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Abstract—The linear methods of heart rate variability analysis 

such as non-parametric (e.g. fast Fourier transform analysis) and 
parametric methods (e.g. autoregressive modeling) has become an 
established non-invasive tool for marking the cardiac health, but their 
sensitivity and specificity were found to be lower than expected with 
positive predictive value <30%. This may be due to considering the 
RR-interval series as stationary and re-sampling them prior to their 
use for analysis, whereas actually it is not. This paper reviews the 
non-linear methods of HRV analysis such as correlation dimension, 
largest Lyupnov exponent, power law slope, fractal analysis, 
detrended fluctuation analysis, complexity measure etc. which are 
currently becoming popular as these uses the actual RR-interval 
series. These methods are expected to highly accurate cardiac health 
prognosis. 

Keywords—chaos, nonlinear dynamics, sample entropy, 
approximate entropy, detrended fluctuation analysis.  

I. INTRODUCTION 
HE linear methods of HRV analysis (such as time and 
spectral domain measures) asumes that analysed segments 

of RR-interval series are stationary or variations are harmonic 
or sinusoidal in nature. However, the heart rate is 
continuously modulated nonlinear fluctuations. These 
nonlinear fluctuations can be due to postural or physical 
activities, multip         le interactions with other physiological 
systems and it may also be affected by small perturbations 
(e.g. premature ventricular contraction, atrioventricular 
block). So, linear methods of HRV analysis are prone to give 
inaccurate heart health prognosis. The sensitivity and 
specificity of these measures were found to be lower than 
expected with positive predictive value of <30%. Moreover, 
the prediction capability has been found to be unexpectedly 
similar with both time and spectral domain measures. The 
spectral analyses were able to quantify the principal rhythmic 
components of autonomic control in the HRV signal. The high 
frequency (HF) and low frequency (LF) components of power 
spectral density of HRV signal signified para-sympathetic 
(vagal) and sympathetic tone respectively. The predominant 
LF and smaller HF in MI patients were found to be due to 
reduced vagal tone but markedly reduced LF power in high 
risk patients was unexplanable. These unanswered queries 
have led to the interest in analysing original RR-interval time 
series with comprehensive account of peripheral mechanisms 
influencing the cardiac rhythm [1],[2],[20]. 

The non-linear fluctuations are not completely random in 
nature, but these follows chaotic nature and exhibit short 
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range correlations which can be determined by deterministic 
laws. The non-linear methods for HRV analysis are proposed 
to give better insight of autonomic control based upon 
nonlinear mathmatics and chaos theory. These are broadly 
classified based upon system trajectory in its phase space, 
computing fractal dimensions, determinig self- similarirty 
properties or by determining short and long-range 
correlations. These methods can describe complexity or fractal 
dynamics of RR-interval series and their predictive value for 
risk stratification is expected to be higher than the linear 
methods of time and frequency domain methods. It is to be 
noted that amount of information can not be extracted with 
single approach because specific patterns of fluctuations 
present in the variability signal and duration of recording may 
require different modalities for their study. This paper 
presents the comprehensive review of various non-linear 
methods currently being used for investigating the heart rate 
variability dynamics [4],[6],[18],[19],[32]. 

II. METHODS 
The nonlinear methods of HRV analysis are based on 

theory of chaos. For a dynamical system to be classified as 
chaotic it must be sensitive to initial conditions which means 
that each point in phase space of such a system is closely 
approximated by other points with significantly different 
future trajectories. Their phase space must be topologically 
mixing means that the system will evolve over time so that 
any given region or open set of its phase space will eventually 
overlap with any other given region. This gives the impression 
that the system is behaving randomly, but these systems are 
deterministic in nature as   their future dynamics can be fully 
determined by their initial conditions with no random 
elements involved. This type of behavior is known as 
deterministic chaos or simply chaos. Linear systems are never 
chaotic and for a dynamical system to display chaotic 
behaviour it has to be nonlinear in nature. The various 
nonlinear methods courrently being used for HRV analysis are 
described in next sections [7], [8],[15], [21]. 

