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Abstract—In this paper, delay-dependent stability analysis for
neutral type neural networks with uncertain paramters and
time-varying delay is studied. By constructing new
Lyapunov-Krasovskii functional and dividing the delay interval into
multiple segments, a novel sufficient condition is established to
guarantee the globally asymptotically stability of the considered
system. Finally, a numerical example is provided to illustrate the
usefulness of the proposed main results.

Keywords—Neutral type neural networks, Time-varying delay,
Stability, Linear matrix inequality(LMI).

I. INTRODUCTION

NEUTRAL type neural networks have been extensively
studied in recent years due to its wide application in

contemporary society of science and technology such as
image processing, automatic control, pattern recognition,and
so on[1,2]. Among various behaviors, the stability has
proven to be the most important one that has received
considerable research attention, see,for example,[3-20] and
references cited therein. On the other hand, systems with
uncertain paramters have been attracting increasing research
attention [20-22]. In [21], the problem of robust stability
criteria for recurrent neural networks with time-varying
delays are investigated based on linear matrix inequality
(LMI) approach. In addition, the authors in [22] discuss the
problem of robust stability for Hopfield neural networks of
neutral-type via constructing a new Lyapunov-Krasovskii
functional. At recent times, the authors in [23-26] have
provided a less conservative stability condition for delayed
systems by using delay partitioning approach. The advantage
of this approach is to get more tighter upper bound of the
terms calculated by time-derivative of Lyapunov functional.

Motivated by the above discussion, in this paper, the
stability analysis for neutral-type neural networks with
uncertain parameters and time-varying delay is considered.
Some novel delay-dependent stability criteria based on LMI
for neutral-type neural networks will be proposed by
partitioning the delay interval into multiple segments,and
constructing new Lyapunov-Krasovskii functional. The
obtained criteria are less conservatism which can be easily
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checked by using the MATLAB LMI Toolbox. Finally, in
order to show the feasibility of the proposed criteria in this
paper,a numerical example is considered.

II. PROBLEM STATEMENT

Consider the following neutral-type neural networks with
time varying delays described by

ẏ(t)=−Ay(t)+Bg(y(t))+Cg(y(t−τ(t)))+Eẏ(t−d)+I0
(1)

where y(t) = [y1(t), y2(t), . . . , yn(t)]
T ∈ Rn is the neuron

state vector,g(y(t)) = [g1(y1(t)), g2(y2(t)), . . . , gn(yn(t))]
T

denotes the neuron activation function ,and I0 = [I1, I2, . . . ,
In]

T ∈ Rn is a constant input vector,A = diag{ai} ∈ Rn

is a positive diagonal matrix, B = (bij)n×n ∈ Rn is the
connection weight matrix, C = (cij)n×n ∈ Rn, and E =
(eij)n×n ∈ Rn are the delayed connection weight matrices, d
is the constant neutral time delay.
The following assumptions are adopted throughout the paper.
Assumption 1: The delay τ(t) is time-varying continuous
function and satisfies:

0 ≤ τ(t) ≤ τ, τ̇(t) ≤ μ ≤ 1 (2)

Assumption 2: Each neuron activation function gi(·), i =
1, 2, . . . , n,in (1) satisfies the following condition:

l−i ≤ gi(α)− gi(β)

α− β
≤ l+i , ∀α, β ∈ R,α �= β (3)

where l−i , l
+
i , i = 1, 2, . . . , n are constants.

Based on Assumption 1-2, it can be easily proven that there
exists one equilibrium point for (1) by Brouwer‘s fixed-point
theorem. Assuming that y∗ = [y∗1 , y

∗
2 , . . . , y

∗
n]

T is the
equilibrium point of (1) and using the transformation
x(·) = y(·) − y∗,system (1) can be converted to the
following system :

ẋ(t)=−Ax(t)+Bf(x(t))+Cf(x(t−τ(t)))+Eẋ(t− d)
(4)

where
x(t) = [x1(t), x2(t), . . . , xn(t)]

T , f(x(t)) = [f1(x1(t)),
f2(x2(t)), . . . , fn(xn(t))]

T ,
fi(xi(·)) = gi(yi(·) + y∗i )− gi(y

∗
i ), i = 1, 2, . . . , n.

