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Abstract—Creep stresses and strain rates have been obtained 

for a thin rotating disc having variable density with inclusion by 
using Seth’s transition theory. The density of the disc is assumed to 
vary radially, i.e. ( )0 / mr bρ ρ −

= ; 0ρ  and m being real positive 
constants. It has been observed that a disc, whose density increases 
radially, rotates at higher angular speed, thus decreasing the 
possibility of a fracture at the bore, whereas for a disc whose 
density decreases radially, the possibility of a fracture at the bore 
increases.  

 
Keyword—Elastic-Plastic, Inclusion, Rotating disc, Stress, 

Strain rates,   Transition, variable density. 
 

I.  INTRODUCTION 
OTATING discs have a wide range of applications in 
engineering, such as high speed gears, turbine rotors, 

compressors, flywheel and computer’s disc drive. The 
analytical procedures presently available are restricted to 
problems with simplest configurations. The use of rotating 
disc in machinery and structural applications has generated 
considerable interest in many problems in domain of solid 
mechanics. Solutions for thin isotropic discs can be found in 
most of the standard creep text books [1-5]. Reddy and 
Srinath [6] investigate the influence of material density on 
the stresses and displacement of a rotating disc. It has been 
shown that the existence of density gradient in a rotating 
disc influences the stresses and displacements significantly. 
Change [7] has developed a closed-form elastic solution for 
an anisotropic rotating disc with variable density. Wahl [8] 
has obtained creep stresses in a rotating disc by assuming 
small deformation, incompressibility condition, Tresca’a 
yield condition, a power strain law and it associated flow 
rule. Seth’s transition theory [9] does not require these 
assumptions and thus solves a more general problem, from 
which cases pertaining to the above assumptions can be 
worked out. This theory utilizes the concept of generalized 
strain measure and asymptotic solution at the critical points 
of the differential equations defining the deformed field. It 
has been successfully applied to several problems [14-19, 
21].  

Seth [10] has defined the generalized principal strain 
measure as, 
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where n is the measure and 
A

iie  is the Almansi finite strain 
components. In this paper, we investigate elastic-plastic 
transition in a thin rotating disc of variable density with rigid 
inclusion by using Seth’s transition theory. The density of 
the disc vary along the radius in the form 
 

( )0 / mr bρ ρ −
=                                                                        (2) 

 
where 0ρ  is the constant density at r = b and m is the density 
parameter. Results have been discussed numerically and 
depicted graphically. 
 

II. GOVERNING EQUATIONS 
    We consider a thin disc of variable density with central 
bore of radius a and external radius b. The annular disc is 
mounted on a rigid shaft. The disc is rotating with angular 
speed ω  of gradually increasing magnitude about an axis 
perpendicular to its plane and passed through the center as 
shown in figure 1. The thickness of disc is assumed to be 
constant and is taken to be sufficiently small so that it is 
effectively in a state of plane stress, that is, the axial stress 

zzT  is zero. The displacement components in cylindrical 
polar co- ordinate are given by [10] 
 

( )1u r β= − , 0v = , w dz= ,                                                       (3)                   
 
where β  is function of ( )1 22 2r x y= +  only and d is a 
constant. The finite strain components are given by  Seth [9] 
as, 
 

( )21 1
2

A
rre rβ β⎡ ⎤′= − +⎢ ⎥⎣ ⎦

, 

21 1
2

A
eθθ β⎡ ⎤= −⎣ ⎦ , 

21 1 (1 )
2

A
zze d⎡ ⎤= − −⎣ ⎦ , 

0,
A

re θ = 0,
A

zeθ = 0
A

zre = ,         (4) 
 
where d drβ β′ = .                                             
Substituting equation  (4)  in  
equation (1), the generalized  
components of strain are 
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0,re θ = 0,zeθ = 0zre = ,                                                           (5) 
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where d drβ β′ = . 
The stress–strain relations for isotropic material are given by 
[20] 
  

