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     Abstract—A new approach for target recognition based 

on the Empirical mode decomposition (EMD) algorithm of Huang et

al. [11] and the energy tracking operator of Teager [13]-[14]are
introduced. The conjunction of these two methods is called Teager-

Huang analysis. This approach is well suited for nonstationary

signals analysis. The impulse response (IR) of target is first band 

pass filtered into subsignals (components) called Intrinsic mode

functions (IMFs) with well defined Instantaneous frequency (IF) and 

Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM

component. In second step, the energy of each IMF is tracked using 

the Teager energy operator (TEO). IF and IA, useful to describe the 

time-varying characteristics of the signal, are estimated using the 

Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-

[17]. In third step, a set of features such as skewness and kurtosis are 

extracted from the IF, IA and IMF energy functions. The Teager-

Huang analysis is tested on set of synthetic IRs of Sonar targets with 

different physical characteristics (density, velocity, shape,… ). PCA

is first applied to features to discriminate between manufactured and 

natural targets. The manufactured patterns are classified into spheres

and cylinders. One hundred percent of correct recognition is achieved 

with twenty three echoes where sixteen IRs, used for training, are 

free noise and seven IRs, used for testing phase, are corrupted with 

white Gaussian noise.

Keywords—Target recognition, Empirical mode decomposition, 

Teager-Kaiser energy operator, Features extraction.

I. INTRODUCTION

The use of underwater sound for the purpose of detecting

and locating submerged  targets was introduced more than

80 years ago. The problem of discrimination of immersed

targets was initiated with the works of Hoffman [1] who

investigated time-domain approaches and Chesnut and Floyd

who tested multiple frequency based techniques [2]. Time-

domain techniques based on neural network inversions have 

been developed to discriminate Sonar objects [3], [4]. Time-

frequency approaches have also been used for target

classification [5], [6] and have given high potentiality for

discrimination between solid and hollow targets as well as for

determining the target material [7]. For example in [7] a 

Wigner-Ville distribution (WVD) [8] as a time-frequency

description is used. Indeed, WVD has been shown to be a

relevant for understanding of echo formation mechanisms and 

for surface waves that circumnavigate the targets [5], [6]. In 

[9] a sonar target classification approach based on the time-

frequency projection filtering, proposed by Hlawatsch and 

Kozek [10], is presented. The WVD associated to the Impulse

response (IR) (acoustic response) of a Sonar target generates a 

time-frequency plane (image) showing different patterns. 

These patterns can be classified into two categories 1)

Interferences due to the bilinear nature of the WVD [8]. 2)

High energy pattern: the first one, non dispersive, is

associated with the specular echo on the target and the two

following patterns correspond to the arrival of surfaces waves

(antisymmetric Lamb waves) that circumnavigate the target

[9]. The two pertinent patterns for classification are the 

specular reflection and the Lamb waves. The function of a 

time-frequency filter is to extract from the signal to be 

analyzed the pertinent patterns. The filter is designed from the

WVD of a reference signal and more particularly from its

time-frequency support R containing the relevant information.

This region R is derived manually (isolation of the echoes by

an expert operator). The difficult with the WVD is the severe

cross terms as indicated by the existence of negative power for 

some frequency ranges. Although most of these difficulties 

are overcome by using proper kernel functions, the method is

still Fourier based; therefore all the possible complications

associated with Fourier transform still exist. To circumvent

this difficulty we investigate the Empirical mode

decomposition (EMD) method proposed by Huang et al. [11]

to analyze nonlinear and non-stationary signals such as the IR

of Sonar target. Indeed, the EMD does not make any

assumption about the stationnarity or the non-linearity of the

analyzed signals, and avoids the interference problem of the

WVD. The EMD decompose a signal into intrinsic oscillatory

mode. The aim is to determine the intrinsic modes which

characterize the Sonar target. In practice, the EMD is easier

and less complicate for implementation than WVD.
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II. IMPULSE RESPONSE OF THE TARGET 

The IR contains most of the information available on the

target. This response can be decomposed into several

elementary components related to various physical

phenomena such as specular echo or surface acoustic waves. 

These components are generally excited in different frequency

ranges. The acoustic field scattered by a target is calculated 

using a decomposition of the backscattered pressure field into

an infinite summation of modal components, depending on the

mechanical properties and the geometry of the scatter [12].

The modal components are the eigenfunctions of the spherical
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or cylindrical target. The IR of the target is computed from the 

scattered pressure spectrum by taking the inverse Fourier

transform. Although the IR contains all the information on the

scatter, some fundamental features of the circumferential

waves, such as velocity dispersions, are not clearly displayed

in a single time or single frequency domain [7]. The use of

joint time-frequency approach can thus provide significant 

insight for the purpose analysis.

