
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1045

A Text Clustering System based on k-means Type
Subspace Clustering and Ontology
Liping Jing, Michael K. Ng, Xinhua Yang, and Joshua Zhexue Huang

Abstract— This paper presents a text clustering system developed
based on a k-means type subspace clustering algorithm to cluster
large, high dimensional and sparse text data. In this algorithm, a
new step is added in the k-means clustering process to automatically
calculate the weights of keywords in each cluster so that the important
words of a cluster can be identified by the weight values.

For understanding and interpretation of clustering results, a few
keywords that can best represent the semantic topic are extracted
from each cluster. Two methods are used to extract the representative
words. The candidate words are first selected according to their
weights calculated by our new algorithm. Then, the candidates
are fed to the WordNet to identify the set of noun words and
consolidate the synonymy and hyponymy words. Experimental results
have shown that the clustering algorithm is superior to the other
subspace clustering algorithms, such as PROCLUS and HARP and k-
means type algorithm, e.g., Bisecting-KMeans. Furthermore, the word
extraction method is effective in selection of the words to represent
the topics of the clusters.

Keywords— Subspace Clustering, Text Mining, Feature Weighting,
Cluster Interpretation, Ontology

I. INTRODUCTION

TEXT data is ubiquitous on the Web, in enterprise in-

formation systems and in personal files. As the volume

of text data increases at an astonishing speed, management

and analysis of text data becomes unprecendentedly important.

Text mining is being developed as an emerging technology to

handle the increasing text data. Tools and systems are being

developed by both traditional data mining tool vendors such

as SAS’s TextMiner[1] and Megaputer’s TextAnalyst [2], and

new comers such as UMN’s gCLUTO [3] and THOMSON’s

RefViz [4].

Text clustering is one of the fundamental functions in

text mining [5]. Clustering is to divide a collection of text

documents into different category groups so that documents

in the same category group describe the same topic such

as classic music or Chinese history. There are many uses

of clustering in real applications, for example, grouping the

Web search results and categorizing digital documents. Unlike

clustering structured data, clustering text data faces a number

of new challenges. Among others, the volume of text data,

dimensionality, sparsity and complex semantics are the most

L. Jing is with E-Business Technology Institute & Department of Mathe-
matics, The University of Hong Kong, Pokfulam Road, Hong Kong. E-mail:
lpjing@eti.hku.hk

Michael K. Ng is with the Department of Mathematics, Hong Kong Baptist
University, Kowloon Tong, Hong Kong. E-mail: mng@math.hkbu.edu.hk

Xinhua Yang is with Software Technology Institute, Dalian Jiaotong
University, DaLian, China. E-mail: yangxh@djtu.edu.cn

Joshua Z. Huang is with E-Business Technology Institute, The University
of Hong Kong, Pokfulam Road, Hong Kong. E-mail: jhuang@eti.hku.hk

important ones. These characteristics of text data require clus-

tering techniques to be scalable to large and high dimensional

data, and able to handle sparsity and semantics.

Different from the structured data stored in relational

databases, text data sources are either semi-structured, such as

XML data or unstructured such as, free text. However, most

existing clustering algorithms were designed for structured

data. To apply them to text data, the original text formats

have to be transformed into structured forms. The commonly

used structured form for text data is Vector Space Model [6]

in which individual text documents are represented as a set of

vectors. In transformation of original source text data to the

vector space model, a number of preprocessing steps are used,

including filtering, stemming, term frequency calculation, term

selection, etc. These preprocessing steps are very important

because they could significantly affect the results of text

clustering.

In this paper, we present a text clustering system for text

mining. This system consists of six components: preprocess-
ing, VSM data model, clustering, postprocessing, visualization
and ontology. The preprocessing component provides neces-

sary text data preprocessing functions as above mentioned.

One of the innovative implementations in this system is the

use of domain specific ontology [7] to interpret the clustering

results.

In the clustering component, we use a new subspace clus-

tering algorithm that is based on extensions of the k-means

algorithm to cluster large text data [8]. In this algorithm,

we add a new step in the k-means clustering process to

automatically calculate the feature weights for each cluster

so that the important features to form a cluster subspace can

be identified by the weight values. This extension enables the

k-means clustering algorithm to cluster high dimensional text

data in subspaces of the keyword features, so that sparsity of

text data can be effectively handled. Since the additional step

does not increase the number of iterations, the performance of

the k-means clustering process is preserved.

One difficulty in clustering large text data is to understand

and interpret the clustering results. If the number of text

documents was small, a cluster could be understood by looking

into the content of all documents in different clusters. If the

number of text documents is large, reading the content of

all documents becomes infeasible. Instead of looking into the

document content, we can extract a few keywords from each

cluster that can best represent the semantic topic of the cluster.

However, the keyword extraction itself is a research challenge

in text clustering. In the postprocessing component, we use

two methods to extract the representative keywords from each

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1046

cluster. We first make use of the feature weights to identify

the candidates of keywords for each cluster. Then, we use

ontology (e.g, WordNet [9]) to identify the word functions.

The final selection of keywords is based on the results of the

two methods, for instance, the words with high weight value,

high frequency and noun function.

The visualization component visualizes the clusters as se-

mantic networks. Each node represents a cluster whose topic

is described in a small set of keywords. The edge indicates

the relationship between two clusters. We provide interactive

operations on the network to allow the user to interactively

adjust the clustering results by changing the keyword set of

a cluster or moving misclassified documents from one cluster

to another. After the manual adjustment, the cluster algorithm

can be re-executed to update the result.

In this paper, we present the clustering results of the

subspace clustering algorithm in comparison with the results of

Bisecting-KMeans and two typical existing subspace clustering

approaches PROCLUS [10] and HARP [11] from the 20-

Newsgroups real-world text data set [12] and show the im-

provement in clustering accuracy and scalability of clustering

process. We also show the effectiveness of use of multiple

methods in selection of the keywords to represent the topics

of the clusters.

The paper is organized as follows: Section II presents related

work. Section III gives a brief description about the architec-

ture of the text clustering system. Section IV describes the

k-means type subspace clustering algorithm. The methods of

using ontology (WordNet) to extract keywords are presented in

Section V. Section VI presents experiment results to show both

clustering performance and visualization. Some conclusions

are drawn in Section VII.

II. RELATED WORK

Clustering is an important topic in many disciplines. Three

recent surveys on clustering [13], [14], [15] give a com-

prehensive summary of different clustering algorithms and

applications. When applying to text data, these existing clus-

tering methods face two big challenges, clustering of high

dimensional and sparse text data and effective presentation of

clustering results for easy interpretation and understanding.

This work is motivated to solve these two problems by

adopting a new subspace clustering method for text data and

using WordNet [9] to extract few representative keywords for

presentation of clusters.