From Eq.(3),fi(·) satisfies the following condition:

l−i ≤ fi(α)

α
≤ l+i , ∀α �= 0, i = 1, 2, . . . , n. (5)

Delay-Dependent Stability Analysis for Neutral Type

Time-Varying Delay

(E-mail address: wangqqchenbc@163.com).

Neural Networks with Uncertain Parameters and



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:6, 2014

883

Due to the disturbance frequent occurs in many applications,so
by translating A,B,C and E to function A(t), B(t), C(t) and
E(t) respectively,we have

ẋ(t) = −A(t)x(t) +B(t)f(x(t)) + C(t)f(x(t− τ(t)))

+E(t)ẋ(t− d)
(6)

Assumption 3: Assumption that A(t) = A +ΔA(t), B(t) =
B + ΔB(t), C(t) = C + ΔC(t),and E(t) = E + ΔE(t)
ΔA(t),ΔB(t),ΔC(t),ΔE(t) are unknown constant matrices
representing time-varying parametric uncertainties, and are of
linear fractional forms:

[ΔA(t),ΔB(t),ΔC(t),ΔE(t)] = DF (t)[Ẽa, Ẽb, Ẽc, Ẽe]
(7)

with

FT (t)F (t) ≤ I (8)

where D, Ẽa, Ẽb, Ẽc, Ẽe are known constant matrices of
appropriate dimensions.
Lemma 1 [27]. For any constant positive-definite matrix
M ∈ Rn×n and h1 ≤ h2, the following inequalities hold:

(h2−h1)

∫ h2

h1

ẋT (s)Mẋ(s)ds≥(

∫ h2

h1

ẋ(s)ds)TM(

∫ h2

h1

ẋ(s)ds)

(9)

Lemma 2 (Schur complement [28]).For any constant matrix
H1, H2, H3,where H1 = HT

1 and H2 = HT
2 > 0.Then

H1 + HT
3 H

−1
2 H3 < 0 if and only if

[
H1 HT

3

H3 −H2

]
< 0 or[−H2 H3

HT
3 H1

]
< 0.

Lemma 3 [29]. Given symmetric matrices Ω and D1, D2, of
appropriate dimensions, Ω +D1F (t)D2 +DT

2 F
T (t)DT

1 < 0
for all F (t) satisfying FT (t)F (t) ≤ I , if and only if there
exists some ε > 0 such that Ω+ ε−1D1D

T
1 + εDT

2 D2 < 0.

III. MAIN RESULTS

In this section, a less conservative delay-dependent
stability criterion is obtained on the condition of
ΔA(t) = ΔB(t) = ΔC(t) = ΔE(t) = 0 in system (6). For
representation convenience, the following notations are
introduced:

L1 = diag{l−1 , l−2 , . . . , l−n }
L2 = diag{l+1 , l+2 , . . . , l+n }
L3 = diag{l−1 l+1 , l−2 l+2 , . . . , l−n l+n }

L4 = diag{ l
−
1 + l+1

2
,
l−2 + l+2

2
, . . . ,

l−n + l+n
2

}

Theorem 1 Given that the Assumption 1-2 hold,the system (6)
globally asymptotically stable if there exist symmetric positive

definite matrices P,Q1, Q2, Q3, Q4, R1, R2, R3,

[
G11 G12

∗ G22

]

positive diagonal matrices W = diag{wi},Λ = diag{δi},

K1,K2 with appropriate dimensions, such that the following
LMIs holds:

Ω=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 0 Ω13 R2 R3 Ω16 Ω17 Ω18 −ATR
∗ Ω22 0 0 0 0 K2L4 0 0
∗ ∗ Ω33 −G12 0 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ω66 Ω67 Ω68 BTR
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0 CTR
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q4 ETR
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0

