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Abstract—This study presents a hybrid neural network and 

Gravitational Search Algorithm (HNGSA) method to solve well 
known Wessinger's equation. To aim this purpose, gravitational 
search algorithm (GSA) technique is applied to train a multi-layer 
perceptron neural network, which is used as approximation solution 
of the Wessinger's equation. A trial solution of the differential 
equation is written as sum of two parts. The first part satisfies the 
initial/ boundary conditions and does not contain any adjustable 
parameters and the second part which is constructed so as not to 
affect the initial/boundary conditions. The second part involves 
adjustable parameters (the weights and biases) for a multi-layer 
perceptron neural network. In order to demonstrate the presented 
method, the obtained results of the proposed method are compared 
with some known numerical methods. The given results show that 
presented method can introduce a closer form to the analytic solution 
than other numerical methods. Present method can be easily extended 
to solve a wide range of problems. 
 

Keywords—Neural Networks; Gravitational Search Algorithm 
(GSR); Wessinger's Equation.  

I. INTRODUCTION 
ONLINEAR phenomena, which are modeled with 
nonlinear differential equations, appear in different 
domains of engineering such as fluid dynamics, 

aerodynamics, nonlinear control systems, electrical 
engineering, and etc [1]. Many different methods have been 
developed for solving differential equations. However, the 
solution of nonlinear differential equations is still challenging 
[1, 2]. 

Lee and Kang [3] used parallel processor computers in 
order to solve a first order differential equation using Hopfield 
neural network models. Meade and Fernandez [4, 5] used feed 
forward neural networks architecture and B1 splines to solve  
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linear and nonlinear ordinary differential equations. Lagaris et 
al. represented a new method to solve First order linear 
ordinary and partitial differential equations using artificial 
neural networks [2]. Malek and Shekari Beidokhti used a  
hybrid artificial neural network- Nelder-Mead method to solve 
high order linear differential equations [6]. A hybrid artificial 
neural network- swarm intelligence method was used by Khan 
et al. to solve Wessinger's equation [1]. In that work (i.e. Ref 
[1]), the presented method could not satisfy the initial/ 
boundary conditions. In contrast with Khan et al. [1], present 
study introduces a hybrid artificial neural networks and 
gravitational search algorithm method to solve Wesingger's 
equation which satisfies the initial/ boundary conditions. 
Finally, in order to demonstrate the presented method, fair 
comparisons are made on same problem which are solved 
using the other numerical methods. The paper is organized as 
follows. A brief review of artificial neural networks and 
gravitational search algorithm are brought in Sections 2 and 3, 
respectively. Section 4 gives details of problem formulation 
and novel solution model. Numerical results are discussed in 
Section 5. Finally, conclusions and directions for future 
research are presented in section 6. 

II. ARTIFICIAL NEURAL NETWORKS (ANNS) 
Neural networks are computational models of the biological 

brain. Like the brain, a neural network comprises a large 
number of interconnected neurons. Each neuron is capable of 
performing only simple computation [7].Any how, the 
architecture of an artificial neuron is simpler than a biological 
neuron. ANNs are constructed in layer connects to one or 
more hidden layers where the factual processing is 
performance through weighted connections. Each neuron in 
the hidden layer joins to all neurons in the output layer. The 
results of the processing are acquired from the output layer. 
Learning in ANNs is achieved through particular training 
algorithms which are expanded in accordance with the 
learning laws, assumed to simulate the learning mechanisms 
of biological system [8]. However, as an assembly of neurons, 
a neural network can learn to perform complex tasks including 
pattern recognition, system identification, trend prediction, 
function approximation, and process control [7].  

Multi-layer Perceptron (MLPs) are perhaps the most 
common type of feedforward networks [9]. Their application 
in function approximation is well known [6]. Fig.1 shows an 
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MLP which has three layers: an input layer, an output layer 
and a hidden layer. 

Neurons in input layer only act as buffers for distributing 
the input signals ix to neurons in the hidden layer. Each 
neurons j (Fig. 2) in the hidden layer sums up its input signals 

ix after weighting them with the strengths of the respective 
connections jiw from the input layer and adding the bias ib  

to them, and computes its output jn as a function g of the sum, 
viz. 

