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Abstract—A time-domain numerical model within the 
framework of transmission line modeling (TLM) is developed to 
simulate electromagnetic pulse propagation inside multiple 
microcavities forming photonic crystal (PhC) structures. The model 
developed is quite general and is capable of simulating complex 
electromagnetic problems accurately. The field quantities can be 
mapped onto a passive electrical circuit equivalent what ensures that 
TLM is provably stable and conservative at a local level. 
Furthermore, the circuit representation allows a high level of 
hybridization of TLM with other techniques and lumped circuit 
models of components and devices. A photonic crystal structure 
formed by rods (or blocks) of high-permittivity dieletric material 
embedded in a low-dielectric background medium is simulated as an 
example. The model developed gives vital spatio-temporal 
information about the signal, and also gives spectral information over 
a wide frequency range in a single run. The model has wide 
applications in microwave communication systems, optical 
waveguides and electromagnetic materials simulations. 
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I. INTRODUCTION

RADITIONALLY, the experimental realization and 
theoretical study of complex electromagnetic systems 

involving fine features, compound geometries and material 
properties is technically very difficult and limited to simple 
design variations. Complex systems, for example photonic 
crystals (PhCs) consisting of material with periodic variation 
in the refractive index such as in photonic waveguides [1, 2], 
can be accurately studied in simulation, and the results 
obtained can give a useful insight into the physics of these 
systems before actually building them, which is extremely 
beneficial for systems where there is substantial complexity in 
fabrication. Simulation aided research can often lead to more 
rapid or fully developed results [3]. Particularly, time domain 
numerical methods such as the Finite Difference Time 
Domain (FDTD) [4] or the Transmission Line Modeling 

(TLM) [5] method are specially attractive in electromagnetics 
for problems involving complex material parameters such as 
nonlinearity and dispersion, since the EM signal and its spatial 
and temporal transformations can be tracked accurately, and 
also the spectral characteristics can be obtained over a wide 
frequency range in a single run by using Fourier transform in 
conjunction with these methods.  
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In this paper a rigorous vectorial TLM model for Gaussian 
pulse propagation  through a two-dimensional PhC consisting 
of square blocks (cavities) of a high dielectric constant 
material embedded in a background medium of lower 
dielectric permittivity material is developed. The model is 
based on direct discretization of well-known Maxwell’s 
equations that form the basis of electromagnetics [6]. 

It is worth mentioning here some of the salient features of 
the TLM algorithm vis-à-vis other standard methods, such as 
the widely used FDTD method, that has been extensively used 
for numerical simulation of electromagnetic systems and 
devices. TLM utilizes the concepts of transmission line theory 
to model electromagnetic material properties and systems [7, 
8]. The problem space is discretized into sections of 
transmission lines, connected with each other at nodes. These 
transmission line sections are then represented by a 
combination of equivalent lumped circuit components whose 
parameters are chosen so as to represent the properties of the 
background material. Additional lumped components in the 
form of stubs are connected at the nodes to represent complex 
material properties and constitutive relations. The TLM 
method is similar to FDTD method in that both act by direct 
discretization of Maxwell’s differential equations, however, 
unlike in FDTD where the electric and magnetic fields are 
separated in space and time by a half of the cell size and a half 
of the time step respectively, TLM solves for all the fields at 
the same point in time and space – this makes TLM highly 
applicable for simulations of EM wave propagation in 
complex materials, such as frequency dependent, anisotropic 
and nonlinear materials. Also, an additional advantage when 
developing TLM algorithm comes from the fact the field 
quantities are mapped onto a passive electrical circuit 
equivalent making it provably stable [5]. Furthermore, the 
circuit representation allows a high level of hybridization of 
TLM with other techniques and lumped circuit models of 
components and devices. Unlike one other commonly used 
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method (Beam Propagation Method, BPM) [9], the time 
domain method TLM has no limitation of a requirement of a 
gradually varying index in the direction of propagation (and 
thus can simulate high- as well as low-index contrast 
structures) or of a slowly varying envelope approximation 
(and thus can successfully simulate ultrafast signal 
propagation).  All these advantages of TLM make it very 
attractive for application to simulation of complex 
electromagnetic structures such as PhCs.  

