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Abstract—This paper studies dynamic stability of homogeneous 
beams with piezoelectric layers subjected to periodic axial 
compressive load that is simply supported at both ends lies on a 
continuous elastic foundation. The displacement field of beam is 
assumed based on Bernoulli-Euler beam theory. Applying the 
Hamilton's principle, the governing dynamic equation is established. 
The influences of applied voltage, foundation coefficient and 
piezoelectric thickness on the unstable regions are presented. To 
investigate the accuracy of the present analysis, a compression study 
is carried out with a known data. 
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I.  INTRODUCTION 

HE dynamic stability of structures is a subject of 
considerable engineering importance, and many 

investigations have been carried out in this subject. In 1985, 
Bailey and Hubbard [1] investigated the active vibration 
control of a cantilever beam using distributed piezoelectric 
polymer as an actuator. Crawley and de Luis [2] developed 
analytical models for the dynamic response of a cantilever 
beam with segmented piezoelectric actuators that are either 
bonded to an elastic substructure or embedded in a laminated 
composite. Shen [3] used the finite element method to study 
the free vibration problems of beams containing piezoelectric 
sensors and actuators.  

Pierre and Dowell [4] reported the dynamic instability of 
plates using an extended incremental harmonic balance 
method. Liu et al. [5] used a finite element model to analyze 
the shape control and active vibration suppression of 
laminated composite plates with integrated piezoelectric 
sensors and actuators. By a feedback control loop, Tzou and 
Tseng [6] and Ha et al. [7] formulated three-dimensional 
incompatible finite elements for vibration control of structures 
containing piezoelectric actuators and sensors. The dynamic 
instability of a structure subjected to periodic axial 
compressive forces has attracted a lot of attention.. Bolotin [8] 
summarized the results achieved in comprehensive studies for 
the dynamic stability of machine components and structural 
members. Briseghella et al. [9] used beam elements without  
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axial deformability to solve the dynamic stability problem of 
beam structures. The load bending contribution was taken into 
account by means of a second-order approach. Takahashi et al. 
[10] investigated dynamically unstable regions of cantilever 
rectangular plates. They presented the numerical results 
obtained for various loading conditions that are applied along 
the edge. Recently, Zhu et al. [11] presented a three-
dimensional theoretical analysis of the dynamic instability 
region of functionally graded piezoelectric circular cylindrical 
shells subjected to a combined loading of periodic axial 
compression and electric field in the radial direction.  

To the author's knowledge, there is no analytical solution 
available in the open literatures for dynamic stability of 
homogeneous beams with piezoelectric actuators located on a 
continuous elastic foundation. In the present work, the 
dynamic stability of a homogeneous beam with piezoelectric 
actuators subjected to periodic axial compressive loads located 
on a continuous elastic foundation is studied. Appling the 
Hamilton's principle, the dynamic equation of beam is derived 
and solved using the harmonic balance method. The effect of 
the applied voltages, piezoelectric thicknesses and foundation 
coefficient on the unstable regions of beam are also discussed. 

 
II.  FORMULATION 

 
 

Fig. 1 Schematic of the problem studied. 
 

 Consider a homogeneous beam with piezoelectric actuators 
and rectangular cross-section as shown in Fig. 1. The 
thickness, length, and width of the beam are denoted, 
respectively, by , , Lh and .b  Also, Th  and Bh  are the 
thickness of top and bottom of piezoelectric actuators, 
respectively. The yx −  plane coincides with the midplane of 
the beam and the −z axis located along the thickness 
direction. The Young's modulus E  and the Poisson's ratio ν  
are assumed to be constant. The beam is assumed to be 
slender, thus, the Euler-Bernoulli beam theory is adopted. The 
piezoelectric layers are also assumed to be polarized along the 
thickness direction. The axial stress and electrical 
displacement can be written as: 
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where  , , , 31eDzxxσ  and 33η  are the normal stress, electrical 
displacement, piezoelectric elastic stiffness, and permittivity 
coefficient, respectively, and u and w  are the displacement 
components in the −x  and −z directions, respectively. 

The potential energy can be expressed as:  
 

∫ −=
v

zzxxxx vEDU d )(
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Substituting Eqs. (2)-(4) into Eq. (5) and neglecting the 
higher-order terms, we obtain: 
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The width of beam is assumed to be constant, which is 

obtained by integrating along y over .v Then Eq. (5) becomes 
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where BT VVDBA  , , , , 111111  and P′  are the extensional stiffness, 
coupling stiffness, bending stiffness, applied voltages on the 
top and bottom actuators and piezoelectric force, respectively. 
When the applied voltage is negative, the piezoelectric force is 
tensile. Note that, no residual stresses due to the piezoelectric 
actuator are considered in the present study and the 
extensional displacement is neglected. Thus, the potential 
energy can be written as: 
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The beam is subjected to the periodic axial compressive 

loads, )(tP as shown in Fig. 2. 
 