( )∑ += jijij bxwgn                                    (1)  

where jn  is each neuron output and g can be a simple 
threshold function or a sigmoid, Gaussian, hyperbolic tangent 
or radial basis function.  

 
Fig. 1 A multi-layer perceptron. 

 

 
Fig. 2 Details of a neuron. 

 
From Kolmogorov existence theorem, any continuous 

function of n variable can be approximated using a three-
layered perceptron with ( )1n2n +  nodes [10, 11]. So, the 
accuracy of the approximation dose not depend on the number 
of the hidden layers, but it fully depends on the number of 
neurons in the hidden layer [6].  

Fig.3 shows a three-layered perceptron with one input x , 
one hidden layer consisting of H neuron, and one output 

)p,x(N . This structure is used in the present method. For 
each entry x  the network output is computed 

by ( )( )∑ =
+=

H
1i iii bxwgv)p,x(N , which iw  is a weight 

parameter from input layer to ith neuron in hidden layer; iv  is 

a weight parameter from ith neuron in hidden layer to output 
layer, and ib  is a bias  for ith neuron in hidden layer. For 
more details reders are refered to [12]. 

Some of benefits of hybrid ANNs and optimization 
techniques are listed in [2]. 

The training of an MLP network involves the minimization 
of an error function. As it is mentioned subsequently, this 
study lets the network learn from the theory of differential 
equations in order to approximate a function consisting 
adjustable parameters.  

III. GRAVITATIONAL SEARCH ALGORITHM (GSA) 
Heuristic algorithms mimic biological or physical 

processes. One of the newest heuristic algorithms that has 
been inspired by the physical laws is Gravitational Search 
Algorithm (GSA) [13]. 

In GSA, Newtonian laws of gravity and motion are applied 
to find the optimum solution by a set of agents called masses 
[14].  

 
Fig. 3 Details of a three layerd perceptron with one input, one hidden 

layer (consist H neuron), and one output. 
 

To describe the GSA consider a system with s masses in 
which position of the ith mass is defined as follow: 

),x,...,x,...,x(X n
i

d
i

1
ii =         s,...,2,1i =             (2) 

where d
iX  is position of the ith mass in the dth dimension 

and n is dimension of the search space.  
Mass of each agent is calculated after computing current 

population’s fitness as follows [13, 14]: 

( )
)t(worst)t(best
)t(worst)t(fittq i

i −
−

=                          (3) 

( )
∑

=

= s

1j
j

i
i

)t(q

)t(qtM                                        (4) 

where Mi(t) and fiti(t) represent the mass and the fitness value 
of the agent i at t, respectively. For a minimization problem, 
worst(t) and best(t) are defined as follows [14]: 
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)t(fitmax)t(worst j
}s,...,1{j∈

=                                   (6) 

To compute acceleration of an agent, total forces from a set 
of heavier masses that apply on an agent should be considered 
based on the law of gravity (Eq. (7)), which is followed by 
calculation of agent acceleration using the law of motion (Eq. 
(8)). Afterwards, velocity and then position of an agent are 
updated according to Eqs. (9) and (10): 

( ))t(x)t(x
)t(R

)t(M)t(M
)t(Grand)t(F d

i
d
j

ijkbest j ij

ij
j

d
i −

ε+
= ∑

≠∈

       (7) 

( ))t(x)t(x
)t(R

)t(M
)t(Grand

)t(M
)t(F)t(a d

i
d
j

ijkbest j ij

j
j

i

d
id

i −
ε+

== ∑
≠∈

 (8) 

)t(a)t(vrand)1t(v d
i

d
ii

d
i +×=+                                            (9) 

)1t(v)t(x)1t(x d
i

d
i

d
i ++=+                                             (10) 

where randi and randj are two uniformly distributed random 
numbers in the interval [0,1], ε  is a small value, Rij(t) is the 
Euclidean distance between two agents i and j, defined as 

