,2 δ1,3 · · · δ1,2N
δ2,3 · · · δ2,2N

. . .
...

δ2N−1,2N

∣∣∣∣∣∣∣∣∣
.

When N = 1, 2, the Pfaffian read

(α1, α2) = δ1,2,

(α1, α2, α3, α4) = δ1,2δ3,4 − δ1,3δ2,4 + δ1,4δ2,3.

Lemma 1: Let A be the determinant of an m × m skew-
symmetric matrix,

A = det(ai,j) (1 ≤ i, j ≤ m = 2n), (11)

then the Pfaffian of order n, can be obtained from the above
determinant, and is denoted

Pf (ai,j)1≤i,j≤2n = (1, 2, ..., 2n), (12)

and the right-hand side of (12), can be expanded as

(1, 2, ..., 2n) =
∑

σ
sgn(σ)

n∏
i=1

(σ(2i− 1), σ(2i)), (13)

where the summation is taken over all permutations

σ =

(
1 2 ... 2n
i1 i2 ... i2n

)

with

i1 < i2, i3 < i4, ..., i2n−1 < i2n, i1 < i3 < ... < i2n−1,

and sgn(σ) = (−1)inv(σ).
We have several expansion theorems on Pfaffian. Here we

describe two of them which are relevant to the present paper.
Lemma 2: Let n be a positive integer, then

(a1, a2, 1, 2, ..., 2n)

=
2n∑
j=2

(−1)j (a1, a2, 1, j) [(2, 3, ...,
∧
j, ...2n)

+ (1, j) (a1, a2, 2, 3, ...,
∧
j, ...2n)]

− (a1, a2) (a1, a2, 1, 2, ..., 2n) , (14)
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and

(b1, b2, c1, c2, 1, 2, ..., 2n)

=
2n∑
j=1

2n∑
k=j+1

(−1)j+k−1 (b1, b2, j, k)

×(c1, c2, 1, 2, ...,
∧
j, ...,

∧
k, ...2n), (15)

provided that

(bj , ck) = 0 , for j, k = 1, 2.

Proof: see [11].
We shall use the equation (14) and the equation (15) to

express the derivatives of the Pfaffain by the Pfaffians of lower
order. Identities for determinants and Pfaffians are of great
interest in many branches of mathematics. In the next lemma
we present two Pfaffian identities which correspond to the
Jacobi’s determinant identity.

Lemma 3: Let m and n be positive integers, then

(a1, a2, ..., a2m, 1, 2, ..., 2n) (1, 2, ..., 2n)

=
2m∑
s=2

(−1)s (a1, as, 1, 2, ..., 2n)×

(a1, a2, ...,
∧
as, ..., a2m, 1, 2, ..., 2n), (16)

and

(a1, a2, ..., a2m−1, 1, 2, 3, ..., 2n− 1) (1, 2, ..., 2n)

=
2m−1∑
s=1

(−1)s−1 (as, 1, ..., 2n− 1)×

(a1, a2, ...,
∧
as, ..., a2m−1, 1, ..., 2n). (17)

Proof: see [11].
We shall use the equation (16) with m = 2 to get the desired

identity.

II. PFAFFIAN SOLUTIONS

A. The (3+1)-D BKP Eq

It is known that one of the most interesting problems in
the Sato description of the KP hierarchy or its extensions, is
that of describing lower-dimensional integrable systems whose
solutions form a subset of the solution space for the KP
hierarchy [8].

The process by means of which such systems are singled
out is known as a reduction of the KP hierarchy, or of one
of its extensions. The spectrum of such reductions ranges
from (2+1)-dimensional systems, through (1+1)-dimensional
ones, all the way to integrable ordinary differential equations.
Interesting integrable systems arise at many different stages
throughout the reduction process.

The hierarchy of (2+1)-dimensional systems whose solu-
tions only make up a subset of the KP solution space, but
which still appear as an integrable hierarchy in its own right.

The BKP Hierarchy. A well-known example of such a sub-
hierarchy is the so-called BKP hierarchy [7]. Its name derives
from the fact that, whereas gl(∞) can be identified with the

infinite-rank Kac-Moody algebra A∞, the Lie algebra that
underlies the BKP hierarchy is of B-type, (B∞) [10].