(10)

where

Ω11 = −PA−AP − 2(L2Λ− L1W )A+Q1 +Q3 +G11

−R1 −R2 −R3 −K1L3

Ω13 = G12 +R1

Ω16 = PB −A(W − Λ) + (L2Λ− L1W )B +K1L4

Ω17 = PC + (L2Λ− L1W )C

Ω18 = PE + (L2Λ− L1W )E

Ω22 = −(1− μ)Q1 −K2L3

Ω33 = G22 −G11 −R1

Ω44 = −G22 −R2, Ω55 = −Q3 −R3

Ω66 = 2(W − Λ)B +Q2 −K1, Ω67 = (W − Λ)C

Ω68 = (W − Λ)E, Ω77 = −(1− μ)Q2 −K2,

R =
τ2

9
R1 +

4τ2

9
R2 + dR3 +Q4

Proof: Construct a new class of Lyapunov functional
candidate as follow:

V (xt) =

4∑
i=1

Vi(xt)

with

V1(xt) = xT (t)Px(t) + 2
n∑

i=1

wi

∫ xi(t)

0

(fi(s)− l−i s)ds

+ 2
n∑

i=1

δi

∫ xi(t)

0

(l+i s− fi(s))ds

V2(xt) =

∫ t

t−τ(t)

xT (s)Q1x(s)ds+

∫ t

t−τ(t)

fT (x(s))Q2f(x(s))ds

∫ t

t−d

xT (s)Q3x(s)ds+

∫ t

t−d

ẋT (s)Q4ẋ(s)ds
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V3(xt) =

∫ t

t− τ
3

[
x(s)

x(s− τ
3 )

]T [
G11 G12

∗ G22

] [
x(s)

x(s− τ
3 )

]
ds

V4(xt) =
τ

3

∫ 0

− τ
3

∫ t

t+θ

ẋT (s)R1ẋ(s)dsdθ

+ d

∫ 0

−d

∫ t

t+θ

ẋT (s)R3ẋ(s)dsdθ

+
2τ

3

∫ 0

− 2τ
3

∫ t

t+θ

ẋT (s)R2ẋ(s)dsdθ

Then, taking the time derivative of V (xt) with respect to t
along the system (6) yield

V̇ (xt) =

4∑
i=1

V̇i(xt)

where

V̇1(xt) = 2xT (t)P ẋ(t) + 2(f(x(t))− L1x(t))
TWẋ(t)

+ (L2x(t)− f(x(t)))TΛẋ(t)
(11)

V̇2(xt) = xT (t)(Q1 +Q3)x(t)− xT (t− d)Q3x(t− d)

−(1−μ)xT (t−τ(t))Q1x(t−τ(t))+fT (x(t))Q2f(x(t))

− (1− μ)fT (x(t− τ(t)))Q2f(x(t− τ(t)))

+ ẋT (t)Q4ẋ(t)− ẋT (t− d)Q4ẋ(t− d)
(12)

V̇3(xt) =

[
x(t)

x(t− τ
3 )

]T [
G11 G12

∗ G22

] [
x(t)

x(t− τ
3 )

]

−
[
x(t− τ

3 )
x(t− 2τ

3 )

]T [
G11 G12

∗ G22

] [
x(t− τ

3 )
x(t− 2τ

3 )

] (13)

V̇4(xt) = ẋT (t)Rẋ(t)− τ

3

∫ t

t− τ
3

ẋT (s)R1ẋ(s)ds

− 2τ

3

∫ t

t−2τ
3

ẋT (s)R2ẋ(s)ds−d

∫ t

t−d
ẋT (s)R3ẋ(s)ds

(14)

Using Lemma 1, we can obtain that

− τ

3

∫ t

t− τ
3

ẋT (s)R1ẋ(s)ds

≤ −[x(t)− x(t− τ

3
)]TR1[x(t)− x(t− τ

3
)]

(15)

− 2τ

3

∫ t

t− 2τ
3

ẋT (s)R2ẋ(s)ds

≤ −[x(t)− x(t− 2τ

3
)]TR2[x(t)− x(t− 2τ

3
)]

(16)

− d

∫ t

t−d

ẋT (s)R3ẋ(s)ds

≤ −[x(t)− x(t− d)]TR3[x(t)− x(t− d)]

(17)

For positive diagonal matrices Ki, i = 1, 2, we can get from
(5) that[

x(t)
f(x(t))

]T [−K1L3 K1L4

∗ −K1

] [
x(t)

f(x(t))