2gi )t(X),t(X , kbest is the set of first K agents with the best 

fitness value and biggest mass, which is a function of time, 
initialized to K0 at the beginning and decreasing with time. 
Here K0 is set to s (total number of agents) and is decreased 
linearly to1. In GSA, the gravitational constant, G, will take 
an initial value, G0, and it will be reduced with time [14]: 

)t,G(G)t(G 0=                                      (11) 
The GAS algorithm is composed of following steps: 
(a) Search space identification. 
(b) Randomized initialization. 
(c) Fitness evaluation of agents. 
(d) Update G(t), best(t), worst(t) and Mi(t) for i = 1,2,. . .,N. 
(e) Calculation of the total force in different directions. 
(f) Calculation of acceleration and velocity. 
(g) Updating agents’ position. 
(h) Repeat steps c to g until the stop criteria is reached. 
(i) End. 
user-specified parameters of GSA are number of population 

for each group (p), number of groups (n), portions of old 
member (r1), portions of Leader member (r2), portions of 
random (r3) and iteration number (t). 

As it is mentioned earlier, the multi layered feed forward 
neural networks are trainable. So, many different kinds of 
training algorithm can be used to gain optimum adjustable 
parameters for the corresponding multi-layered perceptron. In 
some cases which are called "ill-conditioned problems", the 
traditional training algorithms can not determine the 
adjustable parameters (weights and biases) properly [6]. Using 
gravitational search algorithm in presented method helps not 
suffer from such difficulties. The GSA algorithm is coded 
with MATLAB 2007. 

 
 

IV. PROBLEM FORMULATION 
A general form of first order nonlinear ODE is as the 

following form: 

( )

( )[ ] .bor/andat,0ty,tC

Dt,0
dt
dy,ty,tf

==

∈=⎟
⎠
⎞

⎜
⎝
⎛

          (12) 

Where f  is any arbitrary function, C  is an boundary 
operator, and D denotes the definition domain in [a,b]. Here t 
is independent variable belongs to D, and ( )ty  is an unknown 
dependent variable to be calculated.  

In order to solve Eq.12, assume a discretization of the 
domain D with m arbitrary points. Now, the problem can be 
transformed to the following set of equations: 

( ) ( ) m,...,2,1i,Dt,0
dt

tdy,ty,tf i
i

ii =∈∀=⎟
⎠
⎞

⎜
⎝
⎛      (13) 

subject to given initial/boundary conditions. 

Let assume ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →
p,tyT  as approximate solution to Eq13. 

where 
→
p  is a vector which contains adjustable parameters.  

These parameters (i.e. adjustable parameters) should be 
determined regarding to minimize the following sum of 
squared errors, subject to given initial/boundary conditions. 

( ) ∑
=

→

→

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m

1i

2

iT

iTi dt

p,tyd
,p,ty,tfpError

r
     (14) 

In order to transform Eq.14 to an unconstrained problem  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →
p,tyT  is written as following form:  

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ →→
p,tN,tFtAp,tyT                                          (15)     

where the first term satisfies the initial/ boundary conditions 
and does not contain any adjustable parameters and the second 
term which is constructed so as not to affect the 

initial/boundary conditions. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →
p,tN  is a multi-layer 

perceptron neural network which involves adjustable 
parameters (the weights and biases). The both terms in Eq.15 
should be written in the proper forms. 

For a first order nonlinear ODE the boundary conditions are 
defined as follows: 

( ) ( ) ba Lby,Lay ==                                  (16) 
The suggested trial function is written as: 

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟

⎠

⎞
⎜
⎝

⎛
−
−
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⎞
⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →→
p,tNbtatt

ab
LL

ab
aLbLp,ty abba

T (17) 

In order to calculate ( )pError
r

 function, trail function 
derivation respect to independent variable t is needed.   

In this study, sigmoid function is used as transfer functions 
of each neuron in the hidden layer.    

)t(fitmin)t(best j
}s,...,1{j∈

=
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Derivation of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →
p,tN with sigmoid transfer function 

( )⎟⎟
⎠

⎞
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⎝

⎛
−+ texp1

1 is as follows: 
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1wv
dt
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Now, the gravitational search algorithm technique can be 

applied in order to determine optimal adjustable parameters of 
neural networks regarding to minimize ( )pError

r
 function. 

