
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:12, 2010

1714

Abstract—The H.264/AVC standard is a highly efficient video

codec providing high-quality videos at low bit-rates. As employing
advanced techniques, the computational complexity has been
increased. The complexity brings about the major problem in the
implementation of a real-time encoder and decoder. Parallelism is the
one of approaches which can be implemented by multi-core system.
We analyze macroblock-level parallelism which ensures the same bit
rate with high concurrency of processors. In order to reduce the
encoding time, dynamic data partition based on macroblock region is
proposed. The data partition has the advantages in load balancing and
data communication overhead. Using the data partition, the encoder
obtains more than 3.59x speed-up on a four-processor system. This
work can be applied to other multimedia processing applications.

Keywords—H.264/AVC, video coding, thread-level parallelism,
OpenMP, multimedia

I. INTRODUCTION
HE H.264/AVC standard is developed by Joint Video Team
(JVT) for video compression. The bit-rate efficiency of a

H.264 encoder has been improved in variable block sizes,
multiple reference frames, CAVLC, CABAC, and more.
However, the complexity of the encoder is increased 10 times
and it entails power consumption issues [1]. For a real time
encoder, the encoding speed is not enough with a single core
processor. Hence, hardware acceleration or a parallel software
algorithm is needed for increasing the speed of the encoder.

Parallel algorithms have been discussed in several papers
[2]-[5]. There are frame-level, slice-level, and macroblock-
level parallel algorithms. Especially, macroblock-level para-
llelism which are adopted in [6]–[8] satisfies capabilities of
parallelism with no video quality losses. The interests of
macroblock level parallelism are the communication overhead
between processors and load balancing. Data communication is
needed where one macroblock encoded by a processor has the
neighboring macroblocks which are performed by other
processors. Load balancing is to assign macroblocks onto
processors similarly. Processors should wait until dependencies

Jun Tae Kim is with the Department of Mobile Systems Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
(phone: +82-31-290-7173; fax: +82-31-299-4613; e-mail: kjtjjang@ skku.edu).

Jaeyoung Park and Kyungkun Lee are with the Department of Electrical and
Computer Engineering, Sungkyunkwan University (e-mail:
jyp8389@gmail.com, ethanleekk@skku.edu).

Jong Tae Kim is with the Department of Mobile Systems Engineering and
the Department of Electrical and Computer Engineering, Sungkyunkwan
University (e-mail: jtkim@ skku.edu).

are avoided except the first processor which encodes a
macroblock first among processors.

The parallel algorithm with wave-front technique splits a
frame into macroblocks and mapped onto different processors
by horizontal axis [6]. The load balancing for the technique is
well because it takes 6 TMB (where TMB stands for the time to
encode one macroblock) to start processors in parallel.
However, the data communication is needed at every encoding
process expect outer blocks of a frame so that the data
exchanging slows down the process. The simulation results are
3.08x speed-up in QCIF format and 3.17x speed-up in CIF
video formats.

The MBRP parallel algorithm which adopts wavefront
technique is focused on reducing the data communication
between processors by data partition [7]. The method of data
partition is to assign a macroblock region for each processor so
that neighboring macroblocks are mostly handled by the same
processor. However, the waiting time of processors until they
start to encode a macroblock in parallel is mostly longer than
the waiting time of [6]. The simulation results are 3.32x in CIF
format and 3.33x speed-ups in SD video formats.

The research of macroblock-level parallelism is also
discussed in [8]. The data partition of the research is that the
macroblocks when they can avoid dependencies starts to
encode in a frame and over frames. Encoding over frames is
only initiated when reconstructed macroblocks are more than
half of a frame. Hence, it can increase the concurrency of the
thread-level parallelism to process multiple frames. Some
improved techniques are used in the implementation such as
motion estimation and mode decision. The implementation
results show 3.8x speed-ups for CIF, SD, and HD video
formats.

In this paper, a method of data partition for macroblock-level
parallelism is presented in order to reduce data communication
overhead and to improve concurrency. The objective of this
research is to maximize the efficiency of parallelization by
dynamic data partition to choose a macroblock where several
macroblocks can be encoded. The implementation is limited in
intra-prediction. Inter-prediction implementation is remained
for future works.

This paper is organized as follows. Section 2 provides the
dependencies in intra-prediction and several data partition
schemes. Section 3 describes multi-threading scheme and
dynamic data partition based on macroblock region. Section 4,
software simulation is provided. Section 5 is the conclusion.

Dynamic Data Partition Algorithm for a Parallel
H.264 Encoder

Juntae Kim, Jaeyoung Park, Kyoungkun Lee, and Jong Tae Kim

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:12, 2010

1715

Fig. 1 Data Dependencies in Intra-prediction

II. DATA DEPENDENCIES IN INTRA-PREDICTION AND DATA
PARTITION

A. Data Dependencies in Intra-prediction
In parallel encoding process, data dependencies constrain the

order of macroblocks. The process of a H.264 encoder in
intra-prediction consists of prediction, CAVLC, and output
bitstream. A macroblock to be encoded needs the reconstructed
pixels which are neighboring macroblocks as shown in Fig. 1.
Therefore, left, top-left, top and top-right neighboring
macroblocks are needed for the parallel encoding process. The
dependencies of CAVLC are the non-zero coefficients of the
left and top neighboring macroblocks. The output bitstream is
frequently accessed by all processors so that it should be
guaranteed that only one processor accesses at a time.

