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Abstract—In this article we present a change point detection algo-
rithm based on the continuous wavelet transform. At the beginning of
the article we describe a necessary transformation of a signal which
has to be made for the purpose of change detection. Then case study
related to iron ore sinter production which can be solved using our
proposed technique is discussed. After that we describe a probabilistic
algorithm which can be used to find changes using our transformed
signal. It is shown that our algorithm works well with the presence
of some noise and abnormal random bursts.
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I. INTRODUCTION

C
LASSICAL online change detection algorithms (e.g.

sequential Wald analysis [7], CUSUM, Bayes-type, Fil-

tered Derivative [2] et al.) depend upon the underlying distri-

bution of a signal also they are heavily influenced by random

abnormal bursts and noise. Moreover the overall performance

of these algorithms decreases significantly when we have to

deal with sampled signals with the given sampling interval.

The more the sampling interval is the worse these algorithms

can find change points in the signal.

In this article we consider a robust probabilistic change

detection algorithm which is based on the continuous wavelet

transform. Our proposed algorithm can cope with the above-

mentioned difficulties efficiently. In this article we will give

detailed information about how to transform our original signal

for the purpose of change detection. A case study related

to iron ore sinter production which can be solved using our

proposed technique is discussed.

Now we briefly describe the necessary steps which we

should follow. The first step is to find the continuous wavelet

transform of the original signal. After the transformation has

been made we take absolute maxima and minima values of

the transformation at each translation. As a result of this

operation we have two signals. Finally, we take both these

signals and aggregate them in a new signal which we will call

the aggregated signal. This signal we will use in our change

point detection algorithm in order to find change points in our

original signal. In the following sections we will give detailed

descriptions for each of these steps.

II. ORIGINAL SIGNAL PREPROCESSING

As we mentioned before first of all we have to find the

continuous wavelet transform of the original signal. But before
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that we have to preprocess our original signal in order to

get the right results. Taking into account that every wavelet

function has the following property (1) [4].

∫ +∞

−∞

Ψ(t)dt = 0 (1)

This property means that in general the mean value of a

wavelet function is equal to zero. Due to this property our

aggregated signal will be seriously influenced at the beginning

and at the end of it (i.e. only part of our wavelet function

will be multiplied with our original signal). Therefore our

aggregated signal will have sufficient spikes at the beginning

and at the end of it.

To deal with this problem before transforming our original

signal we need to extend it so we have to add additional

element to the beginning of our signal and to the end of it. It

can be done if we know compact support of a wavelet function.

In this article we will use the Gaussian wavelet function.

The Gaussian wavelet function of nth order looks like (2) [3].

Ψn(x) = (−1)n+1 dn

dxn
e−

x2

2 (2)

In our case we will use first order the Gaussian wavelet

function (3).

Ψ1(x) =
d

dx
e−

x2

2 = −xe−
x2

2 (3)

The first order Gaussian wavelet function has compact sup-

port on the interval x ∈ [−5; 5]. Therefore for this particular

wavelet function necessary amount of elements L which should

be added to our original signal can be calculated as follows

(4).

N+ = L ·R (4)

Where R is width of the right or the left part of our wavelet

function and L is the maximum value of the scaling factor.

For example in the case of the Gaussian wavelet function we

have R=5 and for the given maximum scaling factor L=128,

then amount of additional points which has to be added to our

original signal is N+ = 128 · 5 = 640.

However this amount of points can be reduced considering

the fact that the Gaussian wavelet function decreases very

fast. Therefore in practice for the value of R we can use R=3

without sufficient loss of precision.
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Let U(t) be a value of the original signal at the point t then

U(1) is some value of our signal at the point t=1 and U(n)is
some value of our original signal at the point t=n accordingly.

Thus using our notation the original signal should be extended

in the following way (5).

Ũ(t) = U(0)N+ + U(t) + U(N)N+ (5)

Where N is the length of the signal and expression U(0)N+

means adding to the signal N+ elements of U(0).
Using this modified signal we now can use our wavelet

transform. General formula for the continues wavelet trans-

form looks like (6).

W (a, b) =
1
√
a

∫
∞

−∞

s(t)Ψ(
t− b

a
)dt (6)

Because in practice almost every signal is just a digitized

version of a continuous signal which is represented by a

sequence of digits. Therefore to find the continuous wavelet

transform of some discrete signal we need to modify the

formula of the continuous wavelet transform. The continuous

signal can be represented in terms of some discrete signal Ũ(t)
as follows (7) [1].

Ũδ(t) = Ũ(nT ) =

∞∑

n=−∞

Ũ(t) · δ(t− nT ) (7)

Where Ũδ(t) is the continuous signal which has nonzero

values at the points Ũ(nT ).
Substituting expression for Ũδ(t) into the formula for the

continuous wavelet transform we will get (8).

