
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1591

VISUAL JESS: AN Expandable Visual

Generator of Oriented Object Expert systems

Amel Grissa-Touzi, Habib Ounally and Aissa Boulila

Abstract— The utility of expert system generators has been

widely recognized in many applications. Several generators based on

concept of the paradigm object, have been recently proposed. The

generator of oriented object expert system (GSEOO) offers

languages that are often complex and difficult to use. We propose in

this paper an extension of the expert system generator, JESS, which

permits a friendly use of this expert system. The new tool, called

VISUAL JESS, bring two main improvements to JESS. The first

improvement concerns the easiness of its utilization while giving

back transparency to the syntax and semantic aspects of the JESS

programming language. The second improvement permits an easy

access and modification of the JESS knowledge basis. The

implementation of VISUAL JESS is made so that it is extensible and

portable.

Keywords— Generator of Systems Expert, Programming

oriented object classifies, object, inheritance, polymorphism.

I. INTRODUCTION

HE development of an expert system (E.S) is often

expensive. To decrease their development costs, one often

makes recourse to the Expert System Generators (E.S.G)

already developed [1],[2]. Several E.S.G have then been

proposed in both literature and trade [1], [2],[3],[4],[5],

[6],[7]. These generators propose a motor of inference with a

knowledge representation method. Diagrams common general

to all these generators include an interfacing for the expert in

order to define the basis of knowledge, and an interfacing for

the user to exploit the generated E.S [3],[4]. E.S generators

might be distinguished by their fashion of reasoning,

structures of knowledge representation, and the interfacing

that are often based on a textual language [1],[2], [3], [4], [5],

[6],[7]. Many generators are based on the logic of order 0 or

order 0+ as synta. Others are based on the logic of order 1 or

on the semantic networks [6],[8],[9],[10],[11],[12],[13].

Recently, the use of the paradigm objects as the basis of ES.

A generator has become very popular. The most well known

are the JESS [14], [15], [16] and CLIPS [17], [18] generators,

which will be named GSEOO (expert system Generator

oriented object) in the following. The main strength of the

GSEOO is the utilization of concepts objects [19], [20], [21],

which is very close to the perception of experts and users.

This facilitated significantly the writing of the knowledge

basis (BC). Languages of definition of this BC use the concept

of frame [19]. This fashion of representation, of hierarchical

nature, is very complex to understand notably by users no

insiders. Besides, the expert must master the language of

definition that varies from a generator to the other. On the

other site, in our knowledge, there is no GSEOO which offers

an interfacing that gives back transparent concepts of

representation and the underlying conventions to the specific

language of the generator.

Manuscript received March 30, 2005.

A Grissa-Touzi., A. Boulila is with the Department of Electrical

Engineering of National School of Engineers of Tunis, Tunisia (e-mail:

amel.touzi@ enit.rnu.tn, aissa.boulila@laposte.net).

H Ounally. is Faculty of Sciences of Tunis, Department of Computer

Science of Tunis, Tunisia (e-mail: Habib.ounelli@fst.rnu.tn).

We propose in this article an extension of the JESS, in

order to give back its comfortably usable even by users no

insiders. This tool, called VISUAL JESS, bring two main

improvements to JESS. The first improvement concerns the

easiness of its utilization while giving back transparency to

the syntactic and semantic aspects of the JESS programming

language. The second improvement permits an easy access

and modification of the JESS knowledge basis. The

implementation of VISUAL JESS is made so that it is

extensible and portable.

The paper is organized in four sections. The main

characteristics of JESS, its strength and limits are presented in

Section 1. The extension of JESS, called VISUAL JESS that

we propose is described in Section 2. Section 3 present the

main choices done in the implementation of VISUAL JESS

while putting the accent on the extensibility. The balance of

this work and its future perspectives are discussed in Section

4.

II. THE GSEOO JESS

The ES are widely used in various applications [1],[5],[8].