]
≥ 0 (18)

[
x(t− τ(t))

f(x(t− τ(t)))

]T [−K2L3 K2L4

∗ −K2

] [
x(t− τ(t))

f(x(t− τ(t)))

]
≥ 0

(19)

From (11)-(19), we can obtain that:

V̇ (xt) ≤ ξT (t)Πξ(t) (20)

where

ξT (t) = [xT (t), xT (t− τ(t)), xT (t− τ

3
), xT (t− 2τ

3
),

xT (t− d), fT (x(t)), fT (x(t− τ(t))), ẋT (t− d)]

Π=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π11 0 π13 R2 R3 π16 π17 π18

∗ π22 0 0 0 0 K2L4 0
∗ ∗ π33 −G12 0 0 0 0
∗ ∗ ∗ π44 0 0 0 0
∗ ∗ ∗ ∗ π55 0 0 0
∗ ∗ ∗ ∗ ∗ π66 π67 π68

∗ ∗ ∗ ∗ ∗ ∗ π77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ π88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π11 = −PA−AP − 2(L2Λ− L1W )A+Q1 +Q3 +G11

−R1 −R2 −R3 −K1L3 +ATRA

π13 = G12 +R1

π16 = PB −A(W − Λ) + (L2Λ− L1W )B +K1L4 −ATRB

π17 = PC + (L2Λ− L1W )C −ATRC

π18 = PE + (L2Λ− L1W )E −ATRE

π22 = −(1− μ)Q1 −K2L3

π33 = G22 −G11 −R1

π44 = −G22 −R2, π55 = −Q3 −R3

π66 = 2(W − Λ)B +Q2 −K1 +BTRB

π67 = (W − Λ)C +BTRC

π68 = (W − Λ)E +BTRE

π77 = −(1− μ)Q2 −K2 + CTRE,

π88 = −Q4 + ETRE

Using Lemma 2, we can obtain that V̇ (xt) < 0 on the
condition of (10), therefore, the system (6) is asymptotically
stable. This completes the proof.
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Remark 1 Firstly,in this paper,dividing the delay interval
[0, τ ] into three different ones [0, τ

3 ], [
τ
3 ,

2τ
3 ], [ 2τ3 , τ ];

Secondly, constructing new Lyapunov functional which
contains some new integral terms.It have potential to yield
less conservative results.
Based on Theorem 1, we have the following result for
uncertain neutral-type neural networks with time-varying
delay.
Theorem 2 Given that the Assumption 1-3 hold,the system
(6) globally asymptotically stable if there exist symmetric

positive definite matrices P,Q1, Q2, Q3, Q4,

[
G11 G12

∗ G22

]
,

R1, R2, R3,positive diagonal matrices W = diag{wi},K1,
K2,Λ = diag{δi} with appropriate dimensions, and a scalar
ε > 0 such that the following LMIs holds:⎡
⎣Ω Ψ εΦT

∗ −εI 0
∗ ∗ −εI

⎤
⎦ < 0 (21)

where

Ψ=[PD + (L2Λ− L1W )D, 0n×4n, (W − Λ)D, 0n×2n, D
TR]T

Φ = [−Ẽa, 0n×4n, Ẽb, Ẽc, Ẽe, 0n]

Proof: Replacing A,B,C,E in (10) with
A + DF (t)Ẽa, B + DF (t)Ẽb, C + DF (t)Ẽc, E +
DF (t)Ẽe,respectively,(10) is equivalent to the following
condition:

Ω+ΨF (t)Φ + ΦTFT (t)ΨT < 0 (22)

According to Lemma 3, one can obtain (22) is equivalent to
the following inequalities on the condition of FT (t)F (t) ≤ I:

Ω+ ε−1ΨΨT + εΦTΦ < 0 (23)

Using Lemma 2,we know that (23) is equivalent to (21). This
completes the proof.

Remark 2 In this paper, Theorem 1 and Theorem 2 require
the upper bound μ of the time-varying delay τ(t) to be
known. However, in many cases μ is unknown, considering
this situation, we can set Q1 = Q2 = 0 in V (xt), and
employ the similar methods in Theorem 1 and Theorem 2,
we can derive the delay-derivative-independent and
delay-dependent stability criteria.