In this work, we investigate a generalized B-type KP
equation [1]:

∂2u

∂y∂t
− ∂4u

∂y∂x3
− 3

∂

∂x

(
∂u

∂x

∂u

∂y

)
+ 3

∂2u

∂x2
+ 3

∂2u

∂z2
= 0,

which can be written in terms of the Hirota bilinear operator.
When z = x, the above equation possesses the same

nonlinearity as the Sawada-Kotera equation:

∂u

∂t
+ 15

∂

∂x
(u3 + u

∂2u

∂x2
) +

∂5u

∂x5
= 0,

and the model equation for shallow water waves:

∂u

∂t
− ∂3u

∂t∂x2
− 3u

∂u

∂t
+ 3

∂u

∂x

∫ ∞

x

∂u

∂t
dx′ +

∂u

∂x
= 0.

In fact, the Sawada-Kotera equation and the model equation
for shallow water waves belong to a class of the B-type KP
equations. Moreover, the B-type KP hierarchy is obtained
from the standard KP hierarchy by imposing an extra condition
between the Lax operator and its adjoint. A well known
standard reduction of this hierarchy is the Sawada-Kotera
equation.

We consider the following (3+1)-dimensional non-linear
equation [1]:

∂2u

∂y∂t
− ∂4u

∂y∂x3
−3

∂

∂x

(
∂u

∂x

∂u

∂y

)
+3

∂2u

∂x2
+3

∂2u

∂z2
= 0. (18)

Under the dependent variable transformation:

u = 2
∂

∂x
(ln τ), (19)

the above equation (18) is mapped into the Hirota bilinear
equation:

(
DtDy −D3

xDy + 3D2
x + 3D2

z

)
τ · τ = 0. (20)

We can rewrite the equation (20) in terms of τ as follows(
∂2τ

∂y∂t
− ∂4τ

∂y∂x3
+ 3

∂2τ

∂x2
+ 3

∂2τ

∂z2

)
τ

−∂τ
∂t

∂τ

∂y
+
∂3τ

∂x3
∂τ

∂y
+ 3

∂3τ

∂y∂x2
∂τ

∂x

−3
∂2τ

∂x2
∂2τ

∂y∂x
− 3

(
∂τ

∂x

)2

− 3

(
∂τ

∂z

)2

= 0. (21)

We would like to present a sufficient conditions which
guarantees that the Pfaffian solves the equation (21).

1) Sufficient conditions: We can introduce now the follow-
ing Pfaffian:

τn = Pf(aij)1≤i,j≤2n, (22)

aij = Cij+

x∫
−∞

Dx fi(x)·fj(x)dx, i, j = 1, 2, ..., 2n, (23)
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where (Cij = −Cji for i �= j) are constants and all fi satisfy
the linear differential equations:

∂fi
∂y

= λ1
∂fi
∂x−1

,
∂fi
∂z

= λ2
∂fi
∂x

,
∂fi
∂t

=
∂3fi
∂x3

, (24)

where

λ1 = a2 + 1, and λ2 = a, (25)

where a is free parameter and fi has the boundary condition

fi(−∞) = 0 for i = 1, 2, ..., 2n and
∂fi
∂x−1

is defined by

∂fi
∂x−1

=:

x∫
−∞

fi(x)dx. (26)

In what follows, as an application of the Pfaffian tech-
niques, we shall construct a class of exact Pfaffian solutions
to the (3+1)-dimensional generalized B-type Kadomtsev–
Petviashvili equation.

2) Pfaffian solutions:
Theorem 4: (Sufficient condition) Let fi, i = 1, 2, ..., 2n,

satisfy (24), then the Pfaffian defined by (22) solves the
Hirota bilinear equation (20) and the function u = 2 ln(τn)x
solves the (3+1)-dimensional generalized B-type Kadomtsev–
Petviashvili equation (18).