To decrease costs of their development, one often makes

recourse to the Expert system Generators (GSE) developed

already [1],[2]. Generators essentially include a motor of

inference, a language of expression of knowledge and

structures and conventions of representation. [3],[4]

Several generators have been proposed in the literature and

in the trade. Some are even very old as EMYCIN [13]. The

representation of the knowledge and the fashion of reasoning

vary significantly from one generator to the other. Sinta is

based on the logic of propositions [10], SNARK uses the logic

of order 1 [6]. Lately, with the success of concepts of the

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1592

paradigm object [19],[20],[21], several GSES adopted this

paradigm as CLIPS[17,18] and JESS[14],[15],[16]. In this

paper, a special focus has been assigned to the generator

oriented JESS object (Java Ex-pert System Shell) of which we

propose an extension that provides two major improvements.

Before presenting this extension, we are going to present

the main characteristics of JESS and discuss the difficulties

met in its utilization.

Our choice of JESS is justified by several reasons. The

fashion of reasoning of JESS bases itself on the Rete

algorithm that very efficient [15]. It is free software (open

source) and this facilitated its integration in VISUAL JESS.

JESS offers one API in very rich java. It supports the

approach object in its fashion of reason-lies and in the

representation of knowledge. This homogeneity makes it more

interactive and expandable in comparison with other

generators of the same nature.

JESS uses the notion of frames [8],[19] for the

representation of knowledge. A frame is a hierarchical

representation that includes several components (slots, facet,

datum and how). Each frame definition is made with the codes

deftemplate that must specify all components.

((deftemplate <deftemplate-name> [extends <classname>]

[<doc-comment>]

 [(slot <slot-name> [(default | default-dynamic

<value>)][(type <typespec>))]*)

Example

(deftemplate personne extends être-vivant (slot nom

(type STRING))(slot sexe (type STRING)(default homme))

The overlapping that can go multilevel in slotses and their

facets give back the definition of a complex and with

difficulty comprehensible frame.

This syntactic complexity of the JESS language requires

from the expert a significant effort to end to write its basis of

knowledge correctly (B.C) (its rules). Otherwise, the

definition of the B.C makes himself from the line of

command. Concepts of the paradigm object, notably the class

concepts, inheritance and polymorphism, used by JESS, are

not discerned explicitly by the expert of autat more that these

concepts are not still assimilated well. So JESS gives back

even difficult the stains the expert. Notice that the JESS

language includes about fifty words spare.

To summarize, the expert who wants to use JES, must

master the paradigm object and the hierarchical notion of

frame on which are based the language of JESS.

For all these reasons, it seems natural that an extension of

JESS that gives back transparency to its language can make it

easily exploitable notably by the no experts. This extension

can also be applied to other GSEOOS.

III. PRESENTATION OF VISUAL JESS

We propose in this paper a tool that spreads JESS, called

VISUAL JESS in order to facilitate the generation of an ES

based on the OO concept for users in individuals those

insiders. As JESS, VISUAL JESS is developed in Java.

Indeed VISUAL JESS offers a convivial interfacing, which

on the one hand present explicitly concepts objects and on the

other hand encapsulate the JESS language.

The principle of VISUAL JESS is to allow an expert to

define his classes, his objects, his functions and his rules of

graphic manner and generate automatic-lies the corresponding

frames in accordance with the language of JESS.

VISUAL present JESS to the expert a main screen (face 1)

similar to the stan-sting usually used in the IDES (Integrated

Development Surround-lies). The main screen essentially

includes two parts. The left part is the navigator of

components of basis of the B.C (classes, objects, functions,

rules). The right part shows the corresponding script generated

automatically by JESS. The navigator of classes permits

selecting a component and manipulating its elements.

Fig. 1 main window of the application

We retail the different components of VISUAL JESS below

A. Component Classes

A class is identified by its name. Every class contains a

whole of attributes having each by default a name, a type, a

commentary and a value. A control of conformity between the

value and the type of the attribute is done automatically. At

the time of the safeguard, the user can see the JESS script

generated for the inserted class.

A class can have a related class of which it inherits all

attributes. A control on the cyclic inheritance is launched. A

class, which is already inherited or instanced, cannot be

modified. Figure 2 presents the screen of class seizure.

