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Abstract—Search for a tertiary substructure that geometrically 

matches the 3D pattern of the binding site of a well-studied protein 
provides a solution to predict protein functions. In our previous work, 
a web server has been built to predict protein-ligand binding sites 
based on automatically extracted templates. However, a drawback of 
such templates is that the web server was prone to resulting in many 
false positive matches. In this study, we present a sequence-order 
constraint to reduce the false positive matches of using automatically 
extracted templates to predict protein-ligand binding sites. The 
binding site predictor comprises i) an automatically constructed 
template library and ii) a local structure alignment algorithm for 
querying the library. The sequence-order constraint is employed to 
identify the inconsistency between the local regions of the query 
protein and the templates. Experimental results reveal that the 
sequence-order constraint can largely reduce the false positive 
matches and is effective for template-based binding site prediction. 
 

Keywords—Protein structure, binding site, functional prediction. 

I. INTRODUCTION 
UNCTION prediction of new proteins is a critical issue in 
life science [1]. As protein structures become increasingly 

available, structure analysis of proteins has been widely 
adopted to extract information alongside protein sequence 
analysis [2]. In this respect, search for a tertiary substructure 
that geometrically matches the 3D pattern of the binding site of 
a well-studied protein provides a solution to predict protein 
functions [3-6]. Thornton and colleagues constructed a 
well-know library of structural templates based on expert 
knowledge and literature searches [7], which were then 
equipped with the JESS [8] template matching algorithm to 
construct the Catalytic Site Search (CSS) web server for 
catalytic site prediction [6]. In our previous work, we showed 
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that a manually curated template library may contain 
insufficient quantity of entries for making accurate prediction, 
and developed a web server (Protemot) to predict 
protein-ligand binding sites based on automatically extracted 
geometrical templates [9]. However, template matching based 
on automatically extracted templates is prone to returning many 
false positive matches [2]. According to the statistics reported 
in Protemot, it resulted in 564 false positive matches among 
972 predictions. 

In this study, we present a mechanism to reduce the false 
positive matches of using automatically extracted templates to 
predict protein-ligand binding sites. This is done by introducing 
a sequence-order constraint into the template matching 
algorithm of Protemot. An experiment of predicting binding 
location is conducted to evaluate the distance between the 
actual and the predicted protein-ligand binding regions by the 
present method. The results indicate that the introduced 
sequence-order constraint can help to locate the protein binding 
sites. Additionally, the present method is also evaluated by an 
experiment of predicting enzyme class. This experiment is 
conducted to compare the performances of Protemot with and 
without the proposed sequence-order constraint. Experimental 
results reveal that the introduced sequence-order constraint can 
largely reduce the false positive matches. Consequently, the 
present method can reduce false positive matches of using 
automatically extracted templates, which is essential for 
creating and maintaining a comprehensive template library that 
timely accommodates to the new release of Protein Data Bank 
(PDB) [10] as the number of entries continues to grow rapidly. 

II. MATERIALS AND METHODS 
This section first describes the automatic mechanism for 

extracting structural templates of protein-ligand binding sites 
from PDB, and the local structure alignment algorithm 
employed to query the template library. The introduced 
constraints of the alignment procedure are then described in 
detail. 

A. Template Construction 
This study builds the template library from protein-ligand 

complexes in PDB. Each template comprises a number of 
contact residues. A residue in the crystal structure of a 
protein-ligand complex of PDB is said to be one of the contact 
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residues, if it contains one or more heavy atoms that are less 
than 6.5Å away from the heavy atoms of the ligand [11, 12]. 
The template extraction process employs several filters to 
improve the quality of extracted templates. First, PDBsum [13] 
is queried to obtain all ligand names within each PDB file. A 
single PDB file containing multiple ligands (e.g. 1A82) results 
in multiple templates. Subsequently, ‘pseudo-ligands’, e.g. 
counter ions, metal ions or molecules used for setting up proper 
crystallization conditions, are filtered out. Finally, templates 
with fewer than three contact residues are filtered out. 

The version of PDB released on June 19, 2007 contains 
12825 protein-ligand complexes out of 44476 crystal 
structures. The automatic extraction mechanism identified 
3507 templates of protein-ligand binding sites from 2947 PDB 
files. Of these 2947 crystal structures, 476 can derive multiple 
templates. 