Proof: See Appendix A.
3) N -soliton solutions: The system (24) has solution in the

form

fi =

p∑
j=1

dij exp(ξij), (27)

ξij = kijx+ λ1k
−1
ij y + λ2kijz + kijt+ ξ0ij , (28)

where dij , kij , and ξ0ij are free parameters and p is arbitrary
natural number. In particular we have the following specific
solutions

fi = exp(ξi), (29)
ξi = kix+ λ1k

−1
i y + λ2kiz + kit+ ξ0i , (30)

where ki and ξ0i are free parameters and λ1, λ2 are given in
the equation (25). In order to investigate the solutions of (20),
we choose special values for (Cij)n×n and the functions fi.
For example, let

fi = exp(ξi), (31)
ξi = kix+ λ1k

−1
i y + λ2kiz + kit+ ξ0i , (32)

we obtain

(i, j) = Cij +
ki − kj
ki + kj

fifj . (33)

Let us consider the two-soliton and three-soliton expression of
the equation (20). For the two-soliton solution we may choose

C12 = C34 = 1, C13 = C14 = C23 = C24 = 0. Therefore,

τ2 = (1 2)(3 4)− (1 3)(2 4) + (1 4)(2 3),

τ2 = 1 +
k1 − k2
k1 + k2

exp(ξ1 + ξ2)

+
k3 − k4
k3 + k4

exp(ξ3 + ξ4)

+
(k1 − k2) (k1 − k3) (k1 − k4)

(k1 + k2) (k1 + k3) (k1 + k4)

× (k2 − k3) (k2 − k4) (k3 − k4)

(k2 + k3) (k2 + k4) (k3 + k4)
exp(

4∑
i=1

ξi).

Putting

ηi = ξi + ξi+1 + δi, where exp(δi) =
ki − ki+1

ki − ki+1
, (34)

we may rewrite τ2 as

τ2 = 1 + exp(η1) + exp(η3) + k3412 exp(η1 + η3), (35)

where

klmij =:
(ki − kl) (ki − km) (kj − kl) (kj − km)

(ki + kl) (ki + km) (kj + kl) (kj + km)
. (36)

In a similar way we can obtain the three-soliton expression
for equation (20), we may choose C12 = C34 = C56 =
1, otherwise Cij = 0, the

τ3 = [(1 6)(2 3)(4 5)− (1 6)(2 4)(3 5) + (1 6)(2 5)(3 4)]

−[(1 3)(2 6)(4 5)− (1 4)(2 6)(3 5) + (1 5)(2 6)(3 4)]

+[(1 2)(3 6)(4 5)− (1 4)(2 5)(3 6) + (1 5)(2 4)(3 6)]

−[(1 2)(3 5)(4 6)− (1 3)(2 5)(4 6) + (1 5)(2 3)(4 6)]

+[(1 2)(3 4)(5 6)− (1 3)(2 4)(5 6) + (1 4)(2 3)(5 6)],

we may rewrite τ3 as

τ3 = 1 + exp(η1) + exp(η3)

+ exp(η5) + k3412 exp(η1 + η3)

+k5612 exp(η1 + η5) + k5634 exp(η3 + η5)

+ k456123 exp(η1 + η3 + η5), (37)

where
klmn
ijp =: kplijk

mn
ij kmn

pl . (38)

Therefore, if we put klmij =: exp(Klm
ij ), the N -soliton solution

of the equation (20) might be expressed as:

τN =
∑

exp(
N∑
i=1

μ2i−1η2i−1 +

(2N)∑
i<j<l<m

Klm
ij μiμl), (39)

where
∑

denotes the summation over all possible combina-
tions of μ1 = 0, 1, μ2 = 0, 1, ..., μ2N = 0, 1, and

∑(2N)
i<j<l<m

is the sum over all i, j, l, m (i < j < l < m) chosen from
{1, 2, ..., 2N} . Furthermore, the equation (18) has the solution

u = 2
∂

∂x
(ln τN ).
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B. The (3+1)-D nonlinear Ma-Fan Eq

In this subsection, I would like to discuss the existence
of the Pfaffian solutions to the following (3+1)-dimensional
nonlinear Ma-Fan equation [12]:

∂2u

∂z∂t
− ∂4u

∂x3∂y
− 3

∂

∂x

(
∂u

∂x

∂u

∂y

)
+ 3

∂2u

∂x2
= 0, (40)

which belongs to a class of generalized BKP equations, and
can be written in terms of the Hirota bilinear operator.

When z = y, this equation reduces to the B-type
Kadomtsev–Petviashvili equation [2], and so it is also a
generalized BKP equation.

