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Abstract—Modular multiplication is the basic operation

in most public key cryptosystems, such as RSA, DSA, ECC,

and DH key exchange. Unfortunately, very large operands

(in order of 1024 or 2048 bits) must be used to provide

sufficient security strength. The use of such big numbers

dramatically slows down the whole cipher system, especially

when running on embedded processors.

So far, customized hardware accelerators - developed on

FPGAs or ASICs - were the best choice for accelerating

modular multiplication in embedded environments. On the

other hand, many algorithms have been developed to speed

up such operations. Examples are the Montgomery modu-

lar multiplication and the interleaved modular multiplica-

tion algorithms. Combining both customized hardware with

an efficient algorithm is expected to provide a much faster

cipher system.

This paper introduces an enhanced architecture for com-

puting the modular multiplication of two large numbers X
and Y modulo a given modulus M . The proposed design is

compared with three previous architectures depending on

carry save adders and look up tables. Look up tables should

be loaded with a set of pre-computed values. Our proposed

architecture uses the same carry save addition, but replaces

both look up tables and pre-computations with an enhanced

version of sign detection techniques. The proposed architec-

ture supports higher frequencies than other architectures.

It also has a better overall absolute time for a single oper-

ation.
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plication , efficient architecture, FPGA, RSA

I. Introduction

One common drawback of all public key cryptographic
algorithms - though being highly secure - is the heavy
computation involved in key generation, digital signature,
and data encryption/decryption schemes. Such complexity
refers to the use of modular exponentiation in most of the
above schemes, taking into account that operands are not
less than 1024 bits long (except for Elliptic Curve Cryp-
tography(ECC) which uses modular multiplication of 521
bits numbers as maximum).

Modular multiplication is the heart of modular expo-
nentiation. Accelerating modular multiplication will raise
the efficiency of the whole public key cryptosystem. Gen-
eral purpose processors consume thousands of cycles to
finish a single operation using classical methods. Many
algorithms have been developed to efficiently perform the
computation (X × Y modM) without doing the ordinary
pencil-and-paper steps. Examples are Montgomery modu-
lar multiplication [1] and interleaved modular multiplica-
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tion [2]. Now considering embedded environments, such
as FPGAs or ASICs, we can achieve higher efficiency by
selecting one of the above algorithms to run over special
purpose hardware architecture.

In this work, we introduce an enhanced architecture for
an interleaved modular multiplier. The proposed design
scores better timing than other architectures presented in
[3] and [4]. Most previously introduced architectures de-
pend on the use of look-up tables, to provide some kind
of caching the operands. Using look-up tables slows down
the maximum frequency the hardware can support. Our
proposal replaces caching with an improved sign detection
technique [5]. Compared to architectures presented in [3],
higher frequencies were supported on the same FPGA. The
overall operation time is also improved.

Sections II and III introduce the algorithms of modu-
lar exponentiation and interleaved modular multiplication.
Section IV presents an architecture of an interleaved mod-
ular multiplier presented in [3]. Section V introduces a
modified version of the sign estimation technique presented
in [5]. It also proves the correctness of the new technique.
Section VI proposes the modified interleaved modular mul-
tiplier based on the new sign estimation technique. It also
summarizes the implementation results in comparison with
the architecture presented in [3]. The document ends with
a conclusion in section VII.

II. Modular Exponentiation

Modular exponentiation means to compute R where,

R = X
e modM

If we consider X, e, &M to be in order of 1024bits or higher,
the operation becomes very time and space consuming for
the ordinary pencil-and-paper method. Therefore, we use
the famous square and multiply algorithm shown in Table
I. The main operation included in the algorithm is the
modular multiplication (lines 3, 4).

The square and multiply algorithm scans the exponent
bits, starting by the MSB. For a ’1’ bit, two modular mul-
tiplication are done: squaring the previous result (line 3),
and a modular multiplication by X (line 4). For a ’0’ bit,
only squaring is performed. Therefore, Modular exponen-
tiation uses 2048(worst case) or 1.5 ×1024 = 1536(aver-
age) modular multiplications. This proves the importance
of the need to optimize both time and space of modular
multiplication.