B. Template Matching 
Fig. 1 depicts the workflow of the present method to match 

the tertiary structure of the query protein with the templates in 
the library. A major difference between this work and Protemot 
is the enhanced screening process, marked with an asterisk in  
Fig. 1, which is intended to reduce the false positive matches 
from automatically extracted templates. 

The procedure shown in Fig. 1 begins with a cavity 
identification process to extract those residues in the proximity 
of a cavity of the query protein. The cavity identification 
process is based on the recently proposed kernel density 
estimation algorithm (RVKDE) [3, 14, 15]. The cavity 
identification process effectively reduces the number of 
coordinate systems to be examined in the next step. Thus, the 
cavity identification process in the alignment algorithm 
narrows down its search on the residues identified as in the  

 

 
Fig. 1 The workflow of the template matching process incorporated in 

the present method. The sequence-order constraint proposed in this 
study is implemented in the step marked with an asterisk 

proximity of a cavity, instead of all residues in the query 
protein.  

The geometric hashing algorithm in computer graphics [16] 
is then invoked to compare the crucial substructures in the 
proximity of a cavity of the query protein with the templates in 
the library. The alignment frames examined by the geometric 
hashing algorithm are defined by the two backbone bonds 
connected to the alpha carbon of each residue. This definition 
has been widely used when applying geometric hashing 
algorithm on protein structure alignments [17-19]. This study 
regards a residue in the query protein as being successfully 
aligned with one residue in the template, if the distance 
between this pair of residues in the alignment frame of the 
coordinate system is ≤ 3Å. The likelihood of residue 
substitution is also considered: a pair of residues must 
correspond to an entry in the PAM 250 matrix [20, 21] that is 
≥ 2. Accordingly, the time complexity of the alignment process 
is ))(( 2121 nnnnO + , where n1 denotes the number of residues in 
the template, and n2 denotes the number of residues in the query 
protein that pass the cavity identification process. 

After the comparison step, several constraints are applied 
before the conventional scoring process. These constraints are 
elaborated in the next section. Only the coordinate systems that 
passed all the constraints in screening can participate in scoring 
process. We adopt the TM-score [22], a measure of the 
similarity of topologies of two protein structures as the scoring 
function. TM-score is more sensitive than the root-mean- 
square-deviation (RMSD) of the aligned alpha carbons in 
accessing the quality of structure alignment. 

C. Matching Constraints 
The design of Protemot includes three constraints to alleviate 

the false positive matches of using automatically extracted 
templates: i) ratio constraint, ii) RMSD constraint and iii) 
orientation constraint. Additionally, a new constraint, iv) 
sequence-order constraint, is introduced in this study. The first 
constraint ensures that ≥ 20% residues in the template are 
successfully aligned with the residues in the query protein. The 
second constraint states that the RMSD of the aligned alpha 
carbons must be ≤ 2.5Å. The third constraint requires that the 
angle between the opening directions of the predicted binding 
site and the template must be ≤ 30 degrees. 

The fourth constraint, which is the major improvement of 
this work over Protemot, is based on the sequence information 
within the local region identified by local structure alignment. 
The local regions by structure alignment may have aligned 
residues with inconsistent sequence orders. Fig. 2  illustrates an 
example in which a template is aligned with a query protein 
with five aligned residue pairs, but with at most three aligned 
residue pairs sequentially in order. In this case, allowing the 
order mismatches among aligned residues is one advantage of 
structure alignment approaches based on geometric hashing 
over those based on dynamic programming. However, too 
many order mismatches may imply that this alignment is less 
preferred, especially when another candidate alignment with 
comparable score exists. 
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Fig. 2 An example in which a template (a) is aligned onto a query 
protein (b) with five aligned residue pairs, of which only three are 
aligned correctly while considering the sequence order from the 

