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Abstract—This paper presents optimal based damping controllers 

of Unified Power Flow Controller (UPFC) for improving the 
damping power system oscillations. The design problem of UPFC 
damping controller and system configurations is formulated as an 
optimization with time domain-based objective function by means of 
Adaptive Tabu Search (ATS) technique. The UPFC is installed in 
Single Machine Infinite Bus (SMIB) for the performance analysis of 
the power system and simulated using MATLAB’s simulink. The 
simulation results of these studies showed that designed controller 
has an tremendous capability in damping power system oscillations. 

 
Keywords—Adaptive Tabu Search (ATS), damping controller, 

Single Machine Infinite Bus (SMIB), Unified Power Flow Controller 
(UPFC). 

I. INTRODUCTION 
OWER systems are today much more loaded than before 
due to growing rapidly in power demand including 

expansion in transmission and generation is restricted. This 
causes the power systems to be operated next to their stability 
limits, power system oscillation and finally power system 
instabilities. 

Recently development of power electronics devices 
introduces the use of systems Flexible AC Transmission 
System (FACTS) controllers in power system. FACTS devices 
have been effective in controlling power flow and damping 
power system oscillations [1]. UPFC is one of the most 
complex FACTS devices in a power system. It is primarily 
used for independent control of real and reactive power in 
transmission lines [2], [3]. UPFC could be applied for 
improvement by damping of power system oscillations [4], 
[5]. 

In the previous research have presented lead-lag controller 
type and output feedback controller type UPFC damping 
controllers [6], [7], [8]. They are designed for a specific 
operating condition using linear models of modified Heffron-
Phillips transfer function model [9], [10]. The advanced 
control schemes such as Particle Swarm Optimization and 
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Genetic algorithms [11], Chaotic Optimization [12] and 
Shuffled Frog Leaping Algorithm [13] offer better dynamic 
performances than fixed parameter controllers.  

The based damping controllers of UPFC parameter were 
formulated as an optimization problem. By minimizing the 
objective function in which the influences of speed deviation 
are considered. 

The main objective of this paper is to investigate the ability 
of optimization methods was ATS algorithm [14] for UPFC 
supplementary based damping controller design. This 
algorithm optimizes the total system performance by means of 
ATS algorithm. A modified linear Heffron-Phillips model of 
SMIB power system installed with UPFC is considered as case 
study and a UPFC based damping controller whose parameters 
are optimized using ATS algorithm is considered as power 
system oscillations. Simulation results show the validity of 
proposed methods in damping of power system oscillations. 

II. DESCRIPTION OF THE CASE STUDY 
Fig. 1 shows a SMIB power system installed with a UPFC. 

The static excitation system model type IEEE-ST1A has been 
considered which consists of an excitation transformer (ET), a 
boosting transformer (BT), two three-phase GTO based 
voltage source converters (VSC) and a dc link capacitor. In 
Fig. 1, Bm , Em  and Bδ , Eδ  are the amplitude modulation 
ratio and phase angle of the control signal of each voltage 
source converter, which are input control signals of UPFC 
parameter. The nominal loading condition and system 
parameters are given in Appendix. 

 

�
Fig. 1 A SMIB power system installed with a UPFC 
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A. Power System Nonlinear Model with UPFC 
The dynamic model of UPFC is required in order to the 

UPFC effect study for enhancing small signal stability of 
power system. Park’s transformation is applied and neglecting 
the resistance and transients of the ET and BT transformers, 
UPFC can be modeled as: 
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where, Ev , Ei , Bv  and Bi  are excitation voltage, excitation 
current, boosting voltage, and boosting current, respectively; 

dcC  and dcv  are dc link capacitance and voltage. The 
nonlinear model of SMIB power system shown in Fig. 1 is 
described by: 
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where  
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B. Power System Linearized Model with UPFC 
A linear dynamic model is obtained by linearizing the 

nonlinear model round an operating condition. The linearized 
model of power system shown in Fig. 1 is given as in the 
following: 
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where, 921 ,...,, KKK , puK , quK , vuK  and cuK  are 

linearization constants [5]. The state-space model of power 
system is given by: 