In text clustering, a set of documents are represented in a

matrix where each row vector < t1, t2, · · · , tn > represents

a document and each column represents a term or word in

the vocabulary of the document set. Clustering algorithms,

such as the Standard KMeans [16] and its variations [17],

[18], as well as the hierarchical clustering methods [19], [20],

are used to cluster the matrix data. In many real applications,

the matrix can be very large because of the large vocabulary

and the number of documents. If the set of documents to be

clustered contains many different categories of documents, the

matrix can be very sparse. Most existing clustering algorithms

are not effective in clustering high dimensional sparse data

because these algorithms cluster data on the full space while

clusters in sparse data often exist in subspaces. This situation

makes scalable subspace clustering methods [15], [13] good

candidates for text clustering.

PROCLUS [10] and its variant ORCLUS [21] are typical

among the subspace clustering algorithms. They are based on

the traditional k-medoids approach, with a goal of minimizing

the average within-cluster dispersion. The limitation of these

methods is the determination of neighboring objects based on

similarity calculations that involve all dimensions. If the num-

ber of relevant dimensions of each cluster is small, different

members of a cluster may appear to be dissimilar when all

dimensions are considered. In these methods, therefore, the

neighboring objects of a medoid need not become from the

same real cluster and the relevant dimensions suggested by

them could be wrong. Meanwhile, PROCLUS is sensitive to

the input parameters l, the average related dimensions of the

clusters.

A hierarchical subspace clustering approach with automatic

relevant dimension selection HARP was recently presented

[11]. HARP makes use of the dynamic threshold loosening

mechanism to find the relevant dimensions of the correspond-

ing clusters. HARP is based on the assumption that two objects

are likely to belong to the same cluster if they are very similar

to each other along many dimensions. However, due to the

hierarchical nature, the algorithm is intrinsically slow. Also,

if the number of relevant dimensions per cluster is extremely

low, the accuracy of HARP may drop as the basic assumption

will become less valid due to the presence of large amount of

noise values in the dataset.

The k-means clustering algorithm is known to be efficient

in clustering large data sets. The recent development of the

new k-means type algorithms with variable weighting ability

enables the efficient k-means clustering process to discover

clusters from subspaces that are identified by the weights

of variables [22], [23]. The variable weights are calculated

automatically in the clustering process with respect to the

distributions of variables. The k-means type algorithms are

effective in identifying noise variables in data and can be used

for variable selection in data mining. We further extended the

algorithm to effectively handle sparse data and successfully

applied the new algorithm FW-KMeans [8] to large text data.

After clustering, the results are often visualized by showing

the inter- and intra-relationships between objects within and

across clusters. Techniques include projections [24] and 3D

dendrograms [25]. These general techniques do not use the

semantics of text. In text clustering, using keyword vectors

to represent clusters was reported in [26]. A keyword vec-

tor was obtained from a word cluster that was separately

generated. However, the concept vector for each cluster was

obtained by associating with a word cluster that was separately

generated. This process potentially affects the running time

and complexity. Besides, the clustering approach used is the

standard spherical k-means algorithm. Another interesting

method for generating word clusters was given in [27]. In

this method, word clusters can be generated by calculating the

minimum loss of the mutual information between the words

and the class labels. Word clusters can also be created using

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1047

statistical methods without considering semantics. In our work,

we use an ontology-based method in combination with the

feature weights and Zipf’s law to extract keywords for cluster

presentation.

III. ARCHITECTURE OF THE TEXT CLUSTERING SYSTEM

The text clustering system consists of six components:

preprocessing, VSM data model, clustering, postprocessing,

visualization, and ontology. Fig.1 shows the architecture of

the system. The functionality of each component is described

as follows:

Fig. 1. architecture of the text clustering system

• Preprocessing: The preprocessing component provides

functions to transform real text data in different formats

into vector representations in the VSM data model, so

that a clustering algorithm can be applied. The functions

include parsers to parse real text data in plain text,

HTML, XML, PDF, PS, Word into a set of terms, stop

word removal, word stemming, term selection and term

scoring such as tfidf . Currently, BOW toolkit [28] is

used to implement these preprocessing functions.

• VSM data model: The VSM data model is used to rep-

resent text data as vectors to which clustering algorithms

can be applied.

• Clustering: This component uses a k-means type sub-

space clustering method to perform the clustering process

in the document vector space generated by the prepro-

cessing component. It finds the topics (i.e., clusters)

underlying the documents set and identifies the important

words for each topic.

• Postprocessing: This component uses an electronic lex-

ical database: WordNet to extract a few representative

words (generally, from three to ten words) from the

keyword candidates that are selected in the clustering

component for each cluster. In addition, it extracts the

common keywords between the clusters to show their

relationships.

• Visualization: This component visualizes the semantics

of each cluster with their own keywords and describes

the relationship between the clusters with their common

keywords.

• Ontology: The ontology component manages ontologies

from different domains. These domain specific ontologies

are used in other components to postprocess clustering

results for interpretation and visualization.

In the following sections, we will present a new k-means

type subspace clustering method for clustering text data and

a method to use ontology WordNet to extract keywords for

representing clusters.

IV. k-MEANS TYPE SUBSPACE CLUSTERING

In this section, we present the k-means type subspace

clustering algorithm FW-KMeans in detail. This algorithm is

the core of the clustering component in the text clustering

system.

A. Subspace Clustering

Let a set of text documents be represented as a set of vectors

X = {X1,X2, . . . ,Xn}. Each vector Xj is characterized by a

set of m terms (t1, t2, . . . , tm). Here, the terms can be words,

phrases and high level concepts appearing in the documents.

m is the total number of unique terms in all documents which

form the vocabulary of these documents. This representation

of text data is called vector space model (VSM). The terms

are referred to as features. Let X be a set of documents

that contain several categories. Each category of documents

is characterized by a subset of terms in the vocabulary that

corresponds to a subset of features in the vector space.

A simple illustration of text data in VSM is given in Table

1. Here, xj represents the jth document vector; ti represents

the ith term; each cell in the table is the frequency that term

ti occurs in xj . A zero cell means that the term does not

appear in the related document. Documents x0, x1, x2 belong

to one category C0, assuming sport, while x3, x4, x5 belong

to another category C1, assuming music.