A. Correlation Dimension Analysis 
Phase space indicates all possible states of a system   with 

each possible state indicated by one unique point in the phase 
space. Some dynamical systems are chaotic everywhere but in 
many cases chaotic behaviour is found only in a subset of 
phase space. The interesting case arises when chaotic 
behaviour takes place on an attractor. The chaotic motion 
gives rise to what are known as strange attractors, attractors 
that can have great detail and complexity. Correlation 
dimension is one of the most widely used measures of fractal 
dimension and is a useful indicator for various pathologies 
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such as ventricular tachycardia, congestive heart failure. For a 
RR-interval series having N data points, the phase space plot 
is constructed with heart rate X[n] on the x-axis and heart rate 
after a delay on the y-axis  i.e. X [n+1]. The embedding 
dimension of 10 and delay of 1 is chosen for heart rate signals. 
The spread of phase space plot differs as per the cardiac health 
or kind of disease. The idea in correlation dimension (CD) is 
to construct a probability function C(r) such that two arbitrary 
points on the orbit are closer together than r. This is done by 
calculating separation between every two points in the set of 
N number of data points and sorting them into bins of dr 
proportionate to r. The CD can be calculated using distance 
between each pair of points in the set of N number of points  

                            ji XXjis −=),(                           (1) 

A correlation is then calculated using: 

×= 2

1)(
N

rC (Number of pairs of ),( ji with rjis <),( ) 

                                      DkrrC =)(                                  (2) 
So, CD is estimated by: 

                               
)log(
))(log(lim

0 r
rCCD

r→
=                        (3) 

The CD is high for chaotic data and it decreases with decrease 
in variation of RR-interval series [22]. 

B. Largest Lyupnov Exponent 
The phase space determined by ploting RR-interval seies 

consists of different trajectories. The exponential divergence 
of neighboring trajectories is indicative of sensitivity of 
system on its initial conditions. These trajectories folds up to 
ensure that solutions are finite and these are general 
mechanism for generating deterministic randomness. The 
Lyupnov exponent (λ) is measure of this sensitive dependence 
of neighboring trajectories on initial conditions or the rate at 
which these trajectories separate from each other. The positive 
Lyupnov exponent for all bounded dynamical systems is used 
and are said to be on chaotic attractor. Negative Lyupnov 
exponent indicate that trajectories approaches a common fixed 
point. To determine Lyupnov exponent,  two nearby points x0   
and   x0+ ∆ x0 will generate orbits of its own and separation  ∆ 
x0 wil be function of time ∆ x0(x0, t) . For chaotic data the 
mean exponential rate of divergence of two initially close 
orbits is characterised by: 

                      
x
xx

t
t

t Δ

Δ
=
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ln1lim ,0λ                            (4) 

Maximum positive λ is chosen as it quantify sensitivity of 
the system to initial consditions and gives a measure of 
predictability This value decreases for slowly varying signals 
such as in ischemic or dilated cardiomyopathy and will be 
higher in normal cases [26],[27]. 

C. Power law slope 
The power law slope measures the long term fractal scaling of 
heart rate variability signal based upon spectral power in HRV 
signal in 24 hours of data recording. When HRV signal is 
analysed in frequency domain, the variance is determined in 
various spectral ranges of ULF, VLF, LF and HF. The power 
spectrum is plotted on log-log scale and it has been observed 
that amount of power is increased as the frequency decreases. 
This relationship is termed as 1/f   relationship and region 
between 0.1 to 0.0001 Hz is used to determine power law 
slope. The power law slope in healthy and normal subjects has 
been observed to be around ≈ -1 and it becomes steeper in 
case of diseased subjects, such as in patients with heart 
transplant or in patients after myocardial infarction. The 
power law regression parameters have proved to be stronge 
predictors’ death from any cause or arrhythmic death 
[21],[24]. 

D. Detrended Fluctuation Analysis 
The highly complex heart rate signals are non-linear, non-

stationary and non-equilibrium in nature.These highly 
complex heart rate series may contain important hidden 
information not extractable using conventional methods. 
Fractal analysis is an important approach to extract such 
hidden information in such complex dynamics. 
 