IV. EXAMPLE

Example 1 Consider delayed neutral-type neural networks
(6) with the following parameters:

A=

[
1.5 0
0 0.7

]
,B=

[
0.0503 0.0454
0.0987 0.2075

]
,C =

[
0.2381 0.9320
0.0388 0.5062

]

E =

[
1.2135 0
−0.3412 0.2257

]
, Ẽa = Ẽb = Ẽc = Ẽe = I

The neuron activation functions are assumed to satisfy
Assumption 2 with L1 = diag{0, 0}, L2 = diag{0.3, 0.8}.

TABLE I
ADMISSIBLE UPPER BOUND τ FOR DIFFERENT d AND μ.

Method Theorem 1
d = 0.1, μ = 0.2 3.4055
d = 0.3, μ = 0.4 4.0657
d = 0.5, μ = 0.6 4.3121
d = 0.7, μ = 0.8 4.5602

In this example, by applying Theorem 1 and solving the
LMI (10) using MATLAB LMI Control ToolBox, we can
obtain the maximum allowable upper bounds of delay for
various of d and μ. From Table I, it can be seen that our
results show significant improvements and less conservative.

V. CONCLUSION

In this paper, the problem of stability analysis for delayed
neutral-type neural networks with uncertain paramters has
been investigated. By choosing new Lyapunov-Krasovskii
functional, dividing the delay interval into multiple segments
, and combining linear matrix inequalities (LMI) techniques,
two new sufficient criteria ensuring the global stability
asymptotic stability of delayed neutral-type neural networks
is obtained. Finally, one example is given to show the
effectiveness of our obtained criteria.

ACKNOWLEDGMENT

The authors would like to thank the editors and the
reviewers for their valuable suggestions and comments which
have led to a much improved paper.This work was supported
by the National Basic Research Program of China
(2010CB32501).

REFERENCES

[1] T.L. Liao, F.C. Wang, Global stability for cellular neural networks with
time delay, IEEE Trans, Neural Networks 11(6)(2000)1481-1484.

[2] S.Arik, Global asymptotic stability of a larger class of neural networks
with constant time delay, Phys. Lett. A 311(2002)504-511.

[3] L.Cheng, Z.G.Hou. M.Tan, A neutral-type delayed projection neural
network for soving nonlinear variational inequalities, IEEE Trans. Circuits
Syst.H: Express Brifs 55(2008)06-810.

[4] Ju.H.Park, O.M.Kwon, Synchronization of neural networks of neutral-
type with stochastic perturbation, Mod.Phys.Lett. B 23(2009)1743-1751.

[5] JU.H.Park, O.M.Kwon, S.M.Lee, LMI optimization approach on
stability for delayed neural networks of neutral-type, Appl.Math.Comput.
196(2008)236-244.

[6] J.D.Chen, New stability criteria for a class of neutral systems with
discrete and distributed time-delays: an LMI approach, Appl. Math.
Comput,150(2004)719-736.

[7] Tian J K,Zhong S M.Improved delay-dependent stability criterion
for neural networks with time-varying delay.Applied Mathematics and
Computation 2011;217:10278-88.

[8] P.L.Liu,Improved delay-dependent robust stability creteria for recurrent
neural networks with time-varying delays,ISA Transactions,52 (2013)30-
35.

[9] X. Liu, Y. Wang, Delay-dependent exponential stability for neural
networks with time-varying delays, Phys. Lett. A 373(2009) 4066-4027.

[10] P.G. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability
of systems with time-varying delays, Automatica 47(2011) 235-238.

[11] X. Liu, C. Dang, Stability analysis of positive switched linear systems
with delays, IEEE Trans. Autom. Control 56(2011) 1684-1690.

[12] O.M. Kwon, J.H. Park, Delay-dependent stability for uncertain
cellular neural networks with discrete and distribute time-varying
delays,J.Franklin Inst. 345(2008) 766-778.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:6, 2014

886

[13] Z.G. Wu, J.H. Park, H.Y. Su, J. Chu, New results on exponential
passivity of neural networks with time-varying delays, Nonlinear Anal.
Real World Appl. 13(2012) 1593-1599.