TABLE I

A SIMPLE ILLUSTRATION OF TEXT DATA IN VSM

t0 t1 t2 t3 t4

x0 1 2 3 0 2

x1 2 3 1 0 2
C0

x2 3 1 2 0 2

x3 0 0 1 3 2

x4 0 0 2 1 3
C1

x5 0 0 3 2 1

Because these two categories are different, they are cate-

gorized by different subsets of terms. As shown in Table I,

category C0 is categorized by terms t0, t1, t2 and t4 while

category C1 by terms t2, t3 and t4. In the meantime, terms

play different roles on identifying categories or clusters. For

instance, the same frequency of t4 appears in every document

of category C0, hence, t4 should be more important than other

terms in identifying category C0. The subspace clustering k-

means algorithm to be discussed in the next subsections is

able to distinguish the roles of different terms.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1048

B. k-means with Feature Weighting

In clustering data, the k-means algorithm treats all fea-

tures equally. To enable the k-means algorithm to identify

differences of features in forming clusters, the basic k-means

algorithm can be extended to allow calculation of a weight

for each feature [23], [22] so the importance of a feature can

be identified by the weight value. Mathematically, this new

feature weighting k-means algorithm minimizes the following

objective function:

F (W,Z, Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wl,jλ
β
l,id(zl,i, xj,i) (1)

subject to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k∑
l=1

wl,j = 1, 1 ≤ j ≤ n

wl,j ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ l ≤ k
m∑

i=1

λl,i = 1, 0 ≤ λl,i ≤ 1, 1 ≤ l ≤ k

(2)

where k(≤ n) is the number of clusters; β (> 1) is

an exponent [23]; W = [wl,j] is a k × n integer matrix;

Z = [Z1, Z2, . . . , Zk] ∈ Rk×m are the k cluster centers; Λ =
(Λ1, Λ2, . . . ,Λk) is the set of weight vectors for all clusters in

which each Λl = (λl,1, λl,2, . . . , λl,m) is a vector of weights

for m features of the lth cluster; d(zl,i, xj,i) (≥ 0) is a distance

or dissimilarity measure between the jth document and the

center of the lth cluster on the ith feature. In text clustering,

we use the Euclidean distance d(xj,i, zl,i) = (xj,i − zl,i)2

because the frequencies of terms are numeric values.

The unknowns W and Z are solved in the same way as the

standard k-Means algorithm [29]. Each feature weight λl,i is

solved with the Lagrange multiplier technique and obtained

by:

λl,i =
1∑m

t=1

[Pn
j=1 w̃l,jd(z̃l,i,xj,i)

Pn
j=1 w̃l,jd(z̃l,t,xj,t)

]1/(β−1)
(3)

This algorithm finds the clusters from different subspaces

by automatically calculating weights for each features in every

cluster, higher weight for important feature, otherwise the

feature will be set a lower weight. However, in large, high

dimensional and sparse data, there is one special case that

a cluster can not contain all of the features, that means

there is one or more than one features do not appear in

any object of one cluster, such as terms t3 and t4 in C0 of

Table 1. This situation will cause zero dispersion, i.e., the

term
∑n

j=1 w̃l,jd(z̃l,i, xj,i) in Eq.(3) will be zero, and then

the relative λli will become infinite so the objective function

Eq.(1) cannot be minimized properly.

C. Handle Sparsity of Text Data

In this section, we propose a new subspace clustering

method called by FW-KMeans, that effectively solves the

sparsity problem mentioned above. The new approach uses

a modified objective function (1) by adding a constant σ to

the distance function as:

F1(W,Z, Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wl,jλ
β
l,i[d(zl,i, xj,i) + σ] (4)

With the introduction of σ, the dispersion of a feature in

a cluster can never be zero so that the objective function (4)

can be minimized properly. The value of parameter σ will

affect the feature weighting process. If σ is much larger than

d(zl,i, xj,i), the weights will be dominated by σ and λl,i will

approach to 1
m . This will make the clustering process back

to the standard k-means. If σ is too small, then the gap of

the weights between the zero dispersion features and other

important features will be big, therefore, undermining the

importance of other features. To balance, we calculate σ as

the average dispersion of the entire data set for all features as

follows:

σ =

∑n̂
j=1

∑m
i=1 d(xj,i, oi)
n̂ · m (5)

where oi is the mean feature value of the entire data set.

In practice we use a sample instead of the entire data set

to calculate σ. (5% sample can be used according to the

sampling theory [30]). n̂ is the number of documents in the

sample. Experimental results in Section 6 have shown that this

selection of σ is reasonable to produce satisfactory clustering

results and identify important features of clusters.

Eq.(4) can be minimized by iteratively solving the following

three problems:

Fix Z̃ and Λ̃, compute the partition matrix W by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wl,j = 1 if
m∑

i=1

λβ
l,i(d(zl,i, xj,i) + σ)

≤
m∑

i=1

λβ
h,i(d(zh,i, xj,i) + σ)

for 1 ≤ h ≤ k
wl,j = 0 otherwise

(6)

Similarly, the optimal solution W is not unique, and wl,j = 1
is arbitrarily assigned to the first minimizing index l, and the

remaining entries of the column are put to zero. And wl,j = 1
means that the jth document belongs to the lth cluster because

they have the smallest distance.

Fix W̃ and Λ̃, and compute the set of cluster center vectors

Z by

zl,i =

n∑
j=1

wl,j xj,i

n∑
j=1

wl,j

for 1 ≤ l ≤ k and 1 ≤ i ≤ m (7)

Fix W̃ and Z̃, compute the feature weighting matrix Λ by

λl,i =
1∑m

t=1

[Pn
j=1 w̃l,j [d(z̃l,i,xj,i)+σ]

Pn
j=1 w̃l,j [d(z̃l,t,xj,t)+σ]

]1/(β−1)
(8)

These three solutions define the feature weighting k-means

algorithm FW-KMeans as follows:

1) Choose initial cluster centers Z(0) ∈ Rk×m and set Λ(0) with all
entries equal to 1/m. Set h = 0.

2) Use Eq.(6) to calculate W (h+1). If F (W (h+1), Zh, Λh) =
F (W h, Zh, Λh), then stop; otherwise, goto step 3.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1049

3) Use Eq.(7) to calculate Z(h+1). If F (W (h+1), Z(h+1), Λh) =
F (W (h+1), Zh, Λh), then stop; otherwise, goto step 4.

4) Use Eq.(8) to calculate Λ(h+1). If F (W (h+1), Z(h+1), Λ(h+1)) =
F (W (h+1), Z(h+1), Λh), then stop; otherwise, set h = h + 1 and
goto step 2.

D. Algorithm Analysis

Using a similar approach in [31], we can show that the new

algorithm converges to a local minimal solution in a finite

number of iterations. We note that there are a finite number

of possible partitions W . Each possible partition W appears

at most once by the algorithm. Assume that Wh1 = Wh2

where h1 �= h2. We note that given Wh, we can compute the

minimizer Zh which is independent of Λh according to Eq.(7).

For Wh1 and Wh2 , we have the minimizers Zh1 and Zh2

respectively. It is clear that Zh1 = Zh2 since Wh1 = Wh2 .

Using Wh1 and Zh1 , and Wh2 and Zh2 , we can compute the

minimizers Λh1 and Λh2 respectively (Step 4) according to

Eq.(3). Again, Λh1 = Λh2 . Therefore, we have

F1(Wh1 , Zh1 , Λh1) = F1(Wh2 , Zh2 ,Λh2).

However, the sequence F1(·, ·, ·) generated by the algorithm

is strictly decreasing. Hence the result follows.