N-terminal to the C-terminal in the template and the query protein 
 
In Fig. 2, assume that the aligned residues of the query 

protein are }Lys,Phe,Tyr,Cys,Val{=s , based on the sequence 
order from the N-terminal to the C-terminal of the template. 
Then we will first re-order s to }Tyr,Phe,Lys,Cys,Val{=′s  
based on the sequence order from the N-terminal to the 
C-terminal of the query protein. The next step is to employ the 
longest common subsequence (LCS) algorithm [23] to obtain 
the longest common subsequence between s and s′ , which 
could be }Tyr,Cys,Val{ , }Tyr,Cys,Val{ , or }Lys,Cys,Val{  in 
Fig. 2 In our implementation, the ratio of the length of the 
longest common subsequence to s is defined as 
sequence-order-conservation (SOC) ratio. Based on SOC ratio, 
another measure is defined as follows: 

 
22 MAX_RMSD)SOC1(RMSDSOCsRMSD ×−+×=  

 
where MAX_RMSD denotes the maximum distance between 
two aligned alpha carbons (i.e. the maximum of RMSD) and 
MAX_RMSD = 3Å in this study; sRMSD represents a heuristic 
measure to penalize order mismatches by assigning them larger 
RMSD values. The fourth constraint ensures that SOC ≥ 0.37 
and sRMSD ≤ 1.6Å of the aligned alpha carbons. 

III. RESULTS AND DISCUSSION 
Two experiments are conducted to evaluate the effects of 

introducing the sequence-order constraint. The first experiment 
predicts the binding location. This experiment is relatively 
small-scale, because it requires both the training and testing 
proteins to have at least one protein-ligand complex available 
in PDB. The second experiment follows the experimental 
design in the Protemot paper and provides a large-scale 
evaluation of the performances of Protemot with and without 
the proposed sequence-order constraint. Since the 
sequence-order constraint is designed to reduce the false 
positive matches owing to the automatically extracted 
templates, it is of interests to include the CSS, of which the 
template library is manually curated, in this experiment. 
Finally, two testing examples are presented to illustrate how the 
proposed sequence-order constraint helps the prediction. 

A. Prediction of the Location of Protein-Ligand Binding 
Sites 

1) Experimental design 
In the first experiment, all protein-ligand complexes in PDB 

are grouped into pairs according to their ligand names. From 
another point of view, with our automatic extraction procedure 
(see ‘Template Construction’ for details), the paired complexes 
can generate two structural templates associated with the same 
ligand. This experiment examines 1429 pairs of protein-ligand 
complexes from the version of PDB released on June 19, 2007. 
These pairs are collected by first scanning all the protein-ligand 
complexes in PDB. We partition these protein-ligand 
complexes into 1429 groups according to their ligand names. 
Finally, a pair is randomly selected from each of the 1429 
groups. In summary, the set of 1429 pairs covers all ligands 
with at least two protein-ligand complexes in PDB spanning 
522 SCOP families and 376 SCOP superfamilies [24]. 

Assume that a pair contains two proteins A and B, where 
},,,{ 21 maaa …  and },,,{ 21 nbbb …  denote the template residues of 

proteins A and B extracted by the template construction process. 
In this experiment, the template matching algorithm (see 
‘Template Matching’ for details) is invoked to first align 

},,,{ 21 maaa …  onto protein B and then align },,,{ 21 nbbb …  onto 
protein A, i.e. two alignments are derived from one pair of 
complexes. In the former case, },,,{ 21 maaa …  represents the 
template, B represents the query protein, and },,,{ 21 nbbb …  
represents the answer. The set of residues of protein B 
successfully aligned with },,,{ 21 maaa … , denoted by 

},,,{ ''
2

'
1 mbbb … , represents the predicted binding site. This 

experiment focuses on the closeness between the predicted 
binding site and the answer. 

2) Evaluation indices 
The closeness between the predicted binding site and the real 

one is measured in two ways. The first measure, which 
estimates the distance between the centers of the predicted and 
real protein-ligand binding sites, is the distance from the 
geometric center of the aligned residues of the query protein 
( },,,{ ''

2
'
1 mbbb … ) to the geometric center of the template residues 

of the query protein ( },,,{ 21 nbbb … ). The second measure, which 
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estimates the distance between the center of the predicted 
binding site and the ligand, is the distance from the geometric 
center of the aligned residues of the query protein to its closest 
ligand atom in the query protein-ligand complex. 