In the next section, we introduce the interleaved modular
multiplication algorithm which will be used in the square
and multiply algorithm.
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TABLE I

Square and Multiply Algorithm

Input: X, e, M ; n-bit numbers ; 0 ≤ X , Y ≤ M

Output: : R = XemodM

n: number of bits of e

ei :ith bit of e

1. R = 1
2. for (i = n − 1; i ≥ 0; i = i − 1)
{
3. R = R × R mod M

4. if (ei=1) Then R = R × X mod M

}

III. Interleaved Modular Multiplication

Classical modular multiplication means to compute the
product (X × Y ), and then reduce the result via division
by the given modulus (M). Interleaved modular multipli-
cation allows multiplication and reduction to overlap. The
intermediate results produced after every iteration are first
reduced to the range [0, M-1] before resuming the multi-
plication process. The original algorithm is shown table
II:

TABLE II

Interleaved Modular Multiplication Algorithm

Input: X, Y, M ; n-bit numbers ; 0 ≤ X, Y ≤ M

Output: P = X × Y modM

n : number of bits of Y

xi : ith bit of X

1. P = 0
2. for (i = n − 1; i ≥ 0; i = i − 1)
{
3. P = 2 × P

4. I = xi × Y

5. P = P + I

6. if (P ≥ M) then P = P − M

7. if (P ≥ M) then P = P − M

}

The algorithm scans X starting from the MSB. At each
iteration, a single Y is conditionally added to the accu-
mulator P according to the bit xi. At the end of every
iteration, P must be guaranteed to be less than M . The
condition (P ≥ M) has to be checked at most twice. This
is because P is incremented twice per iteration at worst
case, once by P (line 3) and another conditional increment
by Y (lines 4 & 5).

The main operations found in the algorithm are:
1. One bit left shift (Line 3).
2. Addition (Line 5).
3. Comparison (Line 6, 7).

Operation (1) is simple and needs no optimization. Op-
eration (2) involves adding two large numbers (1024-2048
bits). Ripple carry adders have the defect of the carry
propagation through the whole number to produce the re-

sult. Using ripple carry adders will slow down the system
maximum operating frequency. Carry look-ahead adders
can be used instead. But they have the defect of exten-
sive hardware used to avoid carry propagation. Carry save
adders (CSAs) are also a better choice for addition. CSAs
occupy much less hardware than carry look-ahead adders
but they provide the result in a (Sum, Carry) pair repre-
sentation. So far CSAs were selected in all improvements
of modular multipliers. Operation (3) needs a comparator
between P and M . Worst case comparison will also results
in a big propagation delay, as we will have to compare all
bits from both numbers. The comparison needs both num-
bers to be in their final form, which conflicts with the CSAs
output form.

In the next section, we introduce the latest proposed ar-
chitecture to optimize the interleaved modular multiplica-
tion. The related work tried to compromise between using
CSAs and avoiding ordinary comparison. More details can
be found in [3] and [6].

IV. Related Work

Figure 1 shows a previously proposed architecture in [3]
for the interleaved modular multiplication algorithm shown
in Table II. The multiplier uses a single CSA and a look-up
table.

Fig. 1. Redundant Interleaved Modular Multiplier

Referring to Table II, the above architecture solved the
comparison problem by a comparison with 2n instead of
M . Another problem is the number of additions or sub-
tractions in the steps (5), (6), and (7) of the algorithm.
All these operations were replaced by one addition as fol-
lows: Pre-estimation of the number of Ms to be subtracted
is done. Another decision to be made is addiny Y or not
according to the next iteration of the loop. All possible val-
ues for this estimation are pre-computed and stored in the
look-up table. In each iteration of the loop, the estimation
of the previous iteration can be added to the intermediate
result. This architecture achieved 69MHz maximum fre-
quency for 1024 bit operands on a Xilinx Virtex 2 FPGA.
A single modular multiplication takes only 14.7 μs [6] +
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the time for pre-computations to take place.
As shown in Figure 1, pre-estimated values depend on

both Y andM . Now referring to Table I, square and mul-
tiply algorithm requires pre-estimation before every mul-
tiplication. The time overhead due to loading the look-up
table becomes significant with respect to the hardware op-
eration time.