B. Data Partition
Data Partition is to assign maroblocks onto different

processors. Data partition is important because the way to
partition macroblocks determines the concurrency. There are
several types of data partition for macroblock-level parallelism.
Three types of data partition which are dynamic, horizontal,
and vertical data partition are compared in terms of the data
communication overhead and the processor waiting time until
all processors run simultaneously. The waiting time represents
the last processor waiting time which is delayed by other
processor. The three data partitions are shown in Fig 2. T stands
for TMB which is mentioned in introduction.

Dynamic data partition determines each processor how to
select a macroblock. The partition cannot guarantee the amount
of the data communication because processors are uncertain
which macroblocks they will encode. An example of the
partition for quad-core system is shown in Fig 2 (a). Mostly,
macroblocks needs 37 pixels from neighboring macroblocks
which is the maximum amount of data communication. The last
processor should wait for 6 TMB and 12 macroblocks can be
encoded during the time.

Horizontal data partition is similar to the data partition used
in [6]. The marcoblocks in the same row are mapped onto the
same processor as shown in Fig 2 (b). This data partition makes
the data communication smaller than dynamic data partition.
There are 21 pixels to communicate from up, up-left and
up-right neighboring macroblocks. The waiting time is 6 TMB
as the same as dynamic data partition, however, TMB is shorter
then dynamic data partition.

Vertical data partition is based on the MBRP algorithm [7].

Macroblocks are assigned to particular processors as shown in
Fig 2 (c). Processors only encode in their own macroblock
regions. In the data partition, data communication overhead is
minimized because the communication is needed only at the
boundaries between macroblock regions. At the right
macroblocks of the boundaries, the data communication is 17
pixels from left and up-left neighboring macroblocks. At the
left macroblocks of the boundaries, 4 pixels from up-right
macroblocks are communicated. In the aspect of the waiting
time, processor 4 starts at 10 TMB so that the processor should
wait during 9 TMB.

Overall, dynamic data partition needs 32 TMB which is the
total encoding time including the data communication overhead.
The concurrency of processors is the highest of three partitions,
for the reason, the waiting time caused by the dependencies is
shorter. On the other hand, data communication is uncertain for

Fig. 2 Data Partition of QCIF format image (a) Dynamic Data

Partition (b) Horizontal Data Partition (c) Vertical Data Partition

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:12, 2010

1716

Fig. 3 Multi-thread scheme of a H.264 encoder

situations. Improved data communication overhead, horizontal
data partition has smaller data communication and the total
encoding time is 33 TMB longer than dynamic data partition.
Vertical data partition features the smallest data
communication overhead and the longest encoding time of the
three data partition.

III. MULTI-THREADING IMPLEMENTATION OF A H.264
ENCODER AND DYNAMIC DATA PARTITION

A. Multi-threading Implementation of a H.264 Encoder
A H.264 Encoder using rate-distortion optimization consists

of intra-prediction, DCT/IDCT, mode decision, CAVLC and
bitstream output. The multi-threading implementation scheme
is shown in Fig. 3. In the reference code [9], the function of
bitstream output includes a buffer which is necessary to access
exclusively. The bitstream output is called by many functions
so that the output should be separated from parallel regions.

The function of “choose macroblock” is for dynamic data
partition and scheduling processors. In “choose macroblock”
function, all processors run simultaneously to choose a macro-
block. Different from the sequential code, macroblocks which
are obeying the dependencies can be encoded.

B. Dynamic Data Partition Based on macroblock region
Dynamic data partition is aimed for the improvement of load

balancing and reducing data communication overhead. For the
load balancing, all processors should be well-assigned by their
conditions. Each macroblock spends different time according
to its complexity. Considering the software implementation of a
H.264 encoder, the main thread takes more burdens by
operating system so that these conditions should be in
consideration. The horizontal and vertical data partitions have
fixed regions which are in charge of their first-assigned
processors. In aspect of data communication overhead, static
data partition has advantages of communication quantity where
neighboring macroblocks are encoded by the same processor.
Therefore, the mixed data partition, which takes advantages of
the static and the dynamic data partitions, is proposed.

Fig. 4 Data partition for dynamic data partition based on

macroblock region

Before partition a frame, there are some video formats which
have not the same number of macroblocks in column as a
multiple of the number of processors such as CIF format. In this
case, the partition has 5 regions shown in Fig 4. Processors
have the same number of macroblocks in their regions for load
balancing. Sharing region can be encoded by any processors. If
the number of macroblocks in column is the same as a multiple
of the number of processors, the partition has 4 regions without
a sharing region.

The scheduling algorithm for processors is shown in Fig. 5.
Following processor region, processors have their own regions.
There are 3 conditions to choose a macroblock to encode. The
conditions represent priorities considering the performance as
shown in Fig 5. The first condition has the highest priority; the
second condition has the second priority and others.
Processor-n can be processor 1 to 4.