By assigning appropriate thresholds to these two measures, 
each predicted alignment can be categorized into three 
conditions. First, a prediction is said to be correct when the 
distance between the predicted binding site and the answer is 
shorter than a distance threshold. Second, a prediction is said to 
be incorrect when the distance between the predicted binding 
site and the answer is longer than the threshold. Third, no 
prediction is given if the query protein contains no 
substructures that can pass the matching criteria elaborated in 
‘Matching Constraints’ when compared with the template. In 
this experiment, the performance is evaluated by the false 
positive ratio defined as follows: 

 

sprediction  ofnumber  
sprediction incorrect   ofnumber  ratio  positive  false = , 

 

where the ‘number of predictions’ denotes the number of the 
alignments passing the matching criteria. 

3) Experimental results 
Table I and Table II show the performance of Protemot and 

this work in locating binding regions. The false positive ratio of 
the present method in hitting the proximity of the 
protein-ligand binding site is in the range 14.9%–54.9%, 
depending on the distance threshold for defining the 
‘proximity’. As stated in ‘Template Construction’, the adopted 
local structure alignment requires that the distance between the 
alpha carbons of two aligned residues be less than 3Å. This 
condition suggests that ≤ 3Å could be a reasonable threshold 
for Table I. Similarly, the template construction exploits the 
information from the region within 6.5Å to a ligand and an 
appropriate threshold for Table II should be ≤ 6.5Å. Based on 
the two thresholds, the false positive ratios of the present 
method in locating the binding site are 22.2% and 15.2% in 
Table I and Table II, respectively. Although the first measure 
seems to be more sensitive, the preferred measure should 
depend on the requirement of the application. Nevertheless, 
from Table I and Table II, the proposed sequence-order 

 
TABLE I 

PERFORMANCE OF LOCATING PROTEIN BINDING REGIONS IN TERMS OF THE 
DISTANCE BETWEEN THE PREDICTED AND REAL PROTEIN-LIGAND BINDING 

SITES 

Distance 
threshold 

False positive ratio of 
Protemot1 

False positive ratio 
of this work1 

≤ 1Å 67.1% 54.9% 
≤ 2Å 49.9% 31.6% 
≤ 3Å 42.7% 22.2% 
≤ 4Å 39.1% 18.5% 
≤ 5Å 37.3% 16.5% 

1A protein-ligand binding site is considered to be successfully predicted if the 
distance between the geometric centers of the predicted and the real binding 
sites is within the distance threshold. 

 
 

TABLE II 
PERFORMANCE OF LOCATING PROTEIN BINDING REGIONS IN TERMS OF THE 

DISTANCE BETWEEN THE PREDICTED PROTEIN-LIGAND BINDING SITE AND THE 
LIGAND 

Distance 
threshold 

False positive ratio of 
Protemot1 

False positive ratio of this 
work1 

≤ 3.5Å 33.1% 16.2% 

≤ 4.5Å 30.1% 15.4% 

≤ 5.5Å 28.9% 15.2% 

≤ 6.5Å 27.5% 15.2% 

≤ 7.5Å 26.3% 15.1% 

≤ 8.5Å 25.1% 15.0% 

≤ 9.5Å 24.3% 14.9% 
1A protein-ligand binding site is considered to be successfully predicted if the 
distance from the geometric center of the predicted binding site to its closest 
ligand atom is within the distance threshold. 

 
constraint can reduce the false positive ratio in hitting the 
proximity of protein-ligand binding sites, regardless of the 
measure or threshold. 

Furthermore, the false positive ratios of Protemot and this 
work are analyzed based on the sequence identity between the 
two proteins of each pair. Fig. 3 shows the prediction results 
based on sequence identity [25] between the pair. The 
thresholds are ≤ 3Å for the first measure and ≤ 6.5Å for the 
second measure. As shown in Fig. 3, the present method 
achieves superior false positive ratios than Protemot, especially 
on the pairs with low sequence identity. 

 

 
Fig. 2 Comparison between Protemot and this work in locating protein 
binding regions by sequence identity between the query protein and 

the template, where x-axis is the identity between the template and the 
query protein and y-axis is false positive ratio. (a) A protein-ligand 

binding site is considered to be successfully predicted if the distance 
between the geometric centers of the predicted and the real binding 

sites is within 3Å. (b) A protein-ligand binding site is considered to be 
successfully predicted if the distance from the geometric center of the 

predicted binding site to its closest ligand atom is within 6.5Å. 