Under the dependent variable transformation

u = 2
∂

∂x
(lnφ), (41)

the above (3+1)-dimensional nonlinear Ma-Fan equation is
mapped into the Hirota bilinear equation [12]:

(
DtDz −D3

xDy + 3D2
x

)
φ · φ = 0. (42)

1) Sufficient conditions: In this subsections, I will use the
Pfaffian identities to search for exact solutions to the (3+1)
dimensional nonlinear Ma-Fan equation (40). Let us introduce
the following Pfaffian

φn = Pf (ai,j)1≤i,j≤2n, (43)

aij = Cij +

x∫
−∞

Dx ψi · ψjdx i, j = 1, 2, ..., 2n, (44)

where Cij = (−Cji for i �= j) are constants and all ψi, 1 ≤
i ≤ 2n, satisfy the linear differential equations:

ψi,y =

x∫
−∞

ψi(x)dx, ψi,z = α

x∫
−∞

ψi(x)dx,

ψi,t = β
∂3ψi

∂x3
, (45)

where

β =
1

α
, (46)

with α being an arbitrary constant, and all ψi satisfying the
boundary condition ψi(−∞) = 0 for i = 1, 2, ..., 2n.

2) Pfaffian solutions:
Theorem 5: (Sufficient condition) If ψi(x, y, z, t), 1 ≤ i ≤

2n, satisfy (45), then the Pfaffian defined by (43) solve the
Hirota bilinear equation (42) and the function u = 2(lnφ)x
solve the (3+1)-dimensional Ma-Fan equation (40).

Proof: See [5].

3) N -soliton solutions: The system (45) has a solution in
the form:

ψi =

p∑
j=1

dij exp(ξij),

ξij = kijx+ k−1
ij y + αk−1

ij z + βk3ijt+ ξ0ij , (47)

where dij , kij , and ξ0ij are free parameters and p is arbitrary
natural number. In particular, we have the following solutions

ψi = exp(ξi),

ξi = kix+ k−1
i y + αk−1

i z + βk3i t+ ξ0i , (48)

where ki and ξ0i are free parameter, and α, β are satisfy the
equation (46). In order to explore solutions of (42), we choose
special values for (Cij)n×n and the functions ψi. For example,
introduce

ψi = exp(ξi),

ξi = kix+ k−1
i y + αk−1

i z + βk3i t+ ξ0i , (49)

and then we obtain

(i, j) = Cij +
ki − kj
ki + kj

ψiψj . (50)

Let us consider two-soliton and three-soliton solutions of the
equation (42). For a two-soliton solution. We may choose
C12 = C34 = 1, C13 = C14 = C23 = C24 = 0. Therefore,

φ2 = (1 2)(3 4)− (1 3)(2 4) + (1 4)(2 3),

Putting

ηi =: ξi + ξi+1 + δi, where exp(δi) =:
ki − ki+1

ki − ki+1
, (51)

equivalently, we have

φ2 = 1 + eη1 + eη3 + k3412e
η1+η3 , (52)

where

klmij =:
(ki − kl) (ki − km) (kj − kl) (kj − km)

(ki + kl) (ki + km) (kj + kl) (kj + km)
. (53)

In a similar way, we can obtain a three-soliton solution for
the equation (42). We may choose C12 = C34 = C56 =
1, otherwise Cij = 0, and the φ function now is

φ3 = 1 + exp(η1) + exp(η3) + exp(η5)

+k3412 exp(η1 + η3) + k5612 exp(η1 + η5)

+k5634 exp(η3 + η5) + k456123 exp(η1 + η3 + η5), (54)

where
klmn
ijp =: kplijk

mn
ij kmn

pl . (55)

Therefore, if we put klmij =: exp(Klm
ij ), the N -soliton solution

of the equation (42) can be expressed as

φN =
∑

exp(

N∑
i=1

μ2i−1η2i−1 +

(2N)∑
i<j<l<m

Klm
ij μiμl), (56)

where
∑

denotes the summation over all possible combina-
tions of μ1 = 0, 1, μ2 = 0, 1, ..., μ2N = 0, 1, and

∑(2N)
i<j<l<m

is the sum over all i, j, l, m (i < j < l < m) chosen from
{1, 2, ..., 2N} . Furthermore, the nonlinear Ma-Fan equation

(40) has the N -soliton solution u = 2
∂

∂x
(lnφN ).
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C. The (3+1)-D soliton Eq of Jimbo-Miwa type

The Jimbo-Miwa equation is the second equation in the
well known KP hierarchy of integrable systems, which is
used to describe certain interesting (3+1)-dimensional waves
in physics but not pass any of the conventional integrability
tests [13], [14]. The equation arose in physics in connection
with the nonlinear weaves with a weak dispersion.