1 2ij ij ijT I eλδ μ= + ,     ( i , j = 1, 2, 3 ),                                          (6)   
 
where  ijT  and ije are stress and strain tensor respectively, 
λ , μ  are LAME’S constants and 1I =  kke  is the first strain 
invariant. ijδ  is the KRONECKER’S delta. 
Equation (6) for this problem becomes 
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0, 0, 0, 0r z zr zzT T T Tθ θ= = = = ,                                                 (7) 
 
where d drβ β′ = . 
Substituting equation (5) in equation (7) we get the stresses 
as 
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where r Pβ β′ =  and 2 / 2C μ λ μ= + . 
Equations of equilibrium are all satisfied except 
 

( ) 2 2 0rr
d rT T r
dr θθ ρω− + = ,                                                      (9) 

 
where ρ  is the density of the material of the disc.                                                                                            
Using equation (8) in equation (9), we get a non- linear 
differential equation in β  as 
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where r Pβ β′ = (P is function of β  and β  is function of  r).             
Transition points of β  in equation (10) are 1P →−  and  
P →±∞ .The boundary conditions are 
 
u = 0   at   r = a  and  0rrT =  at   r = b.                                    (11) 
 

III.  SOLUTION  THROUGH  THE   PRINCIPAL   STRESSES 
DIFFERENCE  

For finding the creep stresses, the transition function 
through principal stress difference [11-19, 21] at the 
transition point P → -1 leads to the creep state .The transition 
function R is defined as 
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Taking the logarithmic differentiating of equation (12) with 
respect to r, we get 
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Substituting the value of /dP dβ  from equation (10) in 
equation (13) and taking asymptotic value P→ -1, we get 
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Asymptotic value of β  as P → -1 is D/r;  D being a constant. 
Substituting equation (2) in equation (14) after integrating  
with respect to r,  we get 
 

( )2expk n m
rrR T T Ar Frθθ

− += − = .                                            (15) 
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 and A  is a constant of integration. 

From equations (12) and (15), we get 
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Substituting equation (16) in equation (9), we get 
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where B is a constant of integration. 
Using boundary condition (11) in equation (17), we get  
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Substituting the value of B in equation (17), we get 
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From equation (16) and (18), we get 
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From equation (12) and (16), taking asymptotic value 

1P →− , we get 
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Substituting equation (20) in equation (3), we get 
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Using boundary condition (11) in equation (21), we get 
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Substituting the value of A in equation (18), (19) and (21), 
we get 
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We introduce the following non-dimensional components as 
 

/R r b= , 0 /R a b= ,  /r rrT Eσ = , /T Eθ θθσ = , /u u b=  and 
2 2 2
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Equations (22) to (24) in non-dimensional form become 
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For 2m =  and 2m n= +  equations (25) to (27) become, 
 

( )
( ) ( )

( )
1

1 2
2

0 2

2
exp log

3 2 exp
k

r k
R

C
R F dR R

n C R F
σ −

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟= − Ω

⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦
∫          (28) 

( )
( ) ( )

( ) ( )
1

1
2 2

0 2

2

2
exp exp

3 2 exp

log

k k
k

R

C
R F dR R F

n C R F

R

θσ
−

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥⎜ ⎟−⎪ ⎪⎜ ⎟⎢ ⎥= −⎨ ⎬⎝ ⎠⎣ ⎦⎪ ⎪
⎪ ⎪−Ω⎩ ⎭

∫ , (29)                                                  

( )
( )

1

2

0 2

exp

exp

k n

k

R F
u R R

R F

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

                                                       (30) 

where ( )
( )

2
2

1 22

3 2 og

2

n
n m

n

n C b l R
F R F

C D
− + Ω −

= − =
−

, ( )
( )
3 2 1

2
n C

k
C

⎡ ⎤− +
= − ⎢ ⎥

−⎢ ⎥⎣ ⎦
. 