II. FORMULATION

At high frequencies such as microwave and optical 
frequencies, a sensible description of the electromagnetic 
pulse propagation through complex materials is provided by 
Duffing equation that is based on the mechanical Lorentz 
model of displacement of dipoles [10]. The polarization 
function of a general Duffing model can be written as: 
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Here, P(y,t) represents the polarization in the y-direction, 
is the damping frequency, 0 is the resonant frequency, e

represents the susceptibility contrast of the material, and t is 
the time variable. The term f(P(t) in (1) represents a nonlinear 
function of the polarization. The Duffing model thus 
represents in general a nonlinear, frequency dependent model. 
The equation (1) combines the effect of material dispersion 
given by the Lorentz model and the nonlinearity of the 
material. As a special case, the above equation can be used to 
represent a linear material by making f(P(t))=1. Similarly, the 
equation can be used to represent a dispersion-free material by 
modifying it as: 
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In (2) above, the derivatives of the polarization w.r.t. time t
have been forced to zero to make it frequency-independent. 
The equations above have been discretized in the current 
formulation using a Z-transform technique [6, 10] so that 
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where s is the Laplace variable, and t is the TLM time step. 
For the isotropic, non-magnetic source free region of the 
dielectric structure being studied, the Maxwell’s equations for 
a two-dimensional space, for a transverse magnetic (TM) 
mode propagating in the z-direction reduce to a set of three 
equations given as:  
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  The polarization equation (1) is then solved along with the 
standard Maxwell's equations (4)-(6) and the constitutive 
relations to get the response of the system. Here, in this work, 
a condensed shunt-node formulation was used to solve the 
modes corresponding to the TM case. The boundary 
conditions at the discontinuities in the dielectric material in 
the direction of propagation as well as in the transverse 
direction were accounted for in the Maxwell's equations. 

III. SIMULATION RESULTS

To demonstrate the application of the TLM model 
developed to analyze the mcrocavities, a background medium 
(free space in this case) represented by 400 TLM cells in the 
longitudinal z-direction and 370 TLM cells in the transverse 
x-direction is considered, where one TLM cell equals z (= x)
= 1.66x10-8m. To begin with, a single cavity of material with 
refractive index 3.35 and represented by 9x9 TLM cells 
embedded in the background medium is considered, which 
will be extended to more complex structures later. A short 
Gaussian plane wave is launched towards the microcavity, as 
shown schematically in Fig.1 . 
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Fig. 1 The schematic arrangement showing a Gaussian plane wave 
launched into a microcavity consisting of 9x9 TLM cells. 

The width of the Gaussian envelope is equal to 500 TLM 
time steps, where one TLM time step equals z/ 2c with c as 
the velocity of light, resulting in temporal width of 19.64 fs.
The temporal evolution of the signal towards the other side of 
the cavity is observed with respect to time, and is shown in 
Fig. 2. Also shown for comparison in the same figure is the 
temporal evolution when the cavity is not present (i.e. free 
space). It can be observed that the main peak in the presence 
of the cavity is followed by ripples that are a result of the 
energy trapped inside the cavity and being released gradually. 
The spectrum of the output signal calculated by using FFT 
technique when the cavity is present is shown in Fig.3,
showing the redistribution of the pulse energy due to the 
presence of cavity. 
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Fig. 2 The temporal evolution of the Gaussian pulse on the other 
side of the cavity. Corresponding free space case is also shown for 
comparison. 
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Fig. 3 The FFT of the signal in two cases. 

This simple case of a single microcavity is now extended to 
more complex structures by taking the following cases: (i) a 
single row of such seven cavities in the longitudinal direction, 
(ii) a single column of  such seven cavities in the transverse 
direction, (iii) and finally an array (7x7) of such cavities, 
representative of a PhC waveguide, embedded in the free 
space, and the above measurements are repeated for these 
special cases, as shown in Fig. 4. Also shown in inset in this 
figure is the column, row and array of cavities. 
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Fig. 4 The signal evolution in case of one row of cavities (solid 
line), one column (line with points) and 7x7 array (dotted line). 

It can be observed from Fig. 4 that in case of a row of 
cavities, the peak of the signal increases beyond the 
normalized value of unity, followed by an undershoot. This 
effect is not so prominent in case of a column. This feature is 
observable in case of the array, and the signal propagation is 
delayed. This takes place because of the interaction and 
periodic transfer of the energy trapped in various cavities. A 
map of the field pattern for the three cases after 1024 TLM 
steps is shown in Fig.5.

(a)

(b)

(c)
Fig. 5 The map of the field after 1024 time steps for (a) row of 
cavities, (b) column of cavities, and (c) array of cavities. 

IV. CONCLUSION

An accurate time domain numerical method based on the 
direct discretisation of Maxwell’s differential equations has 
been developed and applied to the simulation of multiple 
cavities embedded in a background medium, in the form of a 
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2-D photonic crystal waveguide. The method is quite general 
and can be extended and applied to more complex structures 
such as nonlinear cavities resulting in optical switching, a 
uniform periodic cavity array with missing rows etc. The 
method is of significance since it gives important information 
about the spatio-temporal dynamics of the pulse and is not 
based on any inherent assumptions.  
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