(a) 

(b)
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B. Prediction of the Enzyme Class Based On 
Protein-Ligand Binding Sites 

1) Experimental design 
This section reports the experiment conducted to evaluate the 

prediction power of Protemot with and without the proposed 
sequence-order constraint as well as the prediction power of 
CSS in predicting enzyme class, which is the main evaluation 
index in the Protemot paper. The template library of Protemot 
contains a total of 1051 entries. Conversely, the web version of 
CSS uses only 147 templates derived from CSA entries. As 
shown in Table III, for the majority of the templates in the CSS 
template library, we can find entries in the Protemot template 
library belonging to similar group in terms of EC numbers, 
SCOP families, and SCOP superfamilies. The testing dataset 
contains a total of 1000 non-redundant, randomly selected 
enzyme structures distributed over 587 four-digit EC numbers. 
Care has been taken to ensure that the testing dataset does not 
contain any of those enzyme structures present in both libraries. 

In this experiment, each of the 1000 testing enzymes is 
aligned against all templates in the library. The alignments are 
ranked based on the TM-score described in ‘Template 
Matching’. The predicted enzyme class is the EC number 
associated with the template that is highest ranked. The EC 
number associated with the testing enzyme represents the 
answer. This experiment determines whether the predicted 
enzyme class is correct. 

2) Evaluation indices 
In this experiment, each prediction is categorized into one of 

three conditions. A correct prediction is one in which the 
predicted enzyme class matched the answer. An incorrect 
prediction is one in which the predicted enzyme class did not 
match the answer. No prediction is made if the testing enzyme 
contained no substructures passing the matching criteria when 

 
TABLE III 

THE OVERLAP BETWEEN PROTEMOT TEMPLATES AND CSA TEMPLATES USED 
IN THIS ARTICLE 

 Protemot CSS 
Number of spanned PDB codes 1051 147 
  Overlap1 14 14 
  Overlap ratio2 1.3% 9.5% 
Number of spanned four-digit EC numbers 635 145 
  Overlap 108 108 
  Overlap ratio 17.0% 74.5% 
Number of spanned three-digit EC numbers 146 74 
  Overlap 68 68 
  Overlap ratio 46.6% 91.9% 
Number of spanned SCOP families 749 191 
  Overlap 146 146 
  Overlap ratio 19.5% 76.4% 
Number of spanned SCOP superfamilies 447 145 
  Overlap 117 117 
  Overlap ratio 26.2% 80.7% 

1Number of entries included in both template libraries. 2Ratio of the overlap 
entries to all entries in a template library. For instance, there are 1.3% of PDB 
codes in the Protemot template library that can be found in the CSS template 
library. 

compared with all the templates in the template library. The 
predictor fails to make a correct prediction in some cases due to 
the lack of a template associated with the answer enzyme class 
in the library. Thus, each prediction result can be further 
categorized into five conditions as shown in Table IV and 
Table V that makes the analysis more complicated. In the 
Protemot paper, two indexes and their harmonic mean were 
used to evaluate the performance of the predictors. In this study, 
we provide a more comprehensive analysis by introducing 
more indexes, especially on those ‘no predictions’. The 
‘Prediction rate’ in Table IV shows the probability that the 
method could success complete the prediction while processing 
a new testing enzyme. The ‘False positive ratio’ in Table IV 
reveals the prediction performance once the method made a 
prediction. Otherwise, the accuracy represents an overall index 
of the prediction performance. Considering the lack of a 
template associated with the answer enzyme class in the library, 
whether a ‘no prediction’ is correct becomes a matter of 
opinion. The conventional accuracy (‘Accuracy’ in Table IV) 
regards such a ‘no prediction’ as incorrect since each of the 
1000 testing enzymes is associated with an EC number. From 
an active view, these no predictions are correct (‘Active 
accuracy’ in Table IV). There is another view on these no 
predictions is that they are neither correct nor incorrect 
(‘Passive accuracy’ in Table IV). 
 