 

BuAxx +=
•

                                                                     (23) 
 

where, the state vector x , control vector u , A and B are: 
 

[ ]Tdcfdq VEEx ΔΔΔΔΔ= 'ωδ  

 

[ ]T
BBEE mmu δδ ΔΔΔΔ=  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−−

−−−

−−−−

=

987

65

'
0

''
0

3
'
0

4

21

0

00

10

10

0

0000

KKK
T
KK

TT
KK

T
KK

T
K

TT
K

T
K

M
K

M
K

M
D

M
K

A

a

vda

aa

a

a

a

d

qd

dodd

pd

ω

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1600

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−−

−−−−

=

be

be

be

be

ccbcce

a

va

a

vba

a

va

a

vea

d

q

d

qb

d

q

d

qe

ppbppe

KKKK
T
KK

T
KK

T
KK

T
KK

T
K

T
K

T
K

T
K

M
K

M
K

M
K

M
K

B

δδ

δδ

δδ

δδ

'
0

'
0

'
0

'
0

0000

 

 
In Fig. 2 shows the block diagram of the linearized dynamic 

model of SMIB power system installed with UPFC. 
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Fig. 2 Modified Heffron-Phillips transfer function model 

III. DAMPING CONTROLLER OF UPFC 
The damping controllers are designed to produce an 

electrical torque in phase with speed deviation. The four 
control signal parameters of the UPFC ( Bm , Em , Bδ  and Eδ ) 
could be modulated in order to produce the damping torque. 
The speed deviation ( ωΔ ) is considered as the damping 
controllers input. In this paper shows two control signal 
parameters, Bm  and Eδ , alternative are modulated and phase 
angle of UPFC based damping controllers in order to 
coordinated design.  

The conventional approach is achieved by lead-lag 
compensator employment as shown in Fig. 3. The block 
consists of three blocks namely gain block, washout block and 
lead-lag compensator. The time constants are varied 
periodically to effect damping of oscillation. The change in 
speed deviation is fed as input and the output is fed to the 
UPFC parameters for stability improvement. 

The block represents the lead-lag compensation where the 
output parameter is the controller parameter selected to 
achieve damping in UPFC. 
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Fig. 3 Simplified UPFC damping controller block diagram 
 

Where, dcK  is the controller gain, 1T  and 2T  are the time 

constants of compensation, wT  is the time constant of 

washout. The value of wT  is not critical and may be in the 

ranges of 1 to 20 seconds. The wT  equal to 10 seconds is 
chosen in the present studies [13]. 

IV. OBJECTIVE FUNCTION 
Selecting optimal values for UPFC controller parameters of 

a closed loop system is usually an iterative process and called 
parameter tuning. The ATS algorithm was applied to improve 
optimization synthesis and find the global optimum value of 
fitness function. In this work, an Integral of Time multiplied 
Absolute value of the Error (ITAE) is taken as the objective 
function. Since the operating conditions in power systems are 
often varied, a performance index for a wide range of 
operating points is defined as follows: 
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where, ( )tωΔ  is the speed deviation and simt  is time range of 
simulation.It is designed to minimize this objective function 
for improving system response in terms of the settling time 
and overshoots. The design problem could be formulated as 
the following constrained optimization problem, where the 
constraints are the controller parameters bounds: 
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Typical ranges of the optimized parameters are [0.01-100] 

for K  and [0.01-1] for 1T  and 2T  [12]. The UPFC controller 
parameters optimization is carried out by evaluating the cost 
function as given in equation (24). 

V. ADAPTIVE TABU SEARCH ALGORITHM 
 ATS technique is the extended version of the Tabu search 

(TS) algorithm by adding both concepts that is back tracking 
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and adaptive radius. These both concepts could improve the 
TS method performance. The TS technique normally provides 
local solution when the problem is complicated having many 
local points. Hence, the back tracking part and adaptive radius 
added to TS algorithm (called ATS) could escape local lock 
providing global solution. The more ATS details could be 
found in [14]. The diagram of ATS for optimization based 
damping controller of UPFC parameters is shown in Fig. 4 
[15]. 