Since the FW-KMeans algorithm is an extension to the k-

means algorithm by adding a new step to calculate the feature

weights in the iterative process, it does not seriously affect

the scalability of the k-means type algorithms in clustering

large data. The run-time complexity of this algorithm can be

analyzed as follows. In this algorithm, there are essentially

three major computation steps:
• Partitioning Documents: After initialization of the feature weights

and cluster centers in Step 1, A cluster label will be assigned
to each document. This process simply compares the summationPm

i=1 λβ
l,i(d(zl,i, xj,i)+σ), for each document in all k clusters. Thus,

the complexity for this step is O(mnk).
• Updating Cluster Centers: With the partition matrix W , the task of

updating cluster centers is to find the means of the features in the
documents which belong to the same cluster. Thus, for k clusters, the
run-time complexity for this step is O(mnk).

• Calculating Feature Weights: The last phase of this algorithm is to
calculate the feature weights for all clusters based on the partition
matrix W . In this step, we only go through the whole data set once to
update the feature weights. The runtime complexity of this step is also
O(mnk).

Therefore, the total runtime complexity of this algorithm is

O(hmnk), where h is the total number of iterations.

As for the storage, we need O(2mk) space to hold the

cluster centers Z and the feature weighting matrix Λ and

O(n(1 + m̄)) space to store the set of n documents and their

cluster labels, where m̄ is the average number of terms in each

document and m̄ << m, because we only store the nonzero

entries as shown in Table 1 in order to save the memory

consumption.

V. CLUSTERING EVALUATION AND INTERPRETATION

Evaluation and interpretation of clustering results are two

important steps in clustering text data. This section presents the

methods used for these two purposes. In clustering evaluation,

if the number of text documents to be clustered is small,

the clustering results can be easily evaluated by reading the

contents of the documents in each cluster. However, this

approach becomes infeasible when the number is very large.

Instead, we can use samples to evaluate different settings of

the clustering algorithm and apply the best setting to the large

data set.

For cluster interpretation, the feature weights, the Zipf’s law

[32] and WordNet are used to jointly identify a few words from

each cluster to represent clusters and their relationships.

A. Clustering Evaluation

The class labels of the data used in the experiments are

actually known, therefore we can adopt the existing measures,

Accuracy, Entropy, F1 score (FScore) [20] and the normal-

ized mutual information (NMI) [33], to objectively assess the

clustering performance. We note that the labels are not used

in the clustering process.

These four measures are defined as follows. Given a

set of text documents X in k categories C1,C2,...,Ch,...Ck,

we use a clustering algorithm to cluster it into k clusters

S1,S2,...,Sl,...,Sk. Let nh, nl be the numbers of documents

in category Ch and cluster Sl respectively, nh,l be the number

of documents appearing in both category Ch and cluster Sl,

and n be the total number of documents in X . A confusion

matrix can be defined as Table II.

TABLE II

CONFUSION MATRIX

S0 S1 S2 S3

C0 n0,0 n0,1 n0,2 n0,3

C1 n1,0 n1,1 n1,2 n1,3

C2 n2,0 n2,1 n2,2 n2,3

C3 n3,0 n3,1 n3,2 n3,3

From the confusion matrix, the accuracy of a clustering is

calculated by

Accuracy =
∑k

l=1 nl,l

n
(9)

The entropy is defined as

Entropy =
k∑

l=1

nl

n

(
− 1

log k

k∑
h=1

nh,l

nl
· log

nh,l

nl

)
(10)

The FScore is defined as

FScore =
k∑

h=1

nh

n
· max
1≤l≤k

{
2 · nh,l/nh · nh,l/nl

nh,l/nh + nh,l/nl

}
(11)

The normalized mutual information (NMI) is defined as

NMI =

∑
h,l nh,llog

(
n·nh,l

nhnl

)
√

(
∑

h nhlog nh

n)(
∑

l nllog
nl

n)
(12)

In Eq.(9), the term nl,l is the number of documents occur-

ring in both lth cluster and its corresponding category. For

other three evaluation measures, the index of a cluster and its

corresponding category need not match with each other.

In these measures, the Entropy is more comprehensive than

accuracy because instead of just considering the number of

objects ‘in’ and ‘not in’ the dominant class, it takes the entire

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1050

distribution into account. However, the Entropy measure is

biased towards small clusters (e.g., a set of singletons is always

considered perfect).

The FScore measure combines precision and recall into a

single number with equal weights. Unlike entropy, FScore is

not biased towards small clusters. In fact, it favors coarser

clusterings.

The normalized mutual information (NMI) avoids the bias

toward smaller clusters. Singletons are severely discounted

compared to the best clustering. However, NMI for the best

clustering is smaller than 1 unless all categories have equal

prior probabilities. Thus, NMI provides an unbiased and con-

servative measure as compared to FScore and entropy.

In these four clustering measures, Accuracy, FScore and

NMI rank the clustering quality from 0 (worst) to 1 (best),

while the Entropy measure from 1 (worst) to 0 (best).

B. Key Word Extraction for Cluster Interpretation

After clusters are generated by the clustering algorithm, a

few keywords can be extracted from each cluster to represent

the cluster’s semantic category. Since the weights reflect the

importance of the terms in forming a cluster, we first select

the keyword candidates according to the weight values. Given

a weight threshold, we identify keyword candidates whose

weights are greater than the threshold for each cluster (about

17% of the vocabulary). After obtaining the candidate key

words, we use Zipf’s law to delete the candidate words that

occur in less than 15% of the total documents in the cluster

[32]. These words cannot represent the semantic category of

the majority documents of the cluster.

Keyword Candidates

POS: Noun

Verb

Adj.

Adv.

Synonymy : save

the first word in

synonymy list
W

ordN
et

Keyword for E ach C luster

Hyponym y: save

the word at the

root kno t

Fig. 2. extract keywords with WordNet.

The keyword candidates after Zipf’s law filtering are fed

to the WordNet [9] for the final selection of a small set of

keywords for each cluster. WordNet is an electronic lexical

database that describes the function of each English word,

such as NOUN, VERB, ADJECTIVE and ADVERB, and the

semantic relationships between the words, such as synonyms

and hyponyms. We use WordNet to perform two tasks, (1)

selecting the noun candidates and (2) consolidating the sets of

the synonym and hyponym words. As shown in Fig.2, for each

keyword candidate, we use WordNet to check whether it is a

atheist faith belief

Synonymy

(a)

arm

gun fire rocket tank

Hyponymy

(b)

Fig. 3. example for extracting synonymy and hyponymy keywords.

noun or not. If it is not a noun word, we remove it from the

candidate list. For the list of candidate nouns, we identify the

sets of synonyms and hyponyms. If the words are synonyms,

we consolidate them by retaining one word and deleting others

for each synonymy set, as shown in Fig.3(a). If the words are

hyponymy, we choose the general word to represent the rest.

For example in Fig.3(b), we retain the word arm to represent

weapon hyponyms. The algorithm for keywords extraction

with the aid of Ontology (WordNet) is described as follows.