 
TABLE IV 

COMPARISON BETWEEN PROTEMOT AND THIS WORK BASED ON FOUR-DIGIT 
EC NUMBERS 

 Protemot This work CSS-L1 CSS-H2 
Total3 1000 1000 1000 1000 
Cover rate4 73.2% 73.2% 14.6% 14.6% 
Covered performance     
  I. Correct prediction5 408 515 81 75 
  II. Incorrect prediction6 310 90 61 8 
  III. No prediction7 14 127 4 63 
Uncovered performance     
  IV. No prediction8 14 123 65 777 
  V. Incorrect prediction9 254 145 789 77 
Prediction rate10 97.2% 75.0% 93.1% 16.0% 
False positive ratio11 58.0% 31.3% 91.3% 53.1% 
Accuracy12 40.8% 51.5% 8.1% 7.5% 
Active accuracy13 42.2% 63.8% 14.6% 85.2% 
Passive accuracy14 41.4% 58.7% 8.7% 33.6% 
1CSS with lower confidence, with the predictions classified by CSS as 
‘unlikely’ treated as ‘no prediction’. 2CSS with higher confidence, with the 
predictions by CSS as ‘unlikely’ or ‘possible’ treated as ‘no prediction’ 
3Number of testing enzymes. 4A testing enzyme is ‘covered’ if the template 
library contains a template extracted from a protein-ligand complex structure 
with the same four-digit EC number as the testing enzyme. 5The testing enzyme 
is covered, and the algorithm makes a correct prediction. 6The testing enzyme is 
covered, but the algorithm makes an incorrect prediction. 7The testing enzyme 
is covered, but the algorithm makes no prediction. 8The testing enzyme is not 
covered, and the algorithm makes no prediction. 9The testing enzyme is not 
covered, but the algorithm makes a prediction, which is certainly incorrect. 
10Prediction rate = (I+II+V)/Total. 11False positive ratio = (II+V)/(I+II+V). 
12Accuracy = I/Total. 13Active accuracy = (I+IV)/Total. 14Passive accuracy = 
I/(Total–IV). 
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TABLE V 
COMPARISON BETWEEN PROTEMOT AND THIS WORK BASED ON THREE-DIGIT 

EC NUMBERS 

 Protemot This work CSA–L CSA–S 
Total 1000 1000 1000 1000 
Cover rate1 98.7% 98.7% 72.1% 72.1% 
Covered performance     
  I. Correct prediction 514 615 143 118 
  II. Incorrect prediction 447 125 531 28 
  III. No prediction 26 247 47 575 
Uncovered performance     
  IV. No prediction 2 3 22 265 
  V. Incorrect prediction 11 10 257 14 
Prediction rate 97.2% 75.0% 93.1% 16.0% 
False positive ratio 47.1% 18.0% 84.6% 26.3% 
Accuracy 51.4% 61.5% 14.3% 11.8% 
Active accuracy 51.6% 61.8% 16.5% 38.3% 
Passive accuracy 51.5% 61.7% 14.6% 16.1% 
1A testing enzyme is ‘covered’ if the template library contains a template 
extracted from a protein-ligand complex structure with the same three-digit EC 
number as the testing enzyme. 

 

3) Experimental results 
Table IV reports the experimental results when the four-digit 

EC numbers are used as the answers, while Table V reports the 
experimental results when the three-digit EC numbers are used 
as the answers. Table IV and Table V clearly reveal that the 
sequence-order constraint reduces the false positive ratio by 
26.7% in Table IV and 29.1% in Table V. As expected, the 
prediction rate drops (from 97.2% to 75.0%), since that this 
work involves an additional constraint. As shown in Table VI, 
most of the ‘no predictions’ filtered by the sequence-order 
constraint either result from the lack of a template associated 
with the answer enzyme class in the library (meaning that they 
have to be reported as ‘no predictions’), or are innocent to the 
predictor. In summary, the sequence-order constraint only 
decreases the 
 

TABLE VI 
STATISTICS OF THE ‘NO PREDICTIONS’ FILTERED BY THE INTRODUCED 

SEQUENCE-ORDER CONSTRAINT 

 

Based on 
four-digit 
EC numbers 

Based on 
three-digit EC 
numbers 

Protemot makes a prediction, while this 
work makes no prediction 

222 222 

The testing enzyme is covered, and only 
Protemot makes a correct prediction, 
while this work makes no prediction1 

12 17 

The testing enzyme is covered, and 
Protemot makes an incorrect 
prediction, while this work makes no 
prediction2 