For a disc made of incompressible material i.e ( 0C →  ) the 
stresses given by equations (25) to (27) become 
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For the having constant density (m = 0) 
    The stresses given by equation (25)-(27) for a disc having 
constant density become    
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For a disc made of incompressible material ( 0C → ) 
equations (31)-(33) become 
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These equations are the same as obtained by Gupta and 
Pankaj [15]. 
 

IV.   STRAIN RATES 
    When creep sets in, the strains should be replaced by 
strain rate. The stress-strain relations (6) become 
 

1
ij ij ije T

E E
ν ν δ+

= − Θ .                                                           (43)        

 
where ije  is the strain rate tensor with respect to flow 
parameter t and 11 22 33T T TΘ = + + . 
Differentiating equation (5) with respect to time t, we get 
 

1neθθ β β−= − .                                                                      (44)                                        
For SWAINGER measure (n = 1), we have from equation 
(44) 
 
θθε β=  .                                                                             (45)                                                  

The transition value of equation (13) at 1P →− , gives 
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Using equation (44), (45) and (46) in equation (43), we get 
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For incompressible material ( 0C → ) equations (47) become 
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These constitutive equations are same as obtained by 
Odquist [22] provided we put  n = 1/N. 
               

V.   NUMERICAL ILLUSTRATION AND DISCUSSION 
    For calculating stresses and strain-rates distribution based 
on the above analysis, the following values have been 
taken: 2 2 2

0 / 50b Eρ ωΩ = = , 75; m = -1, 0, 1; C = 0.00, 0.25, 0.5; n = 

1/3, 1/5 ( i.e N = 3, 7 ) and D = 1.In classical theory measure N is 
equal to 1/n. Definite  integrals   in the   equations  (25) - 
(26) have been solved by using Simpson’s rule . 
    Curves have been drawn in Figs. 2, 3 and 4  between 
stresses rσ , θσ  and radii ratio R = r/b for a rotating disc made 
of incompressible/ compressible material having variable 
density. It is seen from Figs. 2 to 4 that the radial stress has 
maximum value at the internal surface of disc as compare to 
circumferential stress. It is also observed that the radial 
stress has maximum value at the internal surface of the 
rotating disc with inclusion made of incompressible material 
as compare to compressible material for measure n = 1/7 or (N 
= 7) at angular speed 2Ω  = 50, whereas circumferential stress 
is maximum at the internal surface for measure n = 1/3 or (N = 
3) at this angular speed. The values of radial/ circumferential 
stress further increases at the internal surface with the 
increase in angular speed ( 2Ω = 75) for measure n = 1/7 or (N = 
7) and n = 1/3 or (N = 3) respectively .With the effect of density 
variation , it is seen from Figs. 2, 3 and 4 that the values of 
radial/ circumferential stress must be decrease at the internal 
surface of a disc. As reported by Rimrott [23], a material 
tends to fracture by cleavage. It is likely to begin as a sub-
surface fracture close to the bore, because the largest tensile 
stress occurs, at this location. This means that for a disc 
rotating with higher angular speed and whose density 
increases radially, the possibility of a fracture at the bore 
decreases, whereas for a disc whose density decreases 
radially, the possibility of a fracture at the bore increases.   
   Curves have been drawn in Figs. 5 and 6 between strain 
rates and radius R = r/b at angular speed 2Ω = 50, 75 and 
measures n = 1/7, 1/3 or (N = 7, 3). It has been seen from Figs. 5 
and 6 that rotating disc made of compressible material the 
has maximum value at the internal surface as compared to 
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incompressible material for measure n = 1/7 or (N = 7) and n 
=1/3 or (N = 3)  at angular speed 2Ω = 50. The values of strain 
rates further increases at the internal surface with the 
increase in angular speed 2Ω = 75 for measure n = 1/7 or (N = 7) 
and 1/3 or (N = 3) respectively. With the effect of density 
variation, strain rates must be decrease.  
 