III. SONAR TARGET RECOGNITION METHOD

A. Empirical Mode Decomposition

The principle of the EMD is to decompose adaptively a 

given signal  into oscillating components. These 

components are called Intrinsic Mode Functions (IMFs) and

are obtained from the signal  by means of an algorithm

called sifting. The name IMF is adapted because it represents 

the oscillation mode imbedded in the data. With this

definition, the IMF in each cycle, defined by the zero 

crossings of , involves only one mode of oscillation, no 

complex riding waves are allowed. Thus, an IMF is not

restricted to a narrow band signal, and it can be both

amplitude and frequency modulated. In fact, it can be non-

stationary. The essence of the EMD is to identify the IMF by

characteristic time scales, which can be defined locally by the 

time lapse between two extrema of an oscillatory mode or by

the time lapse between two zero crossings of such mode. The 

EMD picks out the highest frequency oscillation that remains

in the signal. Thus, locally, each IMF contains lower

frequency oscillations than the one extracted just before.

Furthermore, the EMD does not use any pre-determined filter 

or wavelet function. It is fully data driven method. It has been

shown experimentally that the EMD acts essentially as a 

dyadic filter bank resembling those involved in wavelet

decomposition [13]. Since the decomposition of the EMD is

based on the local characteristics time scale of the data, it is 

applicable to nonlinear and non-stationary processes.

x t

x t

x t

The EMD decomposes  into a sum of IMFs that: (1) have

the same numbers of zero crossings and extrema; and (2) are 

symmetric with respect to the local mean. The first condition

is similar to the narrow-band requirement for a stationary

Gaussian process. The second condition modifies a global 

requirement to a local one, and is necessary to ensure that the

IF will not have unwanted fluctuations as induced by a 

symmetric waveforms. These functions, IMFs, denoted

 are obtained using the following algorithm:

x t

iIMF t

  Step1) Initialize: 0r t x t , i 1

  Step2) Extract the i-th IMF 

a) Initialize h t0 ir t , i 1

b) Extract the local minima and maxima of j-1h t

c) Interpolate the local maxima and local minima by a cubic

spline to form upper and lower envelopes of j-1h t

d) Calculate the mean µ  of the upper and lower

envelopes

j-1 t

e) j j-1 j-1h t h t -µ t

f) if stopping criterion is satisfied

then i jIMF t h t

1else { j j+ and goto (b)} 

  Step3) i i-1 ir t r t -IMF t

  Step4) if ir t  still has at least 2 extrema

  then { j j+1and goto (b)} 

  else the decomposition is finished

  and ir t  is the residue

At the end of the sifting process, we have 
n

i n

i=1

x t = IMF t +r t

where denotes the affectation operation and  is the

number of IMFs and  is the residue of the

decomposition. If the residue has almost a zero value, this

means that

n

nr t

x t  had a zero mean. More generally, the residue

captures the trend of x t .

B. Teager-Huang analysis

The EMD method is not itself a time-frequency

representation as WVD. With the Hilbert transform, the IMF 

yields IFs as functions of time that give sharp identifications

of imbedded structures. The final presentation of the results is

an energy-frequency-time representation, designated as 

Hilbert-Huang transform [11]. To generate the IF and the IA 

of x t the EMD is combined with the TEO [14]-[16]. The

conjunction of the EMD and the TEO methods is designated

as Teager-Huang analysis (THA). More particularly, the

Energy separation algorithm (ESA) [17]-[18] uses the TEO to

estimate the IA and the IF of . The ESA is very simple

demodulating technique yielding very small errors for AM-

FM demodulation. It is less computationally complex and has

better time resolution than other classical demodulation

approaches such as the Hilbert transform [19]. Note that the

EMD can also be combined with the AM-FM demodulation

technique [20].

x t

C. TEO algorithm

It is shown that the TEO can track the energy of a signal and 

identify the IA and the IF [17]. The TEO, . , is defined for 

continuous-time signal x t  as: 

2
x t = x t -x t .x t

where x t  and x t  are the first and the second time

derivatives of x t  respectively. In the discrete case, the time
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derivatives may be approximated by time differences. The

discrete-time counterpart of the TEO becomes [17]:
2

x n =x n -x n+1 .x n-1

An important aspect of the TEO is that it is nearly

instantaneous. This is because only three samples are required

for the energy computation at each time instant. This excellent

time resolution provides us with ability to capture the energy

fluctuations. Furthermore, this operator is very easy to

implement efficiently. The ESA [17]-[18] uses the TEO to

separate  into its amplitude envelope (IA) x t a t  and IF

signal  to accomplish monocomponent AM-FM signal 

demodulation:

f t

x t1
f t

2 x t

x t
a t

x t

Since the speech signal is composed of superposition of 

AM-FM signals, the TEO has been successfully used in

various speech processing applications [18],[21]. The main

disadvantage is of this operator is a moderate sensitivity to

noise. Furthermore, it assumes that the estimated IF does not

vary too fast (small bandwidths) or too greatly compared with

the carrier frequency. The TEO is typically applied to a 

bandpass signal. If  is a multicomponent AM-FM signal,

then bandpass filtering is needed to isolate each component

before applying the ESA. In this paper EMD is used as a 

multiband filtering to separate the components in the temporal

domain and hence reduce multicomponent demodulation to 

monocomponent one [22].

x t

D. Pseudo-Code of the Method

The Target recognition strategy involves the following

steps:

Input: Signal   //Target IR x t

1)  Apply EMD to .x t

2)  Select a subset of IMFs ( sN  is the cardinal of this set). 