1) Fractals and heart rate dynamics 
 

The concept of fractals is generally associated with 
geometrical objects, satisying two criterias: self-similarity and 
fractional dimensionality. Self similarity means that the object 
is composed of sub-units and sub-sub units on multiple scale 
levels that statistically resemble the whole object structure. 
There are upper and lower limits of scale over which this self-
similar behaviour applies. The second criterion is that fractal 
objects should have a fractional dimension which 
distinguishes it from Euclidean objects. The concept fractal 
structures, which do not have characteristic length scale can 
be extended for analysis of complex temporal proceses such 
as heart rate time series. But there is challenge in detecting 
self similar process in heart rate time series  as it involves two 
independent physical units (minutes on x-axis and 
beats/minute on y-axis), so we need two magnification factors 
[12],[13]. 

A time series is self-similar if the statistical properties of a 
time series and its rescaled subunits are identical. Although 
self-smilarity may not be attained with higher order of 
moments, so it is usually approximated with a weaker 
criterion of mean and variance. Mathematically, if: 

)(ty - is heart rate time series with y (heart rate on y-axis) 
and     
time in minutes on x-axis. Then rescaled process: 

)/( atyaα : Re-scaled on x-axis by factor of ‘ a ’(i.e. 

att /→ ) and on y-axis by a factor of αa (i.e. yay α→ ). 
Where ‘α ’ is self-similarity parameter. The self-similarity 
parameter can be evaluated with appropriate choice of scaling 
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factors on x and y-axis. If xm and ym are scaling factors on x 

and y-axis respectively, then self-similarity parameter is given 
by: 

                      
)ln(
)ln(

y

x

m
m

=α                                           (5) 

Where scaling factors xm and ym are evaluated as: 

xm = 12 / nn    and ym = 12 / ss  for given observation 

windows 2n and 1n on x-axis and corresponding standard 

deviation ( 2s and 1s ) probability distributions histograms for 
these two observation windows. The actual analysis of time 
series for determination of ‘α ’ is performed by deviding time 
series in equal window size and then averaging the standard 
deviation over all windows. This calculation is performed 
over window sizes. The ‘α ’ is estimated by fitting log-log 
plot of s versus n [3]. 
 
2) Mapping of heart rate time series to self-similar process 
 

In self-similar process with α > 0, the fluctuations grow in 
a power law fashion with increase in window size. So, the 
fluctuations become exponentially larger in large sized 
windows, thereby the time series becomes unbounded. 
However, physiological time series such as heart rate time 
series are bounded for any size of data set. This practical fact 
causes still further complications for analysis. Moreover, the 
self-similarity parameter may result in same values for a heart 
rate time series and a randomized data although they are 
different in nature. To counter this problem, it is suggested 
that fractal properties of accumulated (integrated) time series 
is to be studied rather than that of original signals as it will be 
able to distinguish the time series. So, mapping original 
bounded time series to an integrated time series is crucial step 
in fractal time series analysis. The physiological time-series 
are often highly non-stationary and integration process makes 
its non-stationarity even more apparent. So, to overcome this, 
a modified root mean square analysis of biological data is 
proposed, which is termed as detrended fluctuation analysis 
(DFA). It permits detection of intrinsic self-similarity in a 
seemingly nonstationary time series and avoids spurious 
detection of apparent sel-similarity which may be due to 
artifact of extrinsic trends. DFA works well with time-series 
whos trends vary slowly. 

Detrended fluctuation analysis provides a quantitative 
method for determining the degree to which a time series is 
random at the one extreme and correlated at the other. DFA 
ranges in value from 0.5 (random) to 1.5 (correlated), with 
normal values of just over 1.0. Decreased DFA (also called 
alpha 1) has been associated with adverse outcomes in cardiac 
patient populations.The details of this method have been 
described below. Only N-N intervals were used for this 
calculation. DFA can be considered a short-term nonlinear 
measure [11]. 

The DFA algorithm is applied to interbeat time series 
containing ‘N’ number of intervals. This interbeat time-series 
is integrated as: 

                   [ ]∑
=

−=
k

i
aveBiBky

1
)()(                            (6) 

Where )(iB is the i-th interbeat interval and aveB is average 
interbeat interval. This integration step maps the original time 
series for self-similarity process.For self-similarity process, 
the integrated time-series is devided into boxes of equal length 
‘n’. A least square line is fit to data in each box. The y-
coordinate of this least square line in each box is denoted 
by )(kyn . The time series )(ky  is detrended by subtracting 

the local trend )(kyn in each box from integrated time 

series )(ky . The characteristic size of fluctuation is given 
by )(nF : 

                [ ]∑
=

−=
N

K
n kyky

N
nF

1

2)()(1)(                (7) 

)(nF is computed over all box sizes or time scales. To give 
relationship between ‘ )(nF ’ and ‘n’. A linear graph between 
‘ )(log nF ’ and ‘log n’ indicates presence of self-similarity. 
The slope of line relating ‘ )(nF ’ and ‘n’ determines the 
scaling exponent (self-similarity parameter) α . The scaling 
parameter is characterized by as follows: 

� In white noise, where value at a given instant is 
completely uncorrelated with any previous value, the 
value of self-similarity parameter α approaches 0.5. 