VI.  CONCLUSION  
It has been observed that a disc, whose density increases 

radially, rotates at higher angular speed, thus decreasing the 
possibility of a fracture at the bore, whereas for a disc whose 
density decreases radially, the possibility of a fracture at the 
bore increases. Radial stress has maximum value at the 
internal surface of the rotating disc made of incompressible 
material a compares to circumferential stress and this value 
of radial stress further increases with increase in angular 
speed. Strain rates have maximum values at the internal 
surface for compressible material. 
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Fig. 2 Creep stresses in a thin rotating disc with rigid inclusion having variable density for incompressible material at different angular 
speed 2Ω  = 75, 50 along the radius R = r/b 
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Fig. 3 Creep stresses in a thin rotating disc with rigid inclusion having variable density for compressible material at different angular speed 2Ω
= 75, 50 along the radius R = r/b 
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Fig. 4 Creep stresses in a thin rotating disc with rigid inclusion having variable density for compressible material at 
different angular speed 2Ω  = 75, 50 along the radius R = r/b 

R= r/b 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

83

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(m =-1) 

(C = 0) 

(C = 0) 

(C = 0) 

(C = 0.5) 

(C = 0.5) 

(C = 0.25) 

(C = 0.5) 

(C = 0.25) 

(C = 0.25) 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

20 

0.5 0.6 0.7 0.8 0.9 1

R = r/b 

θθε
 

 zzε  

rrε  

(m =0)

(C = 0.25) 

(C = 0) 

(C = 0.5)

(C = 0) 

(C = 0.5)

(C=0.25)

(C = 0)

(C = 
0.25) 

(C= 0.5)

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

20 

0.5 0.6 0.7 0.8 0.9 1

R = r/b 

rrε  

θθε
 

zzε  

(m = 1) 

zzε  

(C=0.5) 

(C=0.25) 

(C=0.5) 

(C=0) 

(C=0.5) 

(C= 0) 

(C=0.25) 

(C=0) 

(C= 0.25) 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

20 

0.5 0.6 0.7 0.8 0.9 1 

R = r/b 

rrε  

θθε
 

Fig. 5 Strain rate components for a thin rotating disc with inclusion having variable density for measure n = 1/7 at 
angular speed  2Ω  = 50 along the radius R = r/b 

   
   

   
 S

tra
in

 R
at

es
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

84

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(m = -1) 

(C = 0) 

(C = 0) 

(C = 0.5) 

(C = 0.25) 

(C=0.25) 

(C=0.5) 

 (C = 0.25) 

(C = 0) 

(C = 0.5) 

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0.5 0.6 0.7 0.8 0.9 1

R = r/b 

θθε
 

zzε  

rrε  

(m = 0)

(C = 
0.5) 

(C = 
0.5) 

(C = 0) 

(C = 
0.5)

(C = 0.25) 

(C = 
0) 

    (C=0.25) 

(C = 
0) 

(C = 0.25) 

-40 

-35 

    -30 

--25 

 -20 

  -15 

 -10 

-5 

0 

5

10 

15 

20 

25 

30 

0.5 0.6 0.7 0.8 0.9 1

R = r/b 

θθε
 

zzε  

rrε  

(m = 1) 

(C= 0) 

(C= 0.25) 

(C = 0.25) 

(C = 0.5) 

(C = 0.25) 

(C = 0.5) 

(C = 0) 

(C = 0) 

 (C = 0.5) 

-40

-35

-30

-25

-20

-15

-10

-5 

0 

5 

10

15

20

25

30

0.5 0.6 0.7 0.8 0.9 1 

R = r/b 

  θθε  

zzε  

rrε  

St
ra

in
 R

at
es

 

Fig. 6 Strain rate components for a thin rotating disc with inclusion having variable density for measure n = 1/7 at  angular 
speed  2Ω  =75 along the radius R = r/b 