 
 

Fig. 4 Flow chart for the ATS process 

VI. SIMULATION RESULTS 
In this section, the SMIB power system installed with 

UPFC was investigated. The simulation has been carried out 
with Modified Heffron- Phillips transfer function model in 
MATLAB’s simulink. The simulation result of the Modified 
Heffron- Phillips transfer function model with four different 
input control signals under nominal loading conditions in 
mechanical power input is measured for analysis. Here, using 
two of input control signals are Include Bm  and Eδ which is 
controlled by base damping controllers of UPFC parameters 
obtained from ATS algorithm. 

Now, in order to damp the oscillations of power system will 
be equipped with input control signals of damping controller 
using ATS algorithms. 

A sample step distortion has been exerted on input of 
system block diagram at t=0.5 sec and simulated. Fig. 5 and 
Fig. 6 shows the simulation result of speed deviation ( ωΔ ) of 
the power system implemented by MATLAB’s simulink 
according to the dynamic model which using input signals 

Bm  and Eδ are shows in Fig. 5 and Fig. 6, respectively. 

In Fig. 5 and Fig. 6 the ATS algorithm on based damping 
controller of UPFC could noticeably damp the speed deviation 
( )ωΔ  and improve the dynamic response of the system. 

 

 
Fig. 5 Dynamic responses for ωΔ  with base damping  

controller ( Bm ) 
 

 
Fig. 6 Dynamic responses for ωΔ with base damping controller (

Eδ ) 
 

In addition, a sample step distortion has been exerted on the   
input of system block diagram at t=0.5 sec and simulated. The 
simulation result of electrical power  variation ( PΔ ) of power 
system implemented by MATLAB’s simulink according to 
dynamic model using input signals Bm  and Eδ  are shown in 
Fig. 7 and Fig. 8. The ATS algorithm on based damping 
controller of UPFC could noticeably damp the variation of 
electrical power ( PΔ ) and improve the dynamic response of 
the system. 
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Fig. 7 Dynamic responses for PΔ  with base damping controller (

Bm ) 

 
Fig. 8 Dynamic responses for PΔ  with base damping Controller (

Eδ ) 
 

The based damping controller parameter of UPFC could be 
damp the damp speed deviation ( ωΔ ) and variation of 
electrical power ( PΔ ) of power system when using ATS 
algorithm to optimization is shown in Table I. 

 
TABLE I 

THE OPTIMAL BASED DAMPING CONTROLLERS OF UPFC 

controller dcK  

Bm  93.6870 0.2695 0.5740 

Eδ  94.9650 0.2637 0.9895 

VII. CONCLUSION 
This paper presents overall model development of UPFC in 

SMIB power system. The model has been practical to design 
the optimal damping controller. The design problem of 
damping controller of UPFC parameters are optimization 
problem solved by ATS technique with time domain-based 
objective function. Time-domain simulations show that the 
oscillations of power system could be speedily and effectively. 
Simulation results show that the ATS algorithm has an 
exceptional capability in power system oscillations damping 
and power system stability enhancement under small 
disturbances. 

APPENDIX 
The nominal parameter and the operating condition of the 

system are given below: 
Generator:  
 

MVAMJHM 8.02 ==  0.0=D  sTd 044.5'
0 =  

..0.1 upX d =  ..6.0 upX q =  ..3.0' upX d =  
 

Excitation system:  
 

100=aK   

sTa 01.0=  
 

Transformer: 
 
 ..1.0 upXtE =  ..1.0 upXX BE ==  
 

Transmission line:  
 

..3.0 upX BV =  ..5.0 upXXXX tEBBve =++=  
 

Operating condition:  
 

..8.0 upPe =  ..167.0 upQ =  ..0.1 upVt =  

..0.1 upVb =  .60Hzf =  
 

UPFC parameter:  
 

4013.0=Em  0789.0=Bm  o
E 3478.85−=δ  

o
B 2174.78−=δ  

 
Parameters of dc link: 

 
 ..2 upVdc =  ..1 upCdc =  
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