V. NUMERICAL RESULTS 
In order to demonstrate the presented method, fair 

comparisons are made on Wessinger's equation which has 
been solved using the other numerical methods in [1]. To aim 
this purpose, same time step (i.e. a time step size of 0.1 sec) is 
used in this study which had been used in [1]. 

Wessinger's equation is written as follow: 
( )( )

( )
2
33)4(y,

2
31y

3t1,0yty1ttyyyyt 222322

==

≥≥=−′++′−′
   (19) 

The exact solution is 
2
1t)t(y 2 +=  

Methods like Euler, improved Euler and Runge-Kutta do 
not work for fully implicit differential equations like 
Wessinger's equation.    

Using Eq.16, the trial solution must be written as 

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ →→
p,tN4t1t

6
19t

3
5p,tyT  

The method is successfully used to well known Wessinger's 
equation as a fully implicit first order nonlinear differential 
equation. For best given results, a sigmoid transfer function 
base multi layer perceptron neural network with four neurons 
had ( )pError

r
= 41008.3 −× . Following combination of user-

specified parameters of GSA are used for this problem:  
The number of population for each group (p): 200 
The number of groups (n): 40  
The portions of old member (r1) = 0.6                 
The portions of Leader member (r2) = 0.3                  
The portions of random (r3): 0.1                 
Iteration number (t): 400   
The optimal adaptive parameters obtain by our proposed 

method are shown in Table 1. 
Comparison of results obtained using proposed method in 

this study and the other numerical methods are shown in Table 
2. 

As it can be seen in this Table, the proposed method can 
introduce a closer form to the analytic solution for this 
problem. 

 
 

TABLE I 
OPTIMAL ADAPTIVE PARAMETERS OBTAIN BY PRESENT METHOD 

Index (i) 
 HNNGSA 

 iw  ib  iv  
1  -1.679 -1.4165 0.1712 
2  -0.2738 -2.089 0.3209 
3  -1.7586 -1.6806 0.0125 
4  -1.8084 -1.8684 0.3579 

 
TABLE II 

 COMPARISON OF RESULTS OBTAINED USING PROPOSED METHOD IN THIS 
STUDY AND THE OTHER NUMERICAL METHODS. 

Time 
(i) 

Exact 
( )ty  
 

DEN
( )tyDENN

 [1] 

HNNGS
A 
( )tyT  

Relative Error 

DENNE  TE  

1 1.224745 -- 1.224745 -- 0 
1.1 1.307670 1.3077 1.30744 7.95E-05 2.30E-04 
1.3 1.479865 1.4801 1.479646 2.20E-04 2.19E-04 
1.5 1.658312 1.6586 1.658342 2.49E-04 2.98E-05 
1.7 1.841195 1.8415 1.841444 2.89E-04 2.49E-04 
1.9 2.027313 2.0276 2.027654 3.28E-04 3.41E-04 
2.1 2.215852 2.2162 2.216159 3.37E-04 3.07E-04 
2.3 2.406242 2.4065 2.406436 3.03E-04 1.94E-04 
3.3 2.598076 3.375 3.37481 1.26E-04 9.71E-05 
3.5 2.791057 3.5709 3.570681 1.94E-04 3.35E-05 
3.7 2.984962 3.7672 3.766983 2.16E-04 2.16E-05 
3.9 3.179623 3.9636 3.963613 6.01E-05 2.83E-05 
4 4.062019 -- 4.062019 -- 0 

VI. CONCLUSION 
This study presented a new method in order to solve first 

order nonlinear ODEs using a new hybrid of artificial neural 
networks and gravitational search algorithm. Although 
Wessinger's equation was considered in this study, but the 
proposed approach is quite general. When the obtained results 
are compared with the other approximation methods which are 
mentioned in the literature; it appears to be best. Sigmoid 
function was used as transfer function for the solution in this 
study. Although the obtained results have acceptable accuracy 
but increasing the number of training data (decreasing the time 
step) can improved the error function. Future work is focused 
on comparing the effect of changing the type of neural 
networks or optimization techniques, on minimizing the error 
function. 
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