Algorithm — (KeyWExtractor)

1) Input the features with weights obtained by our clustering approach
FW-KMeans and set the threshold θ for feature weights;

2) For each cluster Cl (1 ≤ l ≤ k) {find keyword candidates for every
cluster}

a) IF λl,i < θ, remove the ith term from the corresponding cluster
Cl;

b) ELSE assign the ith term as the keyword candidate of the cluster
Cl;

3) Extract keywords for each cluster with the aid of WordNet

a) For each keyword candidate kwcj {check word kwcj is noun
or not}
i) IF ss type(kwcj)! = n

remove it from the keywords set of the clusters;
{n represents for noun, v for verb, a for adjective and r for
adverb}

ii) ELSE keep the word;

b) For all keyword candidates kwcl,j in each cluster Cl (1 ≤ l ≤
k){check there are synonyms or hypernyms in the keyword set
for each cluster }
i) IF kwcl,j1 ∈ hype(kwcl,j2 , n) or kwcl,j1 ∈

syne(kwcl,j2 , n)
remove kwcl,j2 from the keyword set of the cluster Cl;
{ hype(t, n) return the hypernym for noun word t;
syne(t, n) returns the synonyms and immediate hypernyms
of the noun word t}

ii) ELSE keep the word;

c) Output the keywords for each cluster.

Finally, we analyze the keywords in different clusters and

identify the keywords which occur in more than one cluster. In

doing so, the related topics will be easily partitioned. These

common words can also identify the relationships between

clusters. The keywords for each cluster and the common

words between clusters are used to represent the semantics

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1051

and relationships of clusters when visualizing the clustering

results.

VI. EXPERIMENTS

In this section, we present some experiment results to

demonstrate the performance of the FW-KMeans algorithm

with comparison of Bisecting-KMeans and two typical sub-

space clustering methods PROCLUS and HARP, and also

show the effectiveness of the word extraction methods. The

experiments were conducted with real-world text data sets on

a machine with a 3.2G CPU and 2G RAM.

A. Text Datasets

In conducting the experiments, 21 datasets with differ-

ent characteristics in sparsity, size, dimensionality and cate-

gory distribution were previously built from the well known

20-Newsgroups collection. This dataset is a collection of

20,000messages, collected from 20 different newsgroups. The

documents in each category of our experimental datasets are

chosen at random from the corresponding group.

Table III lists the first 6 datasets that were used to test the

clustering quality. The source column gives the categories of

each dataset. Column nd indicates the number of documents in

each category. Data sets A2 and A4 contain categories of quite

different topics while datasets B2 and B4 consist of categories

of similar topics. Obviously, clustering B2 and B4 is harder

than A2 and A4 because there are more overlapping words

in B2 and B4. Datasets A4-U and B4-U contain unbalanced

numbers of documents in different categories.

Table IV lists other 15 datasets that were used to test the

scalability of the algorithm. In the first group of datasets

D1−6, each dataset has 15905 documents in 20 categories.

The number of terms (m) in these datasets increases from

500 to 2000. In the second group of datasets E1−4, the

number of categories in each dataset is fixed to 20 and the

number of terms used to represent these datasets is 1100. The

number of documents in these datasets increases from 2000

to 15905. These two sets of datasets cover all 20 major topics

in the 20-Newsgroups collection. In the last group of datasets

F1−5, the number of categories k in each dataset increases

while the number of documents and the number of terms

are fixed to 1500 and 500 respectively. The 12 categories

in F1−5 are alt.atheism, comp.graphics, talk.politics.guns,

rec.autos, soc.religion.christian, misc.-forsale, sci.crypt,
comp.sys.ibm.pc.hardware, rec.sport.basketball, sci.space,

comp.os.windows, and talk.politics.mideast.
The documents in these 21 datasets were first processed

with the component of our system, preprocessing. Firstly, the

system striped each news message from the e-mail header

and special tags, eliminated stop words and stemmed words

to their root form. Next, words were sorted based on their

inverse document frequency (IDF). Finally, the feature was

removed by checking whether its IDF value was in the range

of threshold.

B. Experimental Results

In this subsection, we first present the experimental results

of clustering quality and scalability of the clustering algorithm

FW-KMeans. Then, we show the results of keyword extraction.

In conducting these experiments, we used 5% of sample

documents to choose the initial centers as the farthest k points

between two categories in the sample data [34]. We set proper

parameters for different algorithms so that they could get better

results. β is 1.5 for FW-KMeans and l is set a value in [10%m,

80%m] (m is the number of features) for PROCLUS. For

Bisecting-KMeans, FW-KMeans, HARP, we run each of them

ten times and then reported the average values. For PROCLUS,

we assigned different values for the parameter l (8 values), and

run the algorithm ten times for each l value, then computed the

average result for each l, finally reported the best results in all

l cases. Here, we use Bisecting-KMeans to compare with our

algorithm because it is one of the document clustering methods

with the best performance [18], and cosine similarity is the

similarity measure between objects in Bisecting-KMeans.

1) Clustering Quality: Four clustering algorithms, FW-
KMeans, Bisecting-KMeans, PROCLUS and HARP were ap-

plied to the 6 datasets in Table III. The clustering results

evaluated with the four evaluation measures in Subsection 5.1

are given in Table V. The four figures in each cell represent

the values of Accuracy, Entropy, Fscore and NMI respectively.

Each accuracy value was calculated as the average of accuracy

values of five runs on the same dataset.

From Table V, we can see that the FW-KMeans performed

best in most cases. The performance of FW-KMeans is always

better than the other subspace clustering methods PROCLUS
and HARP for all datasets. This result is not hard to explain.

PROCLUS just used neighboring objects to determine the im-

portance of the relevant features, however, this measure would

result in wrong decision if the neighbors were not in the same

real cluster. However, our method, FW-KMeans, calculates

the features weights depending on the data distribution in

one cluster. Meanwhile, HARP did not get good performance

because its assumption became less valid for sparse text data.

The Bisecting-KMeans performed slightly better than the

FW-KMeans on A2 and A4 because the categories in these

datasets are quite different, meaning that the sets of terms in

different clusters do not overlap much. For datasets B2 and

B4 with more overlapping terms, the FW-KMeans performed

much better.