Firstly, macroblocks are available in each region except
sharing region as shown in Fig 6 (a). Processors encode
macroblocks in their own region. Second, a macroblock in
sharing region is available as shown in Fig 6 (b). A macroblock
is encoded by any processor which has no macroblock to
encode in its own region. Finally, multiple macroblocks are
available in a same region row as shown in Fig 6 (c). In this
case, the available maroblocks exist over rows in a region. The
processor, which owns the region, encodes the macroblock in
the upper row, mentioned as k in Fig 5, and other chosen
processor encodes the one in the lower row, mentioned as k+1
in Fig 5. Processors should wait if there is no satisfying
condition.

while (there are macroblocks to encode)
{
 if (a macroblock is available in processor-n region)

assign a maroblock in row k to processor-n

 else if (a maroclocks is available in sharing region)
 assign a maroblock in sharing region to processor-n

 else if (macroblocks are available in other processor region)
 assign a macroblock in row k+1 to other processor

 else //there is no macroblock available
 continue;
}

Fig. 5 Pseudo code of scheduling for processors

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:12, 2010

1717

Fig. 6 various cases of parallel encoding process (a) macroblocks are

available in their own region (b) a macroblock in sharing region is
available (c) multiple macroblocks are available in a region

IV. SOFTWARE SIMULATION RESULTS
The software implementation of a H.264 encoder is

developed by C language. The quad-core system has four
2.33GHz Intel Pentium 4 processor and a 4GB memory. The
reference software is JM 11.0 [9] which is sequential encoding
structure developed by JVT. The simulation is performed with
rate-distortion based mode decision, 28 quantization parameter
and intra-prediction. A variety of test images are used from CIF
format to HD format and 300 frames of the images are encoded.

Fig. 7 shows the speed-ups where the reference software is
set to 1.0. The speed-ups are measured in the total encoding
time. The parallel algorithm is the one with dynamic data
partition based on maroblock. The simulation results show that
the speed-ups with the parallel algorithm are 3.59x for CIF
format, 3.88x for 4CIF format and 3.89x for HD foremat.

V. CONCLUSION
Parallelism in a H.264 encoder has been researched by the

software and the hardware implementation. The performance
of parallelism depends on load balancing and data
communication overload. To balance the workload,
macroblocks which obey the dependencies should be scheduled.
The dynamic data partition has high concurrency even though
the communication overhead is uncertain. Assigning
processors based on data partition, communication overhead
can be reduced. The MBRP algorithm [7] shows the way to
reduce the data communication overhead. Taking the
advantages of the data partitions, the dynamic data partition

based on maroblock region is proposed.

Fig. 7 Speed-up for several types of video image

Dynamic data partition based on macroblock region partition

a frame with regions. The number of regions is the same as the
number of processors, and sharing region is optional. The data
partition has priorities which macroblocks are assigned to a
processor. For the load balance, processors can encode
macroblocks over the regions with the lowest priority. The data
partition is implemented in software and simulated. The results
are more than 3.59x speed-ups for several formats of images.

REFERENCES
[1] C. Luo, J. Sun, and Z. Tao, “The research of H.264/AVC video encoding

parallel algorithm,” 2nd IEEE International Symposium on Information
Technology Application, 2008.

[2] Y. W. Huang, T. C. Chen, C. H. Tsai, C. Y. Chen, T. W. Chen, C. S. Chen,
C. F. Shen, S. Y. Ma, T. C. Wang, B. Y. Hsieh, H. C. Fang, and L. G. Chen,
“A 1.3tops H.264/AVC single-chip encoder for HDTV applications,”
IEEE Int.Conf.Solid-State Circuits, Feb 2005, pp. 128-130.

[3] S. M. Akramulah, I. Ahmad, and M. L. Liou, “Parallelization of mpeg-2
video encoder for parallel and distributed computing systems,” in
Proceedings of the 38th Midwest Symposium on Circuits and Systems,
Aug 1995, vol. 2, pp. 834-837.

[4] P. Tiwari and E. Viscito, “A parallel mpeg-2 video encoder with
look-ahead rate control,” in Int. Conf. Acoustics, Speech, and Signal
Processing, May 1996, vol. 4, pp.1994-1997.

[5] N. H. C.Yung and K. K. Leung, “Spatial and temporal data parallelization
of the h.261 video coding algorithm,” IEEE Trans. Circuit Syst. Video
Technol., vol. 11, no. 1, pp. 91-104, Jan. 2001.

[6] Z. Zhao, P. Liang, “A highly efficient parallel algorithm for H.264 video
encoder,” 31st IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2006.

[7] S. Sun, D. Wang, and S. Chen, “A highly efficient parallel algorithm for
H.264 encoder based on macro-block region partition,” HPCC 2007,
LNCS 4782, pp. 577-585, 2007.

[8] Y. Chen, E. Q. Li, X. Zhou, and S. Ge, “Implementation of H.264 encoder
and decoder on personal computers,” Journal of Visual Communications
and Image Representation, 17, 509–532.

[9] JM11.0, http://iphome.hhi.de/suehring/tml/download/old_jm/jm11.0.zip