In this subsection, I would like to discuss the non-linear
soliton equations [12]:

2vyt + vxxxy + 3vxxvy + 3vxvyx − 3vzz = 0, (57)

which can be written in terms of the Hirota bilinear operator.
In fact, the above soliton equations belong to a class of 3+1
dimensional soliton equations of Jimbo-Miwa type presented
in [12].

Under the dependent variable Cole-Hopf transformations
[12]

v = 2(lnω)x, (58)

the above (3+1)-dimensional nonlinear Jimbo-Miwa type
equation is mapped into two Hirota bilinear equations:

(
2DtDy +D3

xDy − 3D2
z

)
ω · ω = 0, (59)

1) Sufficient conditions: In what follows we would like
to discuss Pfaffian solutions to the (3+1)-dimensional soliton
equations of Jimbo-Miwa type (57). Let us take the following
Pfaffian

ωn = Pf (μi,j)1≤i,j≤2n, (60)

μij = Cij +

x∫
−∞

Dx ζi · ζjdx i, j = 1, 2, ..., 2n, (61)

where Cij = (−Cji for i �= j) are constants and all ζi, 1 ≤
i ≤ 2n, satisfy the linear integro differential equations:

ζi,y = 2α2

x∫
−∞

ζi(x)dx, ζi,z =
√
2αζi,x,

ζi,t = −1

2

∂3ζi
∂x3

, (62)

where α being an arbitrary nonzero parameter, and all ζi satis-
fying the boundary condition ζi(−∞) = 0 for i = 1, 2, ..., 2n.

2) Pfaffian solutions:
Theorem 6: If ζi(x, y, z, t), 1 ≤ i ≤ 2n, satisfy (62),

then the Pfaffian defined by (60) solves the Hirota bilinear
equation (59) and the function v = 2(lnωn)x solves the (3+1)-
dimensional soliton equation of Jimbo-Miwa type (57).

Proof: See [6].
3) N -soliton solutions: The system (62) has the solution

in the form

ζi =

p∑
j=1

ρije
ϑij ,

ϑij = lijx+ 2α2l−1
ij y +

√
2αlijz − 1

2
l3ijt+ ϑ0ij , (63)

where ρij , lij , and ϑ0ij are free parameters and p is an arbitrary
natural number. In particular, we have the following specific
solutions

ζi = eϑi ,

ϑi = lix+ 2α2l−1
i y +

√
2αliz − 1

2
l3i t+ ϑ0i , (64)

where li and ϑ0i are free parameter, and α is an arbitrary
constant. In order to investigate those solutions of (59), we
choose special values for (Cij)n×n and the functions ζi. For
example, letting

ζi = eϑi ,

ϑi = lix+ 2α2l−1
i y +

√
2αliz − 1

2
l3i t+ ϑ0i , (65)

we obtain

(i, j) = Cij +
li − lj
li + lj

ζiζj . (66)

Let us consider two-soliton and three-soliton solutions for the
Eq. (59). For a two-soliton solution, we may choose C12 =
C34 = 1, C13 = C14 = C23 = C24 = 0. Then

ω2 = (1 2)(3 4)− (1 3)(2 4) + (1 4)(2 3),

Putting

θi = ϑi + ϑi+1 + δi, where eδi =
ki − ki+1

ki − ki+1
, (67)

we may rewrite ω2 as

ω2 = 1 + eθ1 + eθ3 + l3412e
θ1+θ3 , (68)

where

llmij =
(li − ll) (li − lm) (lj − ll) (lj − lm)

(li + ll) (li + lm) (lj + ll) (lj + lm)
. (69)