TABLE VI

CONFUSION MATRIX OF B4-U BY Bisecting-KMeans

S0 S1 S2 S3

C0 21 2 70 27

C1 30 0 11 59

C2 1 53 1 4

C3 0 10 4 6

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1052

TABLE III

DATASETS FOR TESTING THE CLUSTERING QUALITY

DataSet Source nd DataSet Source nd

alt.atheism 100 talk.politics.mideast 100
A2

comp.graphics 100
B2

talk.politics.misc 100

comp.graphics 100 comp.graphics 100

rec.sport.baseball 100 comp.os.ms-windows 100

sci.space 100 rec.autos 100A4
talk.politics.mideast 100

B4
sci.electronics 100

comp.graphics 120 comp.graphics 120

rec.sport.baseball 100 comp.os.ms-windows 100

sci.space 59 rec.autos 59A4-U
talk.politics.mideast 20

B4-U
sci.electronics 20

TABLE IV

DATASETS FOR TESTING THE SCALABILITY OF THE CLUSTERING ALGORITHM

Dataset n m k Dataset n m k Dataset n m k
D1 15905 500 20 E1 2000 1100 20 F1 1500 500 3

D2 15905 800 20 E2 4000 1100 20 F2 1500 500 5

D3 15905 1100 20 E3 8000 1100 20 F3 1500 500 7

D4 15905 1300 20 E4 15905 1100 20 F4 1500 500 10

D5 15905 1700 20 F5 1500 500 12

D6 15905 2000 20

TABLE V

CLUSTERING RESULTS OF FW-KMeans, Bisecting-KMeans, PROCLUS AND HARP. (BOLD-FACE NUMBERS INDICATE THE BEST EVALUATION RESULT IN

THE FOUR ALGORITHMS)

A2 B2 A4 B4 A4-U B4-U

0.96 0.905 0.8975 0.8621 0.9591 0.9197
0.2057 0.4014 0.2509 0.3574 0.1513 0.2314
0.9599 0.9043 0.9003 0.8631 0.9591 0.9205FW-KMeans
0.7961 0.6050 0.7554 0.6467 0.8480 0.7385
0.965 0.88 0.9375 0.7017 0.8954 0.6087

0.2146 0.5294 0.1919 0.6195 0.2830 0.5357

0.9650 0.8800 0.9376 0.7049 0.8961 0.6586Bisecting-KMeans
0.7857 0.4706 0.8083 0.3822 0.7126 0.3793

0.6884 0.6500 0.5725 0.4322 0.6167 0.5302

0.5254 0.8395 0.5548 0.7291 0.7342 0.5758

0.7190 0.6604 0.6450 0.4911 0.5239 0.5739PROCLUS
0.2334 0.0789 0.2909 0.0791 0.1867 0.1684

0.8894 0.6000 0.5000 0.3769 0.6000 0.4228

0.5016 0.9562 0.7671 0.8933 0.8389 0.9535

0.8894 0.6020 0.5073 0.3840 0.4819 0.3364HARP
0.4984 0.0299 0.2023 0.0538 0.1688 0.0250

TABLE VII

CONFUSION MATRIX OF B4-U BY FW-KMeans

S0 S1 S2 S3

C0 109 9 0 2

C1 3 95 1 1

C2 0 3 54 2

C3 2 1 0 17

For unbalanced datasets A4-U and B4-U, FW-KMeans per-

formed reasonably well while the performance of Bisecting-
KMeans clearly deteriorated. This was because the Bisecting-
KMeans chose a branch to split at each step. Usually, the

largest cluster was chosen. This resulted in artificial division

of some inherent large clusters in the early stage so the mistake

could not be corrected in the later stage. This can be observed

by the confusion matrix in Table VI produced from B4-U. The

large clusters C0 and C1 were divided into separate clusters

by the Bisecting-KMeans. Nowever, as shown in Table VII,

the FW-KMeans algorithm recovered them more accurately.

2) Scalability: The fourteen datasets in Table IV were

used to evaluate the scalability of the FW-KMeans algorithm.

The experiment results demonstrated that the algorithm was

scalable to the number of documents, the number of terms and

the number of clusters. The algorithm also converged quickly

after a few iterations on these test datasets.

Fig.4 shows the results on datasets D1−6. We can see that

both run-time and clustering accuracy increased linearly as the

number of terms increased. This was in line with our analysis

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1053

of the linear computational complexity O(hmnk). The accu-

racy increased as the number of terms increased, because more

terms held more information about the documents.

5 10 15 20
0

1000

2000

Number of Terms × 10−2

R
un

−T
im

e
(S

ec
on

ds
)

Varying Number of Terms

5 10 15 20
0

50

100

A
cc

ur
ac

y(
%

)

Run−Time

Accuracy

Fig. 4. run-time and accuracy for different numbers of terms.

Fig.5 shows the results on datasets E1−4. In these datasets,

the number of terms was fixed to 1100 and the number of clus-

ters to 20. We can see that the run-time increased linearly as

the number of documents increased. This was conformable to

the analysis of the linear computational complexity O(hmnk).
The clustering accuracy decreased as the number of documents

increased. The reason was that the fixed number of terms might

not well represent the whole documents set including newly

added documents, which implicitly reduced the information of

the documents and compromised the clustering quality.

2 4 8 16
0

1000

Number of Documents × 10−3

R
un

−T
im

e
(S

ec
on

ds
)

Varying Number of Documents

2 4 8 16

50

80

100

A
cc

ur
ac

y
(%

)

Accuracy

Run−Time

Fig. 5. run-time and accuracy for different numbers of documents.

Fig.6 shows the results on datasets F1−5. In these datasets,

the number of terms was fixed to 500 and the number of

documents to 1500 while the number of clusters varied from 3

to 12. We can observe that the run-time increased linearly as

the number of clusters increased. The fixed number of terms

resulted in a slightly reduction of clustering accuracy because

it implicitly reduced the information of the documents.

3 6 9 12
0

25

50

Number of Clusters

R
un

−T
im

e
(S

ec
on

ds
)

Varying Number of CLusters

3 6 9 12
0

50

100

80

A
cc

ur
ac

y
(%

)

Run−Time

Accuracy

Fig. 6. run-time and accuracy for different numbers of clusters.

Fig.7 shows a typical convergency curve of the FW-KMeans
algorithm produced from dataset F3. The horizontal axis rep-

resents the number of iterations and the vertical axis represents

the value of the objective function Eq.(4). Each point on

the curve represents a partition generated by one iteration of

the k-means clustering process. Starting from a set of initial

cluster centers and a set of initial weights, the algorithm first

converged after 2 iterations. A new set of weights FW1 were

computed. Using FW1 as the initial weights and the current

cluster centers, the k-means process restarted again. We can

see that the objective function had a significant drop after the

new weights FW1 were introduced. The k-means process

converged again after 2 new iterations. Then, a set of new

weights FW2 were computed. This process continued until

the local minimal value of the objective function was reached.

The final set of weights FW4 was obtained.

0 2 4 6 8 10 12
−50

−25

0

25

50

Number of Iterations

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e,

 d
B

FW1

FW3FW2 FW4

Fig. 7. convergence curve of the FW-KMeans algorithm. dB = 10 ×
log(value)

The convergency curve indicates that the FW-KMeans algo-

rithm will converge in a few iterations. For all fifteen datasets

in Table IV, the maximal number of iterations was less than

15.
3) Keywords Extraction: After clusters were generated by

the FW-KMeans algorithm, a few keywords were extracted

from each cluster to represent the semantics of the cluster for

the user. The three methods described in Section 5.2 were

used in keyword extraction. First, all terms were sorted on the

weights and divided into groups based on the weight intervals.