[14] S.M. Lee, O.M. Kwon, J.H. Park, A novel delay-dependent criterion
for delayed neural networks of neutral type, Phys. Lett. A 374(2010)
1843-1848.

[15] J.H. Park, O.M. Kwon, Synchronization of neural networks of neutral
type with stochastic perurbation, Mod. Phys. Lett. B 23(2009) 1743-1751.

[16] Y.K. Li, X.L.Fan, Existence and globally exponential stability
of almost periodic solution for CohenCGrossberg BAM neural
networks with variable coefficients, Applied Mathematical Modelling
33(2009)2114C2120.

[17] C.Lien,L.Chung, Global asymptotic stability for cellular neural networks
with discrete and distributed time-varying delays, Chaos Solitons Fract
34(2007) 1213-1219.

[18] Z.G. Wu, J.H. Park, H. Su, J.Chu, Dissipativity analysis for singular
systems with time-varying delays, Appl. Math. Comput. 218(2011) 4605-
4613.

[19] T.Li,L.Guo,C.Sun,C.Lin,Futher result on delay-dependent stability
criteria of neural networks with time-varying delays,IEEE Trans.Neural
Networks 19(2008) 726-730.

[20] Liu PL. Robust exponential stability for uncertain time-varying delay
systems with delay dependence.Journal of The Franklin Institute
2009;346(10):958-968.

[21] P.L.Liu, Improve delay-dependent robust stability criteria for recurrent
neural networks with time-varying delays. ISA Transactions 52(2013)30-
35.

[22] W.Qian, T.Li, S.Cong, S.M.Fei, Improved stability analysis on delayed
neural networks with linear fractional uncertainties. Applied Mathematics
and Computation 217(2010)3596-3606.

[23] C.Lin, Q.G.Wang,T.H.Lee, A less conservative robust stability test
for linear uncertain time-delay systems, IEEE Trans. Automat. Control
51(2006)87-91.

[24] K.Gu, V.L.Kharitonov, J.Chen, Stability of Time-Delay System,
Birkhauser, Boston, 2003.

[25] Liu PL. Robust exponential stability for uncertain time-varying delay
systems with delay dependence.Journal of The Franklin Institute
2009;346(10):958-968.

[26] Z.Wang,H.Shu,H.R.Liu, Robust stability analysis of generalized neural
networks with discrete and distributed time delays, Chaos Soliton.
Fract,30(2006)886-896.

[27] R.Song, Z.Wang,Neural networks with discrete and discrete and
distributed time-varying delays: A general stability analysis, Chaos
Soliton. Fract. 37(2008)1538-1547.

[28] S.Boyd,L.E.Ghaoui,E.Feron,V.Balakrishnan, Linear Matrix inequalities
in System and Control Theory, SIAM,Philadelphia,1994.

[29] Boyd S, Ghaoui LE, Feron E, Balakrishnan V. Linear matrix inequalites
in system and control theory. Society and Applied Mathematics PA:
Philadelphia 1994.

Qingqing Wang was born in Anhui Province, China,in 1989. She received
the B.S. degree from Anqing University in 2012. She is currently pursuing the
M.S.degree from University of Electronic Science and Technology of China.
Her research interests include neural networks, switch and delay dynamic
systems.

Shouming Zhong was born in 1955 in Sichuan, China. He received B.S.
degree in applied mathematics from UESTC, Chengdu, China, in 1982.
From 1984 to 1986, he studied at the Department of Mathematics in Sun
Yatsen University, Guangzhou, China. From 2005 to 2006, he was a visiting
research associate with the Department of Mathematics in University of
Waterloo, Waterloo, Canada. He is currently as a full professor with School
of Applied Mathematics, UESTC. His current research interests include
differential equations, neural networks, biomathematics and robust control.
He has authored more than 80 papers in reputed journals such as the
International Journal of Systems Science, Applied Mathematics and
Computation, Chaos, Solitons and Fractals, Dynamics of Continuous,
Discrete and Impulsive Systems, Acta Automatica Sinica, Journal of Control
Theory and Applications, Acta Electronica Sinica, Control and Decision,
and Journal of Engineering Mathematics.


