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Abstract—Emerging Bio-engineering fields such as Brain 

Computer Interfaces, neuroprothesis devices and modeling and 
simulation of neural networks have led to increased research activity 
in algorithms for the detection, isolation and classification of Action 
Potentials (AP) from noisy data trains. Current techniques in the field 
of ‘unsupervised no-prior knowledge’ biosignal processing include 
energy operators, wavelet detection and adaptive thresholding. These 
tend to bias towards larger AP waveforms, AP may be missed due to 
deviations in spike shape and frequency and correlated noise 
spectrums can cause false detection. Also, such algorithms tend to 
suffer from large computational expense. 

A new signal detection technique based upon the ideas of phase-
space diagrams and trajectories is proposed based upon the use of a 
delayed copy of the AP to highlight discontinuities relative to 
background noise. This idea has been used to create algorithms that 
are computationally inexpensive and address the above problems. 

Distinct AP have been picked out and manually classified from 
real physiological data recorded from a cockroach. To facilitate 
testing of the new technique, an Auto Regressive Moving Average 
(ARMA) noise model has been constructed bases upon background 
noise of the recordings. Along with the AP classification means this 
model enables generation of realistic neuronal data sets at arbitrary 
signal to noise ratio (SNR). 
 

Keywords—Action potential detection, Low SNR, Phase space 
diagrams/trajectories, Unsupervised/no-prior knowledge.  

I. INTRODUCTION 
HE detection of bio-electricity from the human body has 
been an area of human interest and active research for 

many years. The recent rapid growth of electronics through 
advances in VLSI is leading to a wide range of electronics 
technology being integrated into electrophysiological research 
and medical devices.  

One such area of integration is that of implantable system-
on-chip (SoC) devices, equipped with analogue and digitising 
stages to read neuronal depolarization events from live cell 
cultures.  Such devices have been employed to yield new 
insights into how the nervous system encodes, transmits and 
processes sensory information from its environment. Devices 
require many channels sampling at high data rates (e.g. ten 
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kHz) [1], to faithfully capture the position and form of the raw 
AP signal, as such data rates can be high as tens or hundreds 
of mega samples per second. The high data rate combined 
with strict limitations on size and power usage of implantable 
devices leads to a data bottleneck when attempting to transmit 
the data wirelessly off chip [2]. Wireless methods are 
increasingly being chosen since tethered wires lead to 
restrictions on possible clinical applications [2]. If the 
processing of captured data could be performed on-chip, then 
instantaneous usage of the data at the neuronal culture site 
would help trials of neuronal activity and correlated 
stimulation and resulting action.  

Different methods of overcoming this hardware problem 
have been reported recently [2-5]. In [3] a full VLSI design 
for processing of neuronal signals is described. The 
processing of data to identify the neurons signature AP 
message is carried out via the use of a simple comparator. The 
designers managed to create the system in 0.5 micron CMOS 
that fits a suitable neuronal amplifier and the spike detection 
hardware positioned beneath each electrode of a Utah 
Microelectrode Array, (pitch 400 micron). Whilst this is still a 
rather large pitch array, not on the same scale as the neurons 
(10-20micron), and the detection method is still quite simple 
(being biased towards larger action potentials and susceptible 
to low SNR) it does comprise a first attempt into an area that 
will surely see large growth in coming years.  

Other hardware methods of surmounting this problem have 
employed the use of FPGAs [2,4,5]. One of these [2] saw a 
FPGA surface mount chip connected to a small circuit board. 
The circuit board would be intrusive for implantation but it 
does provide a simple digital threshold method for the 
detection of action potentials. Reference [4] shows a similar 
data reduction technique using an FPGA in between a System-
on-chip device and a PC. Blind source separation of bio-
signals has been implemented on an FPGA via use of the 
FastICA algorithm [5]. This method is commonly used in bio-
signal processing and the demonstration of it in FPGA 
hardware is a significant step towards action potential 
detection hardware. Another avenue of research in hardware 
solutions to this problem is the method of data compression 
[6]. The raw neuronal data is compressed using the discrete 
wavelet transform technique, then transmitted wirelessly. The 
compression/reconstruction process affects the shape of the 
AP (with obvious effects on classification) but may prove 
adequate for detection purposes. 

The problems described above relating to hardware 
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restrictions have led a number of researchers to develop 
computationally minimised software based algorithms. These 
methods include novel adaptive thresholding techniques, 
energy operators, peak detectors and wavelet based methods. 

Adaptive thresholding is a logical progression from a static 
level set in hardware. A review of these techniques is 
provided [7] and found that method chosen affects the ratio of 
detection to false positive. Other techniques mentioned are 
pre-processing techniques aimed at enhancing the action 
potentials from within the data in order to increase the ratio of 
true detection over false alarm gained by adaptive 
thresholding. A comprehensive review of pre-processing 
techniques including template based methods is given in [8]. 
The paper also proposes a new technique based on the 
increase in energy that an action potential adds to a neuronal 
signal. The energy in each small bin (e.g. 1ms) is compared 
against the energy in a much larger segment. In a another 
series of research [9-11] the use of the Teager energy operator 
that helps identify peaks in data trains is employed. These two 
techniques are both computationally efficient and are used as a 
comparison to the new technique developed here. A technique 
that has been adapted to suit this field is that of wavelet 
detection [12-14]. Wavelet detection uses a general “spiky” 
waveform to which segments of the neuronal data is matched. 
This approach is about ten times more computationally 
expensive making it less well suited to real time multi-channel 
operations and thus has not been included for comparison 
here. 