In our proposed architecture, we also make use of CSAs.
CSAs have a drawback of not producing the result in its
final form. We introduce a new technique to perform the
comparison steps on the (Sum, Carry) pair representation.
Comparison will be replaced by evaluating the sign of the
quantity (P − M). The Sign determination will be done
using the ’Sign Detection’ technique explained in the next
section.

V. Sign Detection Technique

A. Mathematical Representation

Sign estimation means to decide the sign of a binary
number represented in a (Sum, Carry) pair without final-
izing the addition. The decision is based on a segment of
the sum and a segment of the carry of the same bit length.
The longer the segment, the higher the probability of esti-
mating an exact sign will be. It should be noted that both
sum and carry are in the two’s complement representation.

Previous work [5] proposed a technique for the sign esti-
mation. The technique produces three possible outputs:
positive (+), negative (-), and unsure(±). The unsure
state is reached when the number is either too large or too
small. The usage of such technique in modular reduction
was limited to a segment of only 2 bits length[5]. Using
such short segments may result in frequently reaching the
unsure state.

In our contribution, we have enhanced the sign estima-
tion module to produce a ’Sign Detection’ technique, that
is, an exact sign will be produced for any number. The
proposed module can avoid the unsure state. It can be
used with any segment length in modular multipliers. If
the segment is of enough length (typically 8-16 bits for
1024bit numbers), the sign will be produced in a single
clock cycle. Otherwise, several cycles can be consumed
before producing the exact sign. The module works as
follows:

A window (segment) of length (w) will be taken from
both sum and carry. The window count starts from the
MSB and moving downwards. Using this scheme, any n-bit
number (X) can be represented as the sum of two quanti-
ties:

1. An always-positive number containing bits (0) to (n−
w − 1) of X . ”Note that (n > w)”

2. A number in the two’s complement representation
having bits (0) through (n−w− 1) reset to zeros and
bits (n − 1) through (n − w) as the same as X .

So we can write,

X = W (x) + R(x)

Table III shows the representation of X for sign detec-
tion.

TABLE III

Sign detection representation

X = xn−1 xn−2 · · · xn−w · · · x1 x0

W (x) = xn−1 xn−2 · · · xn−w 0 · · · 0
R(x) = 0 0 · · · 0 xn−w−1 · · · x0

Note that R(x) is always positive. W (x) holds the sign
of the original number. Bits (n − 1) through (n − w) of
both sum and carry are fed to the sign detection module.
The ’detect sign’ function DS(S, C) can now be defined.

If X is an n-bit number represented in (S, C) pair:

1. Let W (s), W (c) be the windows taken from S, C

respectively.
2. Let Temp = W (s) + W (c).
3. If the MSB of Temp is ’0’ then X is positive.
4. Else if Temp �= ”11 · · ·11” then X is negative.
5. Else(Temp is all ones), request another carry save

addition. Update (S, C). Go to (1).

Step 5 avoids the unsure state by feeding (S, C) pair
back to the CSA, thus requesting another (S, C) represen-
tation of the same number. This is an interesting feature
of CSAs that we can produce many (Sum, Carry) pairs all
referring to the same result. The function can now restart
to produce an exact sign.

In the next subsection we prove the correctness of the
new sign detection technique.

B. Correctness of Sign Detection Technique

In this subsection, we prove the correctness of the sign
detection technique. Proof will be introduced for window
lengths of 2, 3, and 4 bits. It will be shown that it can be
generalized for any number of bits.