W (a, b) = 1
√
a

∫
∞

−∞

∑
∞

n=−∞
[Ũ(t) · δ(t− nT )] ·Ψ( t−b

a )dt =

= 1
√
a

∑
∞

n=−∞

∫
∞

−∞
Ũ(t) · δ(t− nT ) ·Ψ( t−b

a )dt
(8)

Taking into account properties of Dirac delta function,

finally we will get (9).

W (a, b) =
1
√
a

N−1∑

t=0

Ũ(t) ·Ψ(
t− b

a
) (9)

Now when we know how to calculate the continuous

wavelet transform of our modified signal we can find the

values of maxima and minima of our wavelet transform.

Formulae for calculating absolute maxima and minima

values of our wavelet transform look like (10) and (11).

Ŵmin(b) =

∣∣∣∣ min
1≤a≤K

{W (a, b)}

∣∣∣∣ (10)

Ŵmax(b) =

∣∣∣∣ max
1≤a≤K

{W (a, b)}

∣∣∣∣ (11)

Where K is the maximum scaling factor of our wavelet

transform.

Then we should reduce the size of the signals Ŵmin(b) and

Ŵmax(b) back to the original size. In order to do so we remove

N+ elements from the beginning and from the end of these

signals. Let denote these reduced signals as: Wmax(b) and

Wmin(b).
After this manipulation has been made we can calculate the

aggregated signal which will be used later. The aggregated

signal is calculated as follows (12).

W∑(b) =
N−1∑

b=0

Wmax(b) +Wmin(b) (12)

Where b ∈ [0, N − 1] and N is the length of the original

signal

Formulae for calculating the expected value and the variance

of the signals Wmin(b) and Wmax(b) through all scaling

factors are given by (13) and (14).

E[Wmax(b)] =

∑N−1
b=0 max

1≤a≤K
{W (a, b)}

N
(13)

D[Wmax(b)] =

N−1∑

b=0

(Wmax(b)− E[Wmax(b)])
2/N (14)

The variance of the aggregated signal can be found from

the expression (15).

D∑[W∑(b)] = D[Wmax(b)] +D[Wmin(b)] (15)

Although the mean value of the wavelet coefficients is

equal to zero this is not true for our case. Because after

this transformations have been made the mean value of our

aggregated signal is not equal to zero.

Due to this the expected value of our aggregated signal can

be calculated similarly to the variance (16).

E∑[W∑(b)] = E[Wmax(b)] + E[Wmin(b)] (16)

Initial values for the variance and the expected value are

needed when we will deal with our change detection algo-

rithm.

III. CASE STUDY

Basically algorithms which can be used to find change

points of a signal have broad range of applications. In our

study we will consider iron ore sinter production plant. More

precisely we will talk about the problem which arises at the ore

stockpile where blending of iron ores takes place [6]. Different

flows of ore and limestone from different sources usually come

to the ore stockpile where these flows are being blended.

These flows usually have different chemical compositions

(usually we are interested in the content of CaO in the

limestone and Fe in the ore).

There are some major problems which are: 1) The chemical

compositions of some flows are not controlled, 2) chemical

analysis of a flow is carried out in discrete moments of

time and the time period between two successive analyses

is quiet long (more than one hour) meanwhile the chemical

composition of a flow is considered constant between suc-

cessive analyses which is wrong (the chemical compositions

of flows are fluctuating in a wide range of values), 3) The
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operator of the ore stockpile calculates the average chemical

composition of an ore pile using the chemical analyses of

flows and consumptions of these flows. Then based on this

average chemical composition, control of the sintering process

is carried out. This average chemical composition can be far

away from the chemical compositions of distinct parts of the

ore pile.

Taking into account these problems we are considering the

case when there is a sensor which is placed before the bins

of a sinter machine. The sensor has abilities to measure the

chemical composition of the blended ore every 10 minutes

(which is relatively fast). Our task is to stabilize the chemical

composition of the sinter to this end we should detect changes

in the trend of the chemical composition (Fe and CaO) of the

blended ore using abovementioned sensor.

We are assuming that because of the abovementioned prob-

lems our ore pile can be divided into some homogeneous parts

with each part having the homogeneous chemical composition.

If we can detect changes in the trend (i.e. moment of time

when we move from one homogeneous part to another) we

can change the chemical composition of the sinter by changing

consumption of the flows.

IV. ROBUST ONLINE CHANGE DETECTION ALGORITHM

In the previous section we described the necessary transfor-

mations of the original signal. As a result of these transfor-

mations we have got our aggregated signal W∑ .