II. PHASE SPACE TECHNIQUES 
The concepts of phase space portraits [15] and phase space 

trajectories [16] have been shown to be relevant for action 
potential classification. Reference [15] gives a good 
introduction to plotting of phase-space diagrams. In essence 
phase techniques identify changes that occur in the phase of a 
signal by comparing it with a time delayed version of itself. 

This study combines the concepts of phase space and 
trajectories to develop a new technique for the detection of a 
wide range of action potential shapes, in the presence of noise. 
The approach is based on the idea that a sudden change in the 
phase of the signal is accompanied by a dramatic change in 
the trajectory on a phase space diagram. 

III. METHODS 

A. Data Collection 
Data for these experiments was collected by the authors in 

the form of several recordings made from the Ventral Nerve 
Cord of a Cockroach using a differential amplifier built from 
Texas Instrument op-amps. The amplified signal was then 
digitized by an ADC using a sample frequency of 11 kHz. 

B. Simulation Data for Arbitrary SNR 
The simulation of relevant data for testing bio-signal 

processing techniques is a research field in its own right and 
many different simulators are available. Two relevant data 

simulators [17,18] and the methods described in [11] were 
studied to aid the production of realistic test data. 

Firstly using various action potential detection techniques 
and aided by manual classification, clear examples of AP from 
within the data sets were identified. These AP were then 
aligned using the first major peak within the segment to 
identify similar shapes and hence classify them. Every instant 
within a class was then summed and a class average produced. 
Fig. 1 shows the culmination of instances that made up the 
each AP class and below the averaged and normalized class 
means of the quickest and slowest action potential shapes. 

 
Fig. 1 Above instances that make up each class: Below averaged and 

normalized class means 
 
From these, the two extrema of quickest and slowest AP 

shapes were chosen to provide the most difficult test to any 
detection technique. The two extreme cases had periods of 
1.1ms and 6ms. 

Relevant noise (non-Gaussian) was then required to 
simulate neuronal signals with known firing times. To achieve 
this, five noise segments were taken from separate recordings. 
To allow for replication of this noise at arbitrary SNRs an auto 
regressive moving average model of each noise segment was 
created. 

The SNR of the simulated neuronal data is defined in 
equation one below. 

2

_
___

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

noiseRMS
potentialactionofheightSNR     (1) 

 
To convert this to decibels, the logarithm of the SNR was 
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multiplied by ten.  

C. Review of Relevant Methods 
As previously mentioned to demonstrate the effectiveness 

of the new technique, two methods from recent literature were 
chosen as a performance comparison. Reference [8] 
introduces the normalized cumulative energy difference 
(NCED) technique. This technique can best be described as 
looking for sudden changes in the energy of a signal 
compared to the overall energy within a signal and can be 
defined by equation two, where x(i) is the current sample and 
bin size is an arbitrary choice of a number of samples (in these 
tests ten).  

 

( )

energytotal

ix
NCED

binsize

_
1

2∑
=            (2) 

 

The Teager energy operator (TEO) a non-linear energy 
operator is the product of instantaneous frequency and 
amplitude and highlights the action potential peak [9-11]. It 
can be defined by equation three, where x(i) is the current 
sample and x(i-1) and x(i+1) are the previous and next sample 
respectively. 

 
( ) ( ) ( )1.12 +−−= ixixixTEO       (3) 

D. Proposed Technique 
The proposed technique uses the concepts of phase space 

diagrams and trajectories, whilst maintaining computationally 
efficient. The method proceeds as follows:-  the instantaneous 
power (or energy) in a signal is summed positively over the 
whole period of an action potential. To compute when the 
power of the signal rises sharply the difference between the 
powers at two points is compared for both phases of the 
signal. This is done by adding the change in power from the 
time delayed signal to the start of a small segment in the 
current signal and comparing this value to the current value of 
power, as shown in equation four The technique can also be 
thought of as a method for linearly predicting the power in a 
signal and comparing the difference in the linear prediction to 
the actual power. If the bin size b is the same as the time 
delay, (as in linear prediction) then the computation required 
can be reduced to equation five, (using the same notation as 
above). 
 

( ) ( ) ( ) ( )( )( )bixbixbixixPP 22222 −−−+−−=   (4) 

( ) ( ) ( )bixbixixPP 2.2 222 −+−−=        (5) 

IV. RESULTS 

A. Simulated data results  
Tests of the three techniques discussed in the methods 

section were run using the five different noise models and the 

two extrema AP shapes. The results were classified by an 
adaptive threshold method. The threshold was set at the signal 
mean plus two or three standard deviations, and the threshold 
was calculated in ten ms bins equating to 100 samples. The 
NCED technique was applied using a bin size of ten samples 
(0.9ms) and the phase technique used a delay of two samples 
(0.18ms). The results are summarised in the Tables I to III 
below. Table I’s results are at SNR=4.9DB and Table II’s are 
at SNR=8.1DB. In Tables I and II the first figure is the correct 
detection ratio and the second figure is the false positive ratio. 
Table III summaries these results averaged over all five noise 
segments noise segments as a percentage. 