Example:

Classe « personne »

attribut «nom» : chaîne de caractère

attribut « sexe » : chaîne de caractère, par défaut homme

hérite « être-vivant »

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1593

Fig. 2 screen of Seizure of a Class

VISUAL JESS transforms this menu in the following script:

(deftemplate personne extends être-vivant (slot nom

(type STRING))(slot sexe (type STRING)(default homme))

Notice that the aged attribute has the blue color since it is

inherited of the related class.

B. Component Objects

An object is identified by its name. In an object, attributes

of a class are valued. A Boolean field permits to select this

object, which will be used in the initialization of the

knowledge basis.

To define an object of the class, the user must specify the

name of the object, class instanced, values of attributes of

class instanced and classes mothers. He must specify in

addition if this object will be present in the initial BC.

Example

Object : MED

nom = Mohamed

age = 25

Sexe = homme

The present face 3 the screen of seizure of an object.

VISUAL JESS transforms this menu in the following

script:

(assert personne (nom « Mohamed ») (age 25) (sexe

homme))

Fig. 3 Screen of seizure of object

C. Component Functions

A function is identified by a name. The function can either

h h it can act. The user can insert

in

ters and the treatment to make.

ays " x

est supérieure à y " so x is bigger than there and " y est

su

y)

le is identified by a name. The rule possesses a Left

H Hand Side. Like for the function the

us

ave a set of variables on whic

 the code its functions, functions created previously, of

objects or the JESS functions. Figure 4 presents the screen of

function seizure.

To define a function, the user must specify the name of the

function, its parame

 Example:

Definition of the function plus-grand(x,y) that displ

périeure à x " otherwise.

Fig. 4 screen of seizure of a function

VISUAL JESS transforms this menu in the following script:

(deffunction plus-grand(?x,?

(if (> ?x ?y)) (printout(?x « supérieure à » ?y)))

à » ?x)))else (printout (?y « supérieure

D. Screen of rules

A ru

and Side and a Right

er can insert functions, which were created previously,

objects or the JESSS functions.

To define a rule of the BC, the user must specify the name

of the rule, the list of premises of the rule and his conclusion.

Example:

Une personne fait le militaire si : sexe masculin et age > 20

face 5 the screen of seizure of a rule.The present

 Fig. 5 screen of seizure of a rule

VISUAL JESS transforms this menu in the following

script:

(defrule fait_le_militaire (if (personne (nom ?x)

 (age > 20)(sexe homme)) (assert (fait-militarire (x)))

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1594

IV. IMPLEMENTATION OF VISUAL JESS

Since the JESS generator is implemented in java, VISUAL

JESS has been developed in Java [22],[23]. We give in this

section, the main choices done in the implementation of

VISUAL JESS.

For every element to manage a java class has been

conceived, which contain methods and the necessary attributes

to the management of this entity. Table 1 presents an

illustration of the correspondence between the JESSS entities

and classes conceived in this application:

TABLE I

CORRESPONDENCE BETWEEN THE JESSS ENTITIES AND THE CLASSES VISUAL

JESSS

JESS
Definite JESS Classes for

 VISAUL JESS under JAVA

Template Template

Fact Template Instance

Slot Attribute

Rule Rule

Function Function

To facilitate the extension and the portability of VISUAL

JESS the implementation has been developed in five

packages:

- Package jess manages the interaction with the user.

- The jess.kb package contains classes that

implement the basis of knowledge

- The jess.resouces package contains the requested

resources files for the application under study

- The jess.images package contains pictures used by

the application.

- The jess.base package contains the utilitarian of

basis of the application.

The jess.resouces package contains the syntactic details of the

JESS language. It is the only package that it is necessary to

modify to adapt VISUAL JESS to another GSEOO. This

modification consists in replacing a file of syntax by another.

This approach permits a complete extensibility of VISUAL

JESS.

V. CONCLUSION

The GSEOOS has been very popular in the industrial

world. Their utilizations are not still an easy task even for

user’s insiders. Indeed, it is necessary to often master a

language of definition of the BC and concepts used in the

representation of knowledge like frames.

We proposed in this paper an extension of JESS expert

system generators, called VISUAL JESS that brings two main

improvements. The first improvement encapsulates the

syntactic details of the JESS language that are relatively

complex since it is based on the hierarchical structure of

frame. The second improvement gives back concepts of the

paradigm object clarify and direct-lies usable by the expert.