 
Fig. 2 Simply supported beam under periodic loads 

 
tPPtPPtP t θβαθ  cos cos)( **

0 +=+=                    (10) 
  
Here, α  and β  are the static and dynamic load factors. The 
work done by the periodic axial compressive load can be 
expressed as: 
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The kinetic energy can be expressed as: 
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where m  is the mass per unit length of the beam. We apply 
the Hamilton's principle to derive the dynamic equation of 
beam, that is: 
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Substitution from Eqs. (9), (11), and (12) into Eq. (13) 

leads to the following dynamic equation: 
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Assume that a homogeneous beam with piezoelectric actuators 
that is simply supported at both ends lies on a continuous 
elastic foundation, whose reaction at every point is 
proportional to the deflection (Winkler foundation). The 
dynamic equation of the homogeneous beams with 
piezoelectric layers located on a continuous elastic foundation 
subjected to a periodic axial compressive load is obtained 
from Eq. (14) by the addition of wη  for the foundation 
reaction as: 
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where η  is the foundation coefficient. 
 

III.  STABILITY ANALYSIS 
For the simply supported boundary condition, the solution 

of the dynamic equation is assumed to be in the following 
form: 
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where )(tf k  are as yet undetermined function of time, 
satisfies this equation. Substituting expression Eq. (16) into 
Eq. (15) leads to the following equation: 
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where kω is the thk  free vibration frequency of homogeneous 
beam with piezoelectric actuators loaded by a constant axial 
force P and kp*  is the critical buckling load. Analogous 
equations are obtained by considering the case of an infinitely 
long beam. In this case, Eq.(16) will be satisfied by assuming 
that: 
 

λ
πλ x
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where the length of the half-wave λ can take on arbitrary 
values from zero to infinity. Substitution leads to Eq.(18), 
where the parameter  λ  plays the part of the index k ; the 
coefficient of the equations depend on this parameter in the 
following manner: 
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Thus, for a given length of the half-wave, the boundaries of 
the principal regions of dynamic instability can be determined 
by the harmonic balance method [8]. Therefore, the boundary 
frequency of the instability region obtained as follow: 
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By neglecting the piezoelectric effect and foundation 

coefficient, Eq. (15) is reduced to the parametric resonance of 
homogeneous beams: 
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where 
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Eq. (25) has been reported by Bolotin [8]. 
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A.  Numerical Results 
The unstable and stable regions of homogeneous beams 

with piezoelectric actuators subjected to periodic axial 
compressive loads are studied in this paper. 

It is assumed that both the top and bottom piezoelectric 
layers have the same thickness; BT hh =  and the same voltages 
are applied to both actuators. The material properties of the 
beam are listed in Table I.  
 

TABLE I 
MATERIAL PROPERTIES 

Homogeneous 
layer 

Piezoelectric 
layer Property 

223.95 63 Young's modulus (GPa)  E  
0.3 0.3 Poisson's ratio ν  

0.3 0.3 Length (m)  L  

0.01 0.00005 Thickness (m)  h  

8900 7600 Density  )(Kgm  -3ρ  

- 17.6 
Piezoelectric constant  

)(Cm    , -2
3231 ee  

 
The effect of the applied voltages on the dynamic stability 

of homogeneous beam with piezoelectric actuators is shown in 
Fig. 3. As can be seen the parametric resonance frequency 
becomes smaller when the applied voltages are positive. The 
unstable region enlarges and shifts to the left when the applied 
voltages are positive and decrease and shift to the right when 
the applied voltages are negative. Fig. 4 illustrates the effect of 
the static load factor α  on the unstable regions. The applied 
voltage is -50 V in the two cases. 

As the static load factor increases, the unstable regions 
enlarge and the parametric resonance frequencies are lower. 
The effect of the piezoelectric force P  on the dynamic 

stability of beam with different actuator thicknesses ah  and 

ah2  is presented in Fig. 5.  
 

 
Fig.  3 Effect of applied voltage on the unstable region 

 

 
Fig.  4 Effect of piezoelectric actuators thickness on the unstable 

region 

 

Fig. 5 Effect of static and dynamic factors on the unstable region 
 

IV.  CONCLUSION 
The dynamic instability analysis of a homogeneous beam 

with piezoelectric actuators has been presented. It was shown 
that the piezoelectric actuators induce tensile piezoelectric 
force produced by applying negative voltages that 
significantly affect the dynamic instability of the 
homogeneous beam with piezoelectric actuators. The width of 
the unstable region decreases when the applied voltage is 
negative. The homogeneous beam with a thinner actuator 
thickness is more efficient in reducing the width of the 
dynamic stability region.  
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