3)  Apply TEO to selected IMFs, e t .k sk 1,2,...,N

4) Demodulate each IMF using the TEO to estimate the IA 

and the IF .ka t kf t

5) Features extraction:

For ,  and e  calculate the attributes:

Skewness, Kurtosis and Shannon’s Entropy.

ka t kf t k t

6) Classification using extracted features (PCA,…) 

Output: Features  //Attributes for classification 

The method is also described by the follow diagram:

.

.

.

Target

recognition

. . .

. . .

Signal

Target

. . . 

. . . . . . 

 . . . TEO
EM D Features

extraction

IF

IA

Classification algorithm

(PCA)

Block diagram of the THA applied to Sonar target recognition.

IV. RESULTS 

The THA is tested on simulated discrete-time IRs of Sonar

targets [23]. The aim is the discrimination between a Shell

target (S: man-made)/Non-Shell (NS) target. Sixteen RIs for 

the training phase are used (Table I). For the testing phase we

use seven RIs, whose characteristics are unknown, and are not

used during the training phase (Table II). These seven RIs are

corrupted with white Gaussian noise with signal to noise ratio

SNR=18 dB. Note that Six NS man-made targets (1-3, 9-11) 

are used for training and four NS, natural, targets

(17,18,21,22) for testing. Figure 1 shows the sequential

extraction into local oscillations by the EMD of an IR (shell

sphere). Only a few IMFs (IMF 1, 2 and IMF n and residue

nr t ) are shown. Remark that the first IMF corresponds to

fast oscillation while the last one to slow one. There is no

criteria to select the number of IMFs used in features 

extraction. However, the processing of a large number of IRs

has shown that the more discriminant features are derived

from the first IMFs. In this paper SN  is set to 4. Figure 2 

shows the clustering results in training phase using PCA. For 

better illustration, clustering results are represented in 3D with

three principal directions 2, 3 and 4. We observe a good 

separation in the features space, in particular for the cylinder

shell and the other echoes. The rate of recognition is about

100%. Figure 2 shows also the good identification of targets

(S or NS) and the recognition targets (sphere or cylinder) in

the testing phase. Note that even no natural targets are used in

training, they are well recognized in testing step. If the targets

are natural (non shell) the algorithm of classification is not

able to identify the shape of the target (sphere or cylinder).

However, the identification of shell targets independently

from the shape remains a good piece of information for

military applications.

V. CONCLUSION

In this paper THA is used to estimate the IF and the IA of

acoustic echoes of Sonar targets followed by a features
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extraction and classification. The EMD is used as multiband

filtering to separate the components in the temporal domain.

Both the EMD and the TEO have a low computation

complexity. The EMD is well adapted to non-stationary

signals and the TEO has an excellent time resolution (operates

on a few samples moving window). The THA gives good 

estimate of the IF and IA. It yields small errors of AM-FM 

demodulation. Processing of a large number of signals and 

comparisons to exiting methods such as WVD are necessary 

to show the robustness and the effectiveness of this analysis.

The automatic classification of underwater signals obtained

from active sonar is considered as a complex problem because 

of the large variability in both time and spectral characteristics

in signal even obtained from the same targets. Presented 

results show that a small number of attributes are sufficient to 

identify the characteristics of the simulated Sonar target IRs 

with good accuracy. In addition, it is shown that the 

recognition problem can be viewed as a linearly separable 

one. It is obvious that this method must be now validated on 

real signals (Reverberation, Doppler, ...). In addition, a more

detailed study on the relevance and the selection of the

attributes is necessary.
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Figure 1: An example, of selected, IMFs of the IR of a shell sphere. 
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Table I 

 Characteristics of the targets used in training phase. 

N° of targets 

Non shell ( NS ) 

Shell ( S ) 

Cylinders (Cy) 

Spheres   (Sp) 

Label

of the class

(trained)

 1    (NiMol) NS Sp

 2    (Inox) NS Sp

 3    (Alu) NS Sp

 4    (Pvc) S Sp

 5    (Nylon) S Sp

 6    (Nimol) S Sp

 7    (Inox) S Sp

 8    (Alu) S Sp

 9    (NiMol) NS Cy

 10  (Inox) NS Cy

 11  (Alu) NS Cy

 12  (Pvc) S Cy

 13  (Nylon) S Cy

 14  (Nimol) S Cy

 15  (Inox) S Cy

 16  (Alu) S Cy

Table II 

Characteristics of the targets used in testing phase. 

N° of targets 

Non shell ( NS ) 

Shell ( S ) 

Cylinders (Cy) 

Spheres   (Sp) 

Label

of the class 

(desired)

17  (Granit) NS Sp

18  (Marbre) NS Sp

19  (Pvc) S Sp

20  (Alu) S Sp

21  (Granit) NS Cy

22  (Marbre) NS Cy

23  (Pvc) S Cy

Figure 2: PCA results classification (3D projection on direction 2 3 4),

training (full forms) and testing (shell forms) phases. 

 

 