In this section we are going to discuss an online algorithm

of change detection which will work with our signal W∑ . We

construct this algorithm on the basis of statistical hypothesis

testing which is the most common thing for different change

detection algorithms (e.g. sequential Wald analysis, CUSUM

et al.).

So in general we deal with two hypotheses: a null hypothesis

H0 and an alternate hypothesis H1. The null hypothesis means

that there is no change in the mean of our signal. Conversely,

H1 means that there is a change in our signal.

Let pu lim denote the probability of event H1 with respect to

that α = 1−pu lim is the probability of event H0 accordingly.

In accordance with the multiplication theorem for independent

events we can define the joint probability as follows (17) [5].

P∑(t) = P (W∑(1)) · P (W∑(2)) · ...·

·... · P (W∑(t)) =
∏t

j=1 P (W∑(j))
(17)

We should continue our inspection till P∑(t) > pu lim. To

do our algorithm more robust with respect to the underlying

distribution of the signal W∑ we start our inspection when

our signal W∑ crosses given level HU .

Parameter HU can be a vector in case when we need to

have more customization (18).

HT
U = (h0, h1, ..., hk, ..., hn) (18)

So we applied the technique which is used by control charts

algorithms and we start to calculate our joint probability when

W∑(t) ≥ HU (j). Where HU (j) denotes j′s element of the

vector HU (19).

HU (j) = E[W∑(b)] + Λ(j) ·
√
D[W∑(b)] (19)

Where Λ = (λ0, λ1, ..., λn) is our vector of parameters.

Then we calculate the probability that W∑(t) ≥ HU which

can be found from the probability theory (20).

P (W∑(k) ≥ HU (j)) = 1−

∫ HU (j)

−∞

f(W )dW (20)

Where f(W ) is the cumulative distribution function of our

signal W∑ .

In the case of the normal distribution this equation can be

rewritten in this form (21)

P (|W∑(k)− E[W∑(k)]| < ε) = Φ(ε/
√
D[W∑(b)]) (21)

Taking into account that we have the one-sided condition

W∑(t) ≥ HU finally we can write our expression in this form

(22)

P (W∑(k)− E[W∑(k)] ≥ HU (j)) =

= 1
2 − 1

2Φ(HU (j)/
√
D[W∑(b)])

(22)

Where Φ(x) is the Laplace function which is given by (23)

Φ(x) =
2

√
2π

∫ x

0

e−x2/2dx (23)

And λj are the tuning parameters and can be used to define

some specific behaviour of the algorithm and they depend on

both the signal characteristics and the type of changes.

For example, for the normal distribution we can set Λ to be

ΛT = (1, 2, 3), in the case when the variance of our signal

is known otherwise we can use t-table.

To do our algorithm more robust to some random abnormal

bursts we should set P∑(t) = 1 every time when W∑(t)
becomes less than HU (24).

W∑(t) < E[W∑(b)] + Λ(j) ·
√
D[W∑(b)] (24)

After we have detected some change point we should have

to turn off our detector and start only when we have gone

down from the hill (see figure 1 for example).

For this reason we introduced a new parameter HD. The

parameter HD can be set in the following way: after we have

detected a change in our signal we should start our inspection

again only when W∑(t) ≤ HD.

In order to do so we defined this parameter as follows (25).

HD = E[W∑(b)] + β ·
√
D[W∑(b)] (25)

Where β is the tuning parameter which along with the λj

can be set depending on both the signal characteristics and the

type of changes.

Therefore, in the case of the normal distribution we can

put β = 0, this means that we wait until our random variable

W∑(t) crosses its expected value. It is worth noting that we

can also set our parameter β in the following way ΩT =
(β0, β1, ..., βn). Thus, we only need to set these parameters:

pu lim, HU and HD to use our algorithm.
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V. EXPERIMENTAL SETUP AND RESULTS

For testing our algorithm we used two signals (CaO and Fe)

generated by the following formula (26).

S(t, n) = N(M(n), σ2) + Z(t) · ε ±N(0, σ̃2) (26)

Where N(M(n), σ2) is a normally distributed random vari-

able with the mean M(n) and the variance σ2, Z(t) · ε is an

element which is used to introduce abnormal random bursts in

the signal (where Z(t) is a random variable and it takes only

two values 0 or 1 with the probability p=0.5 and ε is also a

random variable it takes values within the range a ≤ ε ≤ b

and it has the uniform distribution), N(0, σ̃2) is a normally

distributed random variable with the zero mean and the given

variance σ̃2 and it represents a noise which influences our

signal (It is a noise which is introduced by our sensor).