� The initial slope of )(log nF  Vs   log n may be 
different from 0.5, but will approach 0.5 for large 
window sizes. 

� The value of α greater than 0.5 and less than or equal to 
1.0 indcates persistent long range power-law 
correlations. 

� When 0<α <0.5, power law anticorrelations are present 
such that large values are more likely to be followed by 
small values. 

� When α >1, correlations exists but cease to be of power 
law form. 

� The spectrum of original non-integrated signal is of 
power law form  

βffS /1~)( , where 12 −= αβ , and for α =1,  

                          ffS /1~)(                               (8) 

So, f/1 noise is interpreted as compromise between 
complete unpredictability of white noise and much smoother 
Brownian noise [14],[16],[19],[28]. 

E. Complexity Measures 
Entropy is defined as rate of information producted and it 
requires a very long data set of time series. The cardiovascular 
time series is usually short and noisy as there are inherent 
difficulties in recording long data sets. Pincus introduced set 
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of complexity measure called approximate entropy (ApEn) but 
it gives inconsistent results. Richman and Moorman 
developed new and related complexity measure called sample 
entropy (SampEn). The SampEn when applied to time series, 
it agreed with theory closely than ApEn. The cross-ApEn & 
cross-SampEn measures the similarity of two time series 
[27],[29],[31],[33]. 
 
1) Approximate Entropy 
 

The ApEn is a measure of system complexity, which 
quantifies the unpredictability of fluctuations in a time series 
such as heart rate time series. The method examines the time 
series for similar epochs (period marked by distinctive 
character). The more frequent and more similar epoch lead to 
lower value of ApEn. Informally, given N points, the family 
of statistics ApEn (m, r, N) is approximately equal to the 
negative average natural logarithm of the conditional 
probability that two sequences that are similar for m points 
remain similar within a tolerance r, at the next point. The 
ApEn algorithm counts each sequence as matching itself to 
avoid the occurrence of ln(0) in the calculations. This leads to 
bias of ApEn which causes two important expected properties. 
First, ApEn is heavily dependent on the record length and is 
uniformly lower than expected for short records. Second, it 
lacks relative consistency. That is, if ApEn of one data set is 
higher than that of another, it should, but does not, remain 
higher for all conditions teste.If ‘N’ is length of time series 
and ‘m’ is length of sequence to be compared and ‘r’ is 
tolerance for accepting matches. It is convenient to set 
tolerance = r*SD. The standard deviation (SD) of data has 
been set at SD =1. 

Define vector )( ju  for time series of N  data points: 
                                Njju ≤≤1:)(                            (9) 

This series forms 1+− mN  number of )(ixm  vectors 

where, )(ixm : 11 +−≤≤ mNi  and )(ixm  has data length 

of m points defined as [ ]10:)( −≤≤+ mkkiu  from 
)(iu  to )1( −+ miu .  

If  iB   is number of vectors  )( jxm  within ‘r’ of )(ixm , 

( )(ixm - template and )( jxm -template match) and  

iA  is number of vectors  )(1 jxm+ within ‘r’ of )(1 ixm+ . 

Then )(rC m
i  - probability that )( jxm  is within ‘r’ of 

)(ixm   

),(rC m
i  = ( iB )/( 1+− mN ) 

The average of the natural logarithm of ),(rC m
i  is                             

( [ ]∑
+−

=+−
=

1

1
)(ln
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1)(
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i

m
i

m rC
mN
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The ApEn for fixed parameters of N, m & r is: 

    )()(),,( 1 rrNrmApEn mm +−= φφ                  (11) 
 

After algebraic manipulation: 
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When N is large:                   
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=
⎟⎟
⎠

⎞
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⎝
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−

−
≅

mN
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i

B
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1
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The quantity )(1 rC m
mN +−  is defined but )(1

1 rC m
mN

+
+−  is not, 

because the vector   )1(1 +−+ mNum does not exist. So, 
ApEn can be thought as the negative natural logarithm of the 
probability that sequences that are close for m points remain 
close for an additional point. Because conditional probabilities 
lie between 0 and 1, the parameter ApEn (m, r) is a positive 
number of infinite ranges. ApEn (m, r, N) is biased and 
suggests more similarity than is present.  