Fig.8 shows a typical distribution of terms on weight intervals

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1054

for category comp.graphics obtained from dataset B4. The

left table gives the number of words in each interval and

the rightFig.plots the distribution of words. Before plotting,

the terms that did not occur in the documents of this cluster

were removed from the term list. Because only the terms with

large weights were interested, the first two groups of terms

were selected, which was about 25% of the total terms in this

cluster.

word weights are divided into five intervals:
weight intervals word number

0˜1: (0,1e-08] 8

1˜2: (1e-08,1e-07] 280

2˜3: (1e-07,1e-06] 433

3˜4: (1e-06,1e-05] 188

4˜5: (1e-05,1) 32

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

450

weight intervals

comp.graphics

Fig. 8. distribution of word frequency on weights

Fig.9 shows the plots of selected terms or keywords of four

clusters generated from dataset B4. The horizontal axis is the

word index for the entire vocabulary and the vertical lines

indicate the weights of selected keywords. We can see that

the words with large weight values in each cluster do not

overlap. This implies that the keywords selected according to

their weights indeed can be used to separate documents in

different clusters.

The right side of Fig.9 shows the ten noun words with the

largest weights in each cluster. To relate these noun words to

the categories of the clusters, we can find that some of these

noun words closely represent the semantics of the clusters.

For example, the category of the cluster in the top graph

is computer graphics. The noun words graphic, icon, image,
color, point, gui on the right side are all related to graphics.

The same can be found in other clusters as well.

After selection with weights, Zipf’s law [32] was used to

check the candidate keywords against the documents in each

cluster. The candidate words that occur in less than 15% of the

total documents in the corresponding cluster were deleted from

the candidate list because they were not useful in expressing

the meaning of all documents in the cluster. After this removal,

only about 20 to 35 words were left in each cluster. This step

further reduced the size of the candidate keywords for cluster

presentation.

The last step to select the final small set of keywords

for each cluster was to use WordNet [9] to further delete

some unnecessary words and retain the most important ones.

Because the noun words can best represent the meaning of the

clusters and should be retained, the first task of using WordNet

was to identify noun words from the candidate words. Since

WordNet provides semantic relationships between words, the

semantic relationships were used to combine the synonymy

or hyponymy words. The words in each group have the same

meaning so that one word was retained. For instance, in dataset

F3, cluster 0 contains synonyms atheism, atheist, and faith,

belief . Cluster 6 contains hyponymy words weapon, and arm,
fire, gun, rocket, tank. In this case, the top word weapon in

the hierarchical hyponymy structure was retained.

Finally, the words that occur in all clusters, such as the

words {write, article, thing, people, human} in F3, were re-

moved because they were not useful. For the words that occur

in two clusters, they were retained to describe the relationship

between the clusters. Table VIII shows the keywords in each

cluster obtained from dataset F3. We can see that each set

of keywords is essentially correlated to only one of the seven

topics listed in the column CategoryName. Here, nl is the

number of documents in the lth cluster.

C. Clustering Visualization

Clustering results are best shown through visualization.

In this text clustering system, a visualization module was

included to visualize the semantics of clusters and the rela-

tionships between clusters. The extracted keywords play an

important role in presenting the semantics of clusters and

the relationships between clusters. The user can interactively

operate on the display to manually fine tune the results.

Fig.10 shows an example of graphic visualization of one

clustering result produced from dataset E4. Twenty clusters

are displayed in the right panel. The squares with a small

box in the top-left corner represent clusters. The number in

the small box is the cluster ID. The keywords describing the

cluster are displayed in the square. The squares without a small

box represent the relationships between clusters. The keywords

in the squares represent the semantic of the relationships. For

example, the square with keywords {sport, game, score, team}
implies that cluster 9 and cluster 10 are overlapping because

they share some common words. These two clusters could be

combined into a high-level cluster.

The user can interact with the display to perform operations,

such as viewing the complete list of keywords in a cluster, for

example, the box of Clu-19, and creating a high level cluster

by merging existing low level clusters. Through the interactive

operations, the user can manually fine tune the clustering

results, which is necessary in text clustering applications.

The left panel of this interface shows the functional op-

erations of this text clustering system. These operations are

used to form a text mining process with easy drag-and-drop

operations.

VII. CONCLUSIONS

In this paper, we have presented a text clustering system

with six components to tackle three challenging text clustering

problems: large volume, high dimensionality and sparsity. The

components of clustering, postprocessing and ontology are

used to extract keywords for clustering visualization. With

these three parts, the problem of complex semantics of text

clustering can be effectively solved.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1055

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

wo
rd

 w
ei

gh
t

a: comp.graphics

request

graphic

color
image

graphic 6.70466e − 05

color 2.98961e − 05

image 2.45266e − 05

icon 1.42196e − 05

laser 9.52604e − 06

scope 9.52604e − 06

point 5.41076e − 06

sheet 4.94495e − 06

plain 3.21929e − 06

gui 2.20811e − 06

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

w
or

d
w

ei
gh

t

b: comp.os.ms−windows

request

win

intel
patch

win 6.13444e − 05

intel 2.14806e − 05

patch 1.90001e − 05

logic 1.15958e − 05

pc 9.37718e − 06

buffer 9.37718e − 06

demo 8.34777e − 06

function 5.32089e − 06

company 5.32089e − 06

database 3.91727e − 06

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

wo
rd

 w
ei

gh
t

c: rec.autos

auto

vehicle

motor

auto 9.25063e − 05

vehicle 1.8565e − 05

motor 1.18095e − 05

driver 9.01719e − 06

park 8.57334e − 06

repair 5.74717e − 06

mile 4.15965e − 06

door 3.23471e − 06

show 3.21888e − 06

manufacture 1.94154e − 06

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

wo
rd

 w
ei

gh
t

d: sci.electronics

electronic
circuit

signal

electronic 2.89103e − 05

circuit 2.49422e − 05

signal 2.10053e − 05

chip 1.33768e − 05

volume 9.80421e − 06

thread 6.51865e − 06

charge 3.67175e − 06

raster 2.6509e − 06

science 2.2915e − 06

technology 1.91447e − 06

Fig. 9. weight distribution of keywords in four clusters from dataset B4. (a) cluster of category Graphics, (b) cluster of category Windows, (c) cluster of
category Autos, (d) cluster of category Electronics.