The random variable N(M(n), σ2) represents our real sig-

nal and the whole expression (26) represents the corrupted

signal. Taking into account that our sensor can measure only

every ten minutes before using our signal S(t, n) we should

sample it every ten minutes. By doing so we get the signal

which is being measured by our sensor i.e. the measured

signal.

For simulation purposes we took following values for

the abovementioned parameters: σ̃2
Fe = 0.52, σ̃2

CaO =
0.32, σ2

Fe = 12, σ2
CaO = 0.52,−5 ≤ εFe ≤ 5,−1 ≤ εCaO ≤

1. We based on the real signals of Fe and CaO along with the

information about the sensor.

Initial values for the means of our signals: MFe(0) = 60.7
and MCaO(0) = 3.71.

We introduced six change points in the mean of the every

signal (i.e. we were changing M(n) at random moments of

time).

For instance, the expression for the Fe signal which is

introduced a change in its mean value (27).

MFe(n+ 1) = MFe(n)± Z(t) · 2σFe (27)

After applying our algorithm to the signal of Fe we got

the results which are shown in figure 1. From this figure it

is clearly seen that our algorithm found too many redundant

points.

VI. MODIFIED VERSION OF THE ALGORITHM

The general cause of such behaviour is the presence of some

noise and some abnormal bursts in our signal.

Let’s consider this problem in more detail (see figure 2).

From this figure you can see that our algorithm detected two

points. First of all it detected one point (the left one) and then

our algorithm turned off according to this condition W∑(t) ≤
HD until it crossed the expected value of the signal W∑(t) (in

figure 2 blue asterisk line shows the expected value of W∑(t)).
It can be seen from this figure that the second point (the right

one) was detected due to some abnormal burst which occurred

in the signal.

In order to make our algorithm robust with respect to occa-

sional random bursts we introduced the following parameter

PD∑(t). It has almost the same meaning as our joint probability

which was discussed earlier. There is only one difference

Fig. 1. Application of our algorithm to the signal of Fe (Blue squares are
points which are detected by our algorithm, cyan squares are real changes of
the signal; x-axis is time (in minutes) and y-axis is values of our aggregated
signal W∑ (t)).

Fig. 2. Redundant point (the right one) which was wrongly detected by our
algorithm due to some abnormal random burst in the signal.

between these two parameters, we start to calculate PD∑(t)
as soon as W∑(t) ≤ HD. Meanwhile we are calculating

the probabilities that the random variable W∑(t) crossed the

boundary value of HD.

Analogously to the joint probability we should set PD∑(t) =
1 whenever W∑(t) becomes greater than HD (28).

W∑(t) > E[W∑(b)] + β ·
√
D[W∑(b)] (28)

Let pd lim denote the tolerance probability for this case. Our

experience shows that in practice it can be set in the following

way pu lim = pd lim. It is worth noting that HD can be used as

the tuning parameter. (For instance, in the case of close events

(i.e. signal changes) it is recommended to increase the value

of HD).

Figure 3 shows the results for the signal of Fe after

modification of our algorithm. It is seen from the figure that

our algorithm works well on our testing signal of Fe. To test
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Fig. 3. Results for the signal of Fe (Blue squares are points which are
detected by our algorithm, cyan squares are real changes of the signal)

TABLE I
RESULTS OF OUR ALGORITHM ON TWO TESTING SIGNALS

Parameters for Detected Expected False Variance

the signal of Fe points value detection

Λ
T

= (1.5, 2, 2.5, 3)

β = 0, pu lim = 0.005 6 44,2 0 368,8

Parameters for Detected Expected False Variance

the signal of CaO points value detection

Λ
T

= (1, 2, 2.5, 3)

β = 0, pu lim = 0.006 6 41,8 0 350,4

our modified algorithm we generated signals for Fe and CaO

many times and then we used our algorithm to detect change

points. The algorithm shows good results for both the signal of

Fe and the signal of CaO as it is able to detect all six change

points in our signals.

Parameters we used to test our algorithm along with the

estimations of the expected value and the variance of the

detection are summarized in table 1.

VII. CONCLUSIONS

In this article we described the robust online change detec-

tion algorithm which can be used to detect changes in signals

with some presence of noise and abnormal bursts.

We considered the case study which is related to sinter

production. In this article we assumed that the mean values

and the variances of the both signals are constants if it is not

true they can be calculated iteratively.

It is worth noting that despite the fact that in this article we

used the normal distribution for calculating probabilities our

algorithm can work well with different types of distributions

because it has the tuning parameters and it uses the starting

rule which is used by control charts.

Finally we presented the results for our testing signals of

Fe and CaO which show that our algorithm works well and it

is able to detect all change points, in spite of the fact that the

signals were sampled every 10 minutes.
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