In a similar way, we can obtain a three-soliton solution for
the equation (59). We may choose C12 = C34 = C56 =
1, otherwise Cij = 0, and then we may rewrite ω3 as

ω3 = 1 + eθ1 + eθ3 + eθ5 +

l3412e
θ1+θ3 + l5612e

θ1+θ5

+l5634e
θ3+θ5 + l456123e

θ1+θ3+θ5 , (70)

where
llmn
ijp = lplij l

mn
ij lmn

pl . (71)

Therefore, if we put llmij = eL
lm
ij , then the N -soliton solution

of the equation (59) is expressed as

ωN =
∑

exp(
N∑
i=1

β2i−1β2i−1 +

(2N)∑
i<j<l<m

Llm
ij βiβl), (72)

where
∑

denotes the summation over all possible combina-
tions of β1 = 0, 1, β2 = 0, 1, ..., β2N = 0, 1, and

∑(2N)
i<j<l<m

is the sum over all i, j, l, m (i < j < l < m) chosen
from {1, 2, ..., 2N} . Furthermore, the equation (57) has the

N -soliton solution v = 2
∂

∂x
(lnωN ).
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III. CONCLUSION

In Subsection II-A2, I have built an Pfaffian formulation
for the (3+1)-dimensional generalized B-type Kadomtsev–
Petviashvili equation:

uty − uxxxy − 3uxxuy − 3uxuxy + 3uxx + 3uzz = 0.

The facts used in our construction are the Pfaffian identities.
Theorem 4, give the main results on Pfaffian solutions, which
say that

u = 2
∂

∂x
(ln τn), τn = Pf (ai,j)1≤i,j≤2n,

where the elements of τn are defined by aij = Cij +
x∫

−∞
Dx fi(x)·fj(x)dx, Cij =constant, i, j = 1, 2, ..., 2n, with

fi satisfying

∂fi
∂y

= λ1
∂fi
∂x−1

,
∂fi
∂z

= λ2
∂fi
∂x

,
∂fi
∂t

=
∂3fi
∂x3

,

where λ1 and λ2 are free parameters defined in the equation
(25), solves the above (3+1)-dimensional generalized B-type
Kadomtsev-Petviashvili equation. Examples of Pfaffian solu-
tions made, along with a few plots [1]. In Theorem 4, we
considered only a specific sufficient conditions: (24), though
there is a free parameters λ1 and λ2 in the conditions. It
would be great to look for more general conditions involving
combined equations for Pfaffian solutions.

Moreover, based on the theory of the Bordered determinants
and the relation between a Pfaffian and a determinant. We
would like to discuss the relation between the generalized
(3+1)-dimensional B-type KP equation (GBKP ) and the
generalized (3+1)-dimensional A-type KP equation (GKP ).
Using integration by parts, each Pfaffian entry (i, j) is

aij = Cij +

x∫
−∞

Dx fi(x) · fj(x)dx

= Cij + 2

x∫
−∞

∂fi
∂x

fjdx− fifj .

Therefore, the square of the N -soliton solution τN can be
written as the determinants

τ2N =

∣∣∣∣∣∣Cij + 2

x∫
−∞

∂fi
∂x

fjdx

∣∣∣∣∣∣
1≤i,j≤2N

.

This determinant is nothing but the Grammian solution of the
GKP equation, τGKP . Hence, we have

τGKP = τ2GBKP .

Where GKP stand for the generalized A-type Kadomtsev-
Petviashvili equation. We choose a lower limit of the above
integrals to be x = −∞, but this is not an essential restriction,
the result is the same for any other choice of the lower limit.

In Subsections II-B2 and II-C2, I have built an Pfaffian
formulation for the (3+1)-dimensional nonlinear Ma-Fan equa-
tion:

utz − uxxxy − 3 (uxuy)x + 3uxx = 0,

and the (3+1) dimensional soliton equations of Jimbo-Miwa
type:

2vyt + vxxxy + 3vxxvy + 3vxvyx − 3vzz = 0.

The facts used in our construction are the Pfaffian identities
and the same technique used in the Subsection II-A2.