TABLE VIII

REPRESENTATIVE WORDS EXTRACTED FROM SEVEN CLUSTERS OF DATASET F3

ClusterID CategoryName nl Keywords

0 alt.atheism 232 {atheism, belief, moral}
1 comp.graphics 164 {graphic, image, software}
2 misc.forsale 366 {sale, price}
3 rec.autos 199 {engine, car, drive}
4 sci.crypt 187 {encrypt, key, chip, message}
5 soc.religion.christian 186 {christian, church, bible}
6 talk.politics.guns 166 {weapon, stratum, shoot}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1056

Text Mining

F ile W indows H elp

Status

Text Processing

Data Source

Input Files

Exploration

Explorer

T ransformation

Set Attribute

Parsing

Stemming

Ontologies

Modeling

Clustering

system

computer

disk
Window

software

program

space

astronomy

14

 graphic

image

package

1

 microsoft

 internet

2

server

command

code

5
ibm

driver

memory

3 hardware

mac

monitor

4

cryptography

key

encrypt

11

electronic

circuit

12

car

engine

7 bike
BMW

ride

8

sport

game

score

team

 baseball

 hitter

9

 hockey

 playoff

10

religion

belief

state

god

 atheism

 theory

 moral

0 christian

church

 scripture

15

jesus

newton

19

good

Cramer

president

optilink

18

sale

ship

6

opinion

politic

govern

group

weapon

situation

16

 ethnic

nation

war

 musilin

17

religion

belief

state

god

good

opinion

jesus

newton

Clu-19

Classification

Indexing

Summarization

Fig. 10. visualization of clusters and relationships between clusters

We have discussed the component of clustering which is

based on the new k-means type subspace clustering algorithm

FW-KMeans. This algorithm is an extension to the well known

k-means algorithm by adding a new step to calculate the

feature weights for different clusters in the k-means clustering

process. We have shown that the new algorithm is scalable to

large text data and capable of handling sparse data and finding

clusters from subspaces of features. The experiment results

on real world text data have shown that this new algorithm

performed better than other two subspace clustering algorithms

(PROCLUS and HARP) and Bisecting-KMeans.

To effectively present clustering results to users, we have

developed a new approach to extracting a few keywords to

present the semantics of clusters. The results have shown that

it was effective in extracting meaningful keywords.

Our future work is to refine the current text clustering

system by including more functions, such as using visual

methods to determine the number of clusters and a better way

to set up initial cluster centers. We believe that ontology will

provide premising solutions on this point. We also plan to test

this system on medical literature [35].

REFERENCES

[1] “Textminer.” [Online]. Available:
http://www.sas.com/technologies/analyticsdatamining/textminer/

[2] “Textanalyst.” [Online]. Available:
http://www.megaputer.com/products/ta/index.php3

[3] “gcluto.” [Online]. Available:
http://www-users.cs.umn.edu/ karypis/cluto/gcluto/

[4] “Refviz.” [Online]. Available: http://www.refviz.com
[5] W. Fan, L. Wallace, S. Rich, and Z. Zhang, “Tapping into the power of

text mining,” the Communications of ACM, 2005.
[6] B. Ricardo and R. PBerthier, Modern information retrieval, 1999.
[7] A. Hotho, A. Maedche, and S. Staab, “Ontology-based text document

clustering,” Seattle, USA, 2001.
[8] L. Jing, M. Ng, J. Xu, and Z. Huang, “Subspace clustering of text

documents with feature weighting k-means algorithm,” 2005, pp. 802–
812.

[9] C. Fellbaum, “Wordnet: an electronic lexical databases,” The MIT Press,
1998.

[10] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park, “Fast algorithms
for projected clustering,” Proc. ACM SIGMOD, pp. 61–72, 1999.

[11] K. Y. Yip, D. W. Cheung, and M. K. Ng, “A practical projected clustering
algorithm,” IEEE Transactions on knowledge and data engineering,
vol. 16, no. 11, pp. 1387–1397, 2004.

[12] “20-newsgroups.” [Online]. Available:
http://kdd.ics.uci.edu/databases/20newsgroups
/20newsgroups.html

[13] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering : A review,”
ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[14] J. Han, M. Kamber, and A. Tung, “Spatial clustering methods in data
mining: a survey,” Geographic Data Mining and Knowledge Discovery,
2001.

[15] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high
dimensional data: a review,” SIGKDD Explorations, vol. 6, no. 1, pp.
90–105, 2004.

[16] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” 1967, pp. 281–297.

[17] S. Dhillon, J. Fan, and Y. Guan, “Efficient clustering of very large
document collections,” Data mining for scientific and engineering ap-
plications, pp. 357–381, 2001.

[18] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document
clustering techniques,” 2000.

[19] O. Duda, E. Hart, and G. Stork, Pattern classification, 2000.
[20] Y. Zhao and G. Karypis, “Comparison of agglomerative and partitional

document clustering algorithms,” Technical report �02-014, University
of Minnesota, 2002.

[21] C. Aggarwal and P. Yu, “Finding generalized projected clusters in high
dimensional spaces,” Proc. ACM SIGMOD, pp. 70–81, 2000.

[22] H. Frigui and O. Nasraoui, “Unsupervised lerning of prototypes and
attribute weights,” Pattern recognition, vol. 37, no. 3, pp. 567–581, 2004.

[23] Y. Chan, K. Ching, K. Ng, and Z. Huang, “An optimization algorithm for
clustering using weighted dissimilarity measures,” Pattern recognition,
vol. 37, no. 5, pp. 943–952, 2004.

[24] B. M.W., S. Dumais, and G. O’Brien, “Using linear algebra for intelli-
gent information retrieval,” SIAM Review, vol. 37, pp. 573–595, 1995.

[25] I. Herman, G. Melancon, and M. Marshall, “Graph visualization and
navigation in information visualization: a survey,” IEEE Transactions on
Visualization and Computer Graphics, vol. 6, no. 1, pp. 24–43, 2000.

[26] S. Dhillon and S. Modha, “Concept decompositions for large sparse text
data using clustering,” Machine learning, vol. 42, no. 1, pp. 143–175,
2001.

[27] R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter, “Distributional
word clusters vs. words for text categorization,” Journal of Machine
Learning Research, vol. 3, no. 7-8, pp. 1183–1208, 2003.

[28] A. McCallum, “Bow: A toolkit for statistical language modeling,
text retrieval, classification and clustering,” 1996. [Online]. Available:
http://www.cs.cmu.edu/mccallum/bow

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1057

[29] J. Bezdek, “A convergence theorem for the fuzzy isodata clustering
algorithms,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 2, pp. 1–8, 1980.

[30] P. Hague and P. Harris, Sampling and statistics, London, 1993.
[31] S. Selim and M. Ismail, “k-means type algorithms: a generalized

convergence theorem and characterization of local optimality,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 1, pp.
81–87, 1984.

[32] W. Li, “Random texts exhibit zipf’s-law-like word frequency distribu-
tion,” IEEE Transactions on Information Theory, vol. 38, no. 6, pp.
1842–1845, 1992.

[33] Z. Shi and J. Ghosh, “A comparative study of generative models for
document clustering,” San Francisco, CA, May, 2003.

[34] I. Katsavounidis, C. Kuo, and Z. Zhang, “A new initialization technique
for generalized lioyd iteration,” IEEE signal proceeding, Letters 1(10),
pp. 144–146, 1994.

[35] D. Swanson, “Medical literature as a potential source of new knowl-
edge,” Bull Med Libr Assoc., vol. 78, no. 1, pp. 29–37, 1990.