Proof: It’s clear that

R(s) ≥ 0, R(c) ≥ 0

Since

X = W (s) + W (c) + R(s) + R(c)

Then if

Temp = W (s) + W (c) > 0

which means that MSB of Temp is zero, then X is positive.

For the case MSB of Temp is one (Temp < 0), we will
tabulate the possible negative values of Temp added to
the maximum possible values of the sum (R(s) + R(c)).
Since both R(s) and R(c) are of length (n − w), then the
maximum value of their sum is equal to 2×(2n−w−1). We
will consider three cases for window lengths of 2, 3, and 4
bits as shown in tables IV, V, and VI.

We note that unless the least w bits (Where w is the
window length) of Temp is all ones, then X will be negative
regardless of the summation R(s) + R(c). Otherwise, we
need the exact summation (R(s) + R(c)) to determine the
sign. To avoid the summation of such long operands, we
will perform a single carry save addition to obtain a new
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TABLE IV

Temp is negative, Window Length = 2 bits

W (s) + W (c) Temp X =
”least 2 bits” Temp + 2 × 2n−w − 2

10 −2 × 2n−w negative
11 −1 × 2n−w positive

TABLE V

Temp is negative, Window Length = 3 bits

W (s) + W (c) Temp X =
”least 3 bits” Temp + 2 × 2n−w − 2

100 −4 × 2n−w negative
101 −3 × 2n−w negative
110 −2 × 2n−w negative
111 −1 × 2n−w positive

(Sum, Carry) pair of X and restart the sign detection. So
the technique is proved to produce an exact sign.

The following notes should be taken into account:
• If the window is large enough, then we may not need

to restart the function at all. Typical values of the
window lengths are 8-16 bits for 1024 bit numbers.

• A ripple carry adder of w-bit length is needed to per-
form the exact summation of W(s)+W(c). This will
not affect the speed of the hardware since w is suffi-
cient to be 8 or 16 bits.

• It’s not efficient to detect the sign of an (S, C) pair
placed in registers of larger size. For example, detect-
ing the sign of 16-bit (S, C) pair is not efficient if we
are using 32 bit registers or higher. This will cause
the sign detection to restart several times.

The next section introduces the modified interleaved
modular multiplier. It also shows how the sign detection
technique will be used for modular multiplication.

VI. Modified Interleaved Modular

Multiplication

A. Algorithm and Architecture

The algorithm shown in table VII combines both carry
save addition and sign detection to enhance the perfor-
mance of the interleaved modular multiplication.

The modified interleaved modular multiplication differs
from the original algorithm as follows:

• Addition and subtraction are performed using CSAs.
• Comparisons made in steps (6, 7) are performed by

detecting the sign of the quantity (P −M). If the DS
function returns (+), then subtraction is approved.
Otherwise, subtraction must be denied to retrieve the
value of P . This can be easily done by saving P before
doing the subtraction. Figure 2 shows the architecture
of the new multiplier.

B. Implementation and Results

The main sub-modules found in the interleaved modular
multiplier are:

TABLE VI

Temp is negative, Window Length = 4 bits

W (s) + W (c) Temp X =
”least 4 bits” Temp + 2 × 2n−w − 2

1000 −8 × 2n−w negative
1001 −7 × 2n−w negative
1010 −6 × 2n−w negative
1011 −5 × 2n−w negative
1100 −4 × 2n−w negative
1101 −3 × 2n−w negative
1110 −2 × 2n−w negative
1111 −1 × 2n−w positive

TABLE VII

Modified Interleaved Modular Multiplication

Input: X, Y, M ; n-bit numbers ; 0 ≤ X, Y ≤ M

Output:P = X × Y modM

n: number of bits of X
xi : ith bit of X
1. S = 0; C = 0;
2. for (i = n - 1; i ≥ 0; i = i - 1)
{
3. S = 2 × S; C = 2 × C;
4. I = xi × Y