The implementation of VISUAL JESS is made so that it can

be adapted to all other GSEOO giving back easy thus its

extensibility to other GSEOO as well as its portability on

others flat shapes. A first version is operational under

windows. To our knowledge such a tool was not again

proposed.

As perspective future we essentially mention this work:

 The possibility to have attributes of type object in the

definition of a class.

 The generation of an expert system while leaving

directly more from a level abs-feature like example a

diagram of UML classes.

 The definition of a debugging tool of the generated

HIMSELF to the use of the expert hu-hand.

REFERENCES

[1] P. Frot, “Trois systèmes experts en Turbo pascal,” sybex, 1987.

[2] J.P. Delahaye, : “Système expert : organisation et programmation des

bases de connaissance en calcul propositionnel,” Eyrolles, Paris, 1987.

[3] H. Farreny and M. Ghallab, “éléments d’intelligence artificielle.

Hermes,” 1987.

[4] F. Denis, “Cours d'intelligence artificielle - Systèmes experts ,”

 http://www.grappa.univ-lille3.fr/polys/se/index.html, 1995.

[5] F. Henri, “Les systèmes experts : principes et exemples,” Cepadues

editions, 1989.

[6] A. Bonnet, “L’intelligence artificielle Promesses et Réalités,”

interEdition ,Paris, 1984.

[7] J.L. Laurière, “Intelligence artificielle: résolution de problème par

l’homme et la machine,” Editions Eyrolles, Paris 1986.

[8] A. Lescort, “Intelligence artificielle et systèmes expert,” cedic 1985,

Paris

[9] “Expert SINTA manuel d’utilisation,” laboratoire de l’intelligence

artificielle, http://www/lia.ufc.br.

[10] A. Adjaoute, “Rylm Générateur de systèmes experts pour la résolution

de problèmes diagnostiques,” http://scia.epita.net/files/common/others

/RYLM.pdf.

[11] J.L. Michel, “Les systèmes expert, Turbo expert pour experts pressés,”

 http://perso.wanadoo.fr/jean.luc.michel/Articles.jlm/Turbo.Expert.pdf.

[12] J. Lebbe and R.Vignes,“Utilitaires Xper,”

http://lis.snv.jussieu.fr/apps/xper/doc/utilxper/, 2003.

[13] W. Van MELLE, “A domain-independant production-rule system for

consultation programs,” VIth, IJCAI, Tokyo, pp 923-925,Aug.1979.

[14] J.F. Ernest,“Jess,The Rule Engine for the java plateform ,” mai 2004,

http://herzberg.ca.sandia.gov/jess.

[15] C. Lachaize, “Hamap Expert Rules Based System,” Janvier 2003, INRIA

Rhône-alpes, http://www.inrialpes.fr/helix/SIB/sibelius.html.

[16] R. Charton, “Jess, un outil pour générer des systèmes experts,” équipe

Maia-Loria, site web : http://perso.wanadoo.fr/chrtonrs/docs/serp.ppt.

[17] J.L. Crowley, “Système de productions ; CLIPS 6.0,” Novembre 2000,

http://www-prima.imag.fr/prima/Homepages/jlc/courses/2004/

 ensi2.SIRR/Ensi2.SIRR.s5.pdf.

[18] J.C.Giarratano, “CLIPS, User’s guide,version 6.20 ,” March 2002,

 http://www.ghg.net/clips/download/documentation/usrguide.pdf.

[19] G. Masini, A. Napoli, D. Colnet, D. Léonard and K. Tombre, “les

langages à objets, Langage de classes, langage de frames, langage

d’acteurs,” interEditions, Paris 1989.

[20] B. Meyer, “Conception et programmation orientées objet,” ed Eyrolles,

2000.

[21] B. Meyer, “Conception et programmation par objet pour du logiciel de

qualité,” InterEditiond, Paris, 1990.

[22] P. Chan, “Le dictionnaire officiel JAVA2,” ed Eyrolles, 1999.

[23] J.B. Boichat,“Apprendre Java et C++ en parallèle,” Eyrolles, 2000.