APPENDIX A
PROOF OF THEOREM 4

Proof: Let us express the Pfaffian τn by means of Lemma
2:

τn = (1, 2, ..., 2n) = (•), (73)

where aij = (i, j) and (dm, dm) = 0, where m is integer. To
compute the derivatives of the entries (i, j) and the Pfaffian
τn, we introduce new Pfaffian entries

(dn, i) =
∂nfi
∂xn

, (d−n, i) =
∂nfi
∂xn−1

, for n ≥ 0, (74)

by using the equation (23) and the equation (24) we can get

∂

∂x
(i, j) = fj

∂fi
∂x

− fi
∂fj
∂x

= (d0, d1, i, j) , (75)

∂

∂y
(i, j) = λ1

∂

∂x−1

x∫
−∞

[
fj
∂fi
∂x

− fi
∂fj
∂x

]
dx

= λ1

[
fi

∂fj
∂x−1

− fj
∂fi
∂x−1

]
=

λ1 (d−1, d0, i, j) , (76)
∂

∂z
(i, j) = λ2 (d0, d1, i, j) , (77)

∂

∂t
(i, j) = fj

∂3fi
∂x3

− fi
∂3fj
∂x3

− 2

[
∂fj
∂x

∂2fi
∂x2

− ∂fi
∂x

∂2fj
∂x2

]

= (d0, d3, i, j)− 2 (d1, d2, i, j) . (78)

Therefore, from the above results (75)-(78) we have the
following differential formulae for τn

∂τn
∂x

= (d0, d1, •) , (79)

∂τn
∂y

= λ1 (d−1, d0, •) , (80)

∂τn
∂z

= λ2 (d0, d1, •) , (81)

∂τ



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:4, 2013

582

n

∂t
= (d0, d3, •)− 2 (d1, d2, •) ,

(82)
∂2τn
∂x2

= (d0, d2, •) , (83)

∂2τn
∂z2

= λ22 (d0, d2, •) , (84)

∂3τn
∂x3

= (d1, d2, •) + (d0, d3, •) , (85)

∂2τn
∂y∂x

= λ1 (d−1, d1, •) , (86)

∂3τn
∂y∂x2

= λ1 [(d−1, d2, •) + (d0, d1, •) ] , (87)

∂2τn
∂y∂t

− ∂4τN
∂y∂x3

= −3λ1 [(d0, d2, •) + (d−1, d0, d1, d2, •)] ,
(88)

where we have used the abbreviated notation • = 1, 2, ..., 2n.
We can now compute that

[
∂2τn
∂y∂t

− ∂4τn
∂y∂x3

+ 3
∂2τn
∂z2

+ 3
∂2τn
∂x2

]
τn

= −3λ1 (d−1, d0, d1, d2, •) (•),[
−∂τn
∂t

∂τn
∂y

+
∂3τn
∂x3

∂τn
∂y

]
= 3λ1 (d−1, d0, •) (d1, d2, •) ,[

3
∂3τn
∂y∂x2

∂τn
∂x

− 3
∂2τn
∂x2

∂2τn
∂y∂x

− 3(
∂τn
∂z

)2 − 3(
∂τn
∂x

)2
]

= 3λ1 [(d0, d1, •) (d−1, d2, •)− (d0, d2, •) (d−1, d1, •) ] .

Substituting the above derivatives of τ n into the LHS of the
equation (21), we arrive at

[
∂2τn
∂y∂t

− ∂4τn
∂y∂x3

+ 3
∂2τn
∂z2

+ 3
∂2τn
∂x2

]
τn

−∂τn
∂t

∂τn
∂y

+
∂3τn
∂x3

∂τn
∂y

+3
∂3τn
∂y∂x2

∂τn
∂x

− 3
∂2τn
∂x2

∂2τn
∂y∂x

−3(
∂τn
∂z

)2 − 3(
∂τn
∂x

)2

= −3λ1[(d−1, d0, d1, d2, •) (•)− (d−1, d0, •) (d1, d2, •)
+ (d0, d2, •) (d−1, d1, •)− (d0, d1, •) (d−1, d2, •)]

= 0, (89)

where we have made use of the equation (16) with m = 2.
This shows that the Pfaffian τn = (1, 2, ..., 2n) with the condi-
tions (24) solves the generalized bilinear B-type Kadomtsev–
Petviashvili equation (20), which ends the proof.
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