5. (S, C) = S + C + I

6. if DS(P − M) = +ve Then P = P − M

7. if DS(P − M) = +ve Then P = P − M

}

1. Carry Save Adder
2. Sign Detection Module
3. The Loop Controller

All sub-modules and system top level entity were described
using VHDL. Behavioral simulation was done to verify the
functionality of the description. Verification was accom-
plished according to a set of test cases developed by a soft-
ware package for big number calculations. Synthesis, place
and route, and post route simulation were done on the
Xilinx XC2V3000-6 FPGA. Tables VIII and IX compare
between our proposed modular multiplier and the redun-
dant multiplier introduced in [3]. The redundant inter-
leaved multiplier was proved to be better than two version
of the Montgomery multiplier[3]. Although our proposed
architecture occupies more configurable logic block (CLB)
slices, an impressive improvement in the maximum operat-
ing frequency was achieved. This is due to the replacement
of the look up table with the sign detection module. The
tables summarize both device utilization (percentage slices
out of 19200) and maximum operating frequency for bit
lengths 32, 64, 128, 256, 512, and 1024 bits. The window
used for the sign detection was fixed at 16 bits.

Further improvement was accomplished considering the
absolute time per operation. One drawback of the archi-
tecture of [3] is the need to load the look up table each
time before multiplication. Referring to Table I and Fig-
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Fig. 2. Modified Interleaved Modular Multiplier

TABLE VIII

Max. Frequency for modular multiplier

Precision Redundant Modified
in bits interleaved interleaved

32 70.2 MHz 217.5 MHz
64 57.7 MHz 211.5 MHz
128 48.4 MHz 206.2 MHz
256 46.8 MHz 185.5 MHz
512 64.8 MHz 193.4 MHz
1024 69.4 MHz 181.0 MHz

ure 1, the pre-computed values depend on Y and M . Thus,
the pre-computation overhead will be present at every it-
eration of the square and multiply algorithm. Our pro-
posed architecture does not require any pre-computation.
Table X summarizes the absolute time (pre-computation
time + hardware time) per a single operation for different
precisions. Timings are all listed in micro-seconds. Time
overhead due to pre-computation was estimated using a
software executed on a 32bit, 96 DMIPS RISC processor
running at 85 MHz.

it’s clear that the pre-computation (if exists) timing over-
head can never be ignored, especially when it is required
each time before multiplication. The overhead becomes
superior to the HW time when performing modular ex-
ponentiation using square and multiply algorithm. Our
proposed modular multiplier delivers the same output at
few microseconds larger HW time, but without any need of
software computation overhead. The total operation time
is, thus, significantly improved.

VII. Conclusion

In this contribution, a modified version was introduced
of the interleaved modular multiplier. The proposed ar-
chitecture can achieve faster timings for most public key
cryptosystems. The improved timing results comes at the
cost of extra logic utilization. The architecture can be used

TABLE IX

Device utilization for modular multipliers

Precision Redundant Modified
in bits interleaved interleaved

32 0.70% 1.50%
64 1.40% 3.30%
128 2.70% 5.50%
256 5.40% 12.30%
512 8.00% 24.40%
1024 24% 39.30%

TABLE X

Absolute time (μs) per an operation

Redundant interleaved Modified interleaved
Bits SW Time HW SW Time HW
32 30.1 0.47 - 0.87
64 63.4 1.12 - 1.36
128 146 2.67 - 2.32
256 335 5.50 - 6.83
512 835 8.00 - 10.48
1024 2500 14.77 - 22.53

in most asymmetric ciphers such as RSA, DSA, ECC, and
DH key exchange. It has the advantage of avoiding look
up tables used in all architecture presented in [6] and [4].
Look up tables were replaced by an improved version of
carry save adders equipped with sign determination mod-
ule. Implementation was done using VHDL description of
the system. Simulation, synthesis, and post route simu-
lation were done on a Xilinx Virtex 2 FPGA. Significant
improvements in both operating frequency and absolute
time per operation were achieved.
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