101 204 

The testing enzyme is uncovered, and 
Protemot makes an incorrect 
prediction, while this work makes no 
prediction3 

109 1 

1The ‘no predictions’ reported by this work were incorrectly filtered by the 
sequence-order constraint. 2The ‘no predictions’ reported by this work were 
innocent to the predictor, since it delivered an incorrect prediction without the 
sequence-order constraint. 3The ‘no predictions’ reported by this work were 
correctly filtered, since the testing enzyme is uncovered. 

effective prediction rate by 1.2% (12 incorrectly filtered 
predictions / 1000) and 1.7% (17 / 1000) in Table IV and Table 
V. When considering the overall prediction performance, the 
present method outperforms Protemot no matter which index of 
‘Accuracy’, ‘Active accuracy’ or ‘Passive accuracy’ is used in 
these two tables. These results indicate that the proposed 
sequence-order constraint can improve protein binding site 
prediction based on automatically extracted templates. 

C. Case Study 
This section presents two testing examples to illustrate the 

effect of the sequence-order constraint. One testing case is 
chosen from the experiment of predicting binding location, and 
the other is chosen from the experiment of predicting enzyme 
class. Both cases are chosen from the weak homology region 
(sequence identity <25%) of the two experiments. 

The first case is the alignment between a phosphoserine 
aminotransferase from bacillus alcalophilus (PDB: 1W23) and 
a ptpase from bos taurus (PDB: 1DG9). The two complex 
structures have a common ligand, 4-(2-hydroxyethyl)-1- 
piperazine ethanesulfonic acid (HEPES). However, HEPES 
plays different roles in the two complexes: a buffer in 1W23, 
and a competitor of vanadate (which acts as an analogue of the 
transition state of the cleavage reaction) in 1DG9. For this case, 
Protemot reports an alignment with a RMSD of 1.66. However, 
this alignment has only three pairs sequentially in order out of 
five aligned residue pairs, resulting in a sRMSD of 2.07. 
Therefore, introducing the sequence-order constraint filters this 
alignment. 

The second case is the alignment between two lipases (PDB: 
1KU0 and 1HQD) having the same four-digit EC number 
(3.1.1.3). Accordingly, a predictor for functional inference 
should report that the two enzymes are highly likely to have the 
same function. PSI-BLAST is invoked to analyze the two 
proteins, and finds no significant similarity. Conversely, the 
present method successfully predicts this case, because it 
focuses on the local spatial region of the template built 
according to the (Rp,sp)-o-(2r)-(1-phenoxybut-2-yl)- 
methylphosphonic acid chloride in 1HQD. Protemot predicts 
that 1KU0 is more similar to another enzyme (PDB: 3CPA) in 
the template library over 1HQD, resulting in an incorrect 
prediction. Like the previous example, the alignment between 
1KU0 and 3CPA does not pass the sequence-order constraint. 
Thus, the sequence-order constraint helps the present method to 
filter the alignment between 1KU0 and 3CPA and to deliver a 
correct prediction. 

IV. CONCLUSION 
This study is motivated by the high false positive ratio in 

predicting protein-ligand binding sites with automatically 
extracted templates. A sequence-order constraint is employed 
to identify the inconsistencies between the local regions of the 
query protein and the templates. Two experiments are 
conducted to evaluate the prediction performance of the present 
method. In the first experiment, the introduced sequence-order 
constraint can reduce the false positive ratio in locating 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:5, 2009

1279

 

 

protein-ligand binding sites, especially on the pairs with low 
sequence identity. Results of the second experiment indicate 
that the sequence-order constraint is helpful in predicting 
enzyme class. Experimental results reveal that the present 
method can yield low false positive ratio while using 
automatically extracted templates, which is essential for 
creating and maintaining a comprehensive template library as 
the number of entries in PDB grows exponentially. 

Although the present method has been able to provide good 
performance to predict protein-ligand binding sites, further 
improvements could be made with respect to the 
constraint-based design. In this regard, we currently 
hypothesize that the priority of constraint is higher than the 
scoring function, meaning that an alignment that fails any 
constraint is never taken into account, even if it has a promising 
score. Effort is being made to embed the constraint concept into 
the scoring step to minimize the loss of possible matches. 
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