The bias caused by self matches is evident only when data 
set N is of finite length. So, ApEn (m, r, N) is biased towards 
lower values of ApEn and returns values below those 
predicted by theory. Moreover, the difference between biased 
and unbiased CP makes it sensitive to recording length. 
Removing self matches from ApEn would make it highly 
sensitive to outliers and there is likelihood of occurrence of   
‘ln (0)’. Thus for these many practical reasons self- matches 
can be excluded from ApEn and there is no family of 
estimators which minimizes bias caused by self- matches [5]. 
 
2) Sample  Entropy 
 

Joshua S. Richman and J. Randall Moorman developed new 
and related complexity measures called sample entropy and 
have compared ApEn and SampEn by using them to analyze 
sets of random numbers with known probabilistic character. 
The SampEn agreed with theory much more closely than 
ApEn over a broad range conditions. The improved accuracy 
makes it useful for studying experimental clinical 
cardiovascular and other biological time series [30]. The 
SampEn statistics has been made to be free of bias because of 
self matching. So, two major differences between SampEn 
and ApEn are: 

i. SampEn does not count self matches. 
ii. SampEn does not use template wise approach when 

estimating conditional probability. SampEn requires only 
that one template find a match of length m+1. 

The work began from Grassberger and Procaccia, who 
approximated Kolmogrov entropy when self matches are 
counted. Richmann and Randall made two alterations to this: 
Calculating correlation integrals using   
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II. Consider only first N-m vectors of length m ensuring that, 

for mNi −≤≤1 , )(ixm  and )(1 ixm+  are defined. 

For calculating )(rBm : 

×
+−

=
1

1)(
mN

rBm
i  (No of vectors )( jxm  within r 

of )(ixm , where j ranges from 1 to N-m and ij ≠ ) 
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For calculating )(rAm : 

×
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=
1

1)(
mN

rAm
i  (No of vectors )(1 jxm+  within r 

of )(1 ixm+ , where j ranges from 1 to N-m and ij ≠ ) 

            And set )(1)(
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i
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i

m ∑
−
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So, )(rBm   is the probability that the two sequences will 

match for m points, and  )(rAm  is the probability that the 
two sequences will match for m+1 points. We then define 

statistic SampEn (m, r, N) = ⎥
⎦

⎤
⎢
⎣

⎡
−

)(
)(ln

rB
rA

m

m
                 (17) 

We set,  
( )[ ] )(

2
)(1 rBmNmNB m
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So that B is the total number of template matches of length m 
and A is the total number of forward matches of length m+1. 

So, ⎥
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and              SampEn (m, r, N) = ⎥⎦
⎤

⎢⎣
⎡−

B
Aln                   (18) 

 

The quantity 
B
A

 is precisely the conditional probability that 

two sequences within a tolerance ‘r’ for ‘m’ points remain 
within r of each other at the next point.It is to be noted that 
ApEn (m, r, N) calculates probability in a template wise 
fashion, where as SampEn (m,r,N) calculates the negative 
logarithm of a probability associated with time series as a 
whole. SampEn (m, r, N) is defined except at A=0 or B=0. 

III. CONCLUSIONS 
The interest in nonlinear methods has enhanced 

significantly in recent times due to their dependence on actual 
RR-interval series. However, most of these methods require 
long term ECG data recording for dependable heart health 
prognosis e.g. correlation dimension, largest Lyupnov 
exponent, power law slope (1/f) and detrended fluctuation 
analysis (DFA) which becomes hindrance for their 
applicability. The complexity measure of sample entropy 
method has evolved from approximate entropy with the 
requirement of manageable data length requirement. Efforts 
are on for enhancing the specificity and reduction of data 
length requirement for these nonlinear methods of HRV 
analysis. 
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