 
TABLE I 

4.9DB SNR 
Sigma 
level =3 

Noise 1 Noise 2 Noise 3 Noise 4 Noise 5 

TEO 0.5/0.2 0.2/0.3 0.3/0.6 0.2/0.3 0.5/0.5 
NCED      
PHASE 0.4/0.1 0.4/0.2 0.5/0.5 0.5/0.1 0.1/0.1 
 
Sigma 
level =2 

Noise 1 Noise 2 Noise 3 Noise 4 Noise 5 

TEO 0.9/0.8 0.6/1.3 0.5/0.8 0.6/0.7 0.5/1.1 
NCED 0.4/0.1 0.5/0.2 0.5/0.2 0.5/0.2 0.4/0.4 
PHASE 0.9/0.3 0.8/0.8 0.6/0.6 0.8/0.4 0.8/0.4 

 
TABLE II 

8.1DB SNR 
Sigma 
level =3 

Noise 1 Noise 2 Noise 3 Noise 4 Noise 5 

TEO 0.6/0.4 0.2/0.3 0.6/0.3 0.6/0.4 0.7/0.4 
NCED      
PHASE 0.4/0.1 0.4/0.2 0.7/0.2 0.5/0 0.5/0.3 
 
Sigma 
level =2 

Noise 1 Noise 2 Noise 3 Noise 4 Noise 5 

TEO 0.9/0.7 0.8/0.8 0.8/0.6 0.9/0.6 0.9/0.9 
NCED 0.6/0.1 0.5/0.2 0.5/0.2 0.7/0.2 0.5/0.3 
PHASE 0.9/0.3 0.9/0.6 0.8/0.5 1/0.1 0.9/0.4 

 
TABLE III 

AVERAGED DETECTION/FALSE ALARM RATE 
Average 
Results 

SNR=4.9 
sigma=2 

SNR=4.9 
sigma=3 

SNR=8.1 
sigma=2 

SNR=8.1 
sigma=3 

TEO 62% / 94% 34% / 38% 86% / 72% 54% / 36% 
NCED 46% / 22%  56% / 20%  
PHASE 78% / 50% 44% / 26% 90% / 38% 50% / 16% 

 
From Table III it can be seen that the new phase technique 

has a higher detection rate on three out of the four different 
tests than the Teager energy operator. Paired with this the new 
technique, has a much lower false alarm rate. Compared with 
the NCED technique at the two sigma level, (NCED does not 
transform any of the data points to greater than three standard 
deviations from the mean) the detection rate is approximately 
double. NCED also has a false alarm rate that is 
approximately half that of the proposed technique. 

B. Computational Expense 
The proposed technique has similar computational demands 
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to the other two techniques, (tabulated below in Table IV) so 
can be considered as a direct comparison in terms of 
computationally inexpensive algorithms for large multi-
channel real time processing systems.  

The computational demands of each technique are 
considered in terms of multiplication, additions and 
subtractions. The TEO requires two multiplications and one 
subtraction, per operation, and therefore for a bin size of ten 
requires twenty multiplications and ten additions or 
subtractions. The NCED technique over a bin size of ten 
requires ten multiplications and nine additions to compute the 
energy segment and an extra division to compute the 
normalized energy. The total energy is calculated over a much 
larger bin and requires more samples to be kept in memory. In 
these tests a larger bin ten times the size of the small bin size 
was used. This means that the energy total can be calculated 
each time by keeping a sum of the last ten (small) bin sizes 
which requires one subtraction and one addition per bin size. 
Hence the NCED technique requires eleven multiplications 
and eleven addition or subtractions per bin size. The proposed 
new phase technique requires one multiplication to square the 
current sample and another one to double the last result. It 
further requires two addition and subtractions to subtract this 
doubled value and add the twice previous delay value. It is 
worth noting that the new phase technique could also be done 
as ten multiplications and thirty addition and subtractions. 
Table IV summaries the computational expense of each 
technique. 

 
TABLE IV 

COMPARISON OF COMPUTATIONAL EXPENSE 
 Multiplication Addition/subtractio

n 
TEO 20 10 
NCED 11 11 
PHASE 20 / 10 20 / 30 

V. CONCLUSION 
The technique presented in this paper for detection of AP 

from noisy neuronal data has been shown to be particularly 
effective on the data. This data is regarded as an extreme test 
since the noise is in the same frequency range as the action 
potentials and the action potentials show a large range of 
periods. It has also been shown that the algorithm is of a 
similar computational expense as other techniques.  These 
features render it suitable for hardware implementation within 
the space and power dissipation restrictions that apply to 
implantable system-on-chip devices.  
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