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Generic Filtering of Infinite Sets of Stochastic
Signals

Anatoli Torokhti and Phil Howlett

Abstract—A theory for optimal filtering of infinite sets of random
signals is presented. There are several new distinctive features of the
proposed approach. First, a single optimal filter for processing any
signal from a given infinite signal set is provided. Second, the filter is
presented in the special form of a sum with p terms where each term
is represented as a combination of three operations. Each operation
is a special stage of the filtering aimed at facilitating the associated
numerical work. Third, an iterative scheme is implemented into the
filter structure to provide an improvement in the filter performance at
each step of the scheme. The final step of the scheme concerns signal
compression and decompression. This step is based on the solution of
a new rank-constrained matrix approximation problem. The solution
to the matrix problem is described in this paper. A rigorous error
analysis is given for the new filter.

Keywords—Optimal filtering, data compression, stochastic signals.

I. INTRODUCTION

A. Motivation

IN this paper, extensions of known approaches to optimal
filtering based on the Wiener idea1 are considered. A theory

for a new nonlinear filter which processes infinite sets of
random signals is presented. The filter is constructed via an
iterative scheme that provides a signal processing improve-
ment with each step. The filter provides simultaneous signal
filtering and compression and the subsequent decompression
(reconstruction).

There has been significant attention in the literature to filters
that process finite sets of random signals but it seems that a
filter which is able to process infinite sets of random signals
has not been developed. The filter presented in this paper is
designed specifically to process infinite sets of random signals.
For the case of finite sets of random signals, we show that our
filter leads to a lower computational load and better accuracy
than the known filters; the improved accuracy is due to the
special iteration procedure incorporated into the filter structure
(see Section III-E2).

There are three motivations for the proposed method which
we now describe.

1) First motivation: infinite sets of signals: Most of the
literature on Wiener-like filtering provides an optimal filter for
an individual input signal given by a finite random vector2.
This means that if we wish to transform an infinite set
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1Some references on Wiener-like filtering can be found in [6], [9], [13],

[14], [15].
2We say a random vector x is finite if each realization x = x(ω) has a

finite number of scalar components.

Y = {y
(1)

,y
(2)

, . . . ,y
(N)

, . . .} of input vector signal into an
infinite set X = {x(1),x(2), . . . ,x(N), . . .} of output vector
signals using a Wiener-like approach then we have to find a set
of corresponding Wiener filters {F (1),F (2), . . . ,F (N), . . .}
so that each representative F i of the filter set relates to
a representative y

(i) of the signal-vector set Y . Therefore
such a filter cannot be applied if X and Y are infinite
sets of signals. Moreover, in some situations, a recognizer
must be used that will determine to which of the filters
{F (1),F (2), . . . ,F (N), . . .} each component from Y should
be directed.

Note that even in the case when Y and X are finite sets,
Y = {y

(1)
,y

(2)
, . . . , y

(N)
} and X = {x(1),x(2), . . . ,x(N)},

and then Y and X can be represented as finite vectors, the
Wiener approach leads to computation of large covariance
matrices. Indeed, if each yi has n components and each xi has
m components then the Wiener approach leads to computation
of a product of an mN ×nN matrix and an nN ×nN matrix
and computation of an nN ×nN pseudo-inverse matrix [14].
This requires O(2mn2N3) and O(22n3N3) flops, respectively
[5]. If m, n and N are sufficiently large then the computational
work associated with this approach becomes unreasonably
hard.

To avoid such drawbacks, we here study an approach that
allows us to use only one filter to process any signal from the
infinite set Y .

The first question we address in the paper is as follows.
Let X and Y be infinite sets of signals. How should we
construct a single optimal filter F : Y → X which can
be applied to each pair of signals (x,y) ∈ X × Y and
which, moreover, transforms each y to a corresponding x with
associated minimal error?

Surprisingly, perhaps, the answer is based firstly, on a dual
representation of signal x in different spaces and secondly,
on the use of the special norm (3) in the statement of the
problem. The dual representation means that x is considered as
a single signal in one representation, and on the other hand, as
an infinite set of signals in the other, original, representation.
A detailed explanation is given in Section VI. Examples of
different special cases of the norm (3) used in our statement
of the problem are presented in Section VI.

The answer for the first question is provided in Sections
II-A, II-C, in Theorems 3 and 4, and in Section III-E. The
special norm is given by (3) below.

2) Second motivation: improvement in the filter perfor-
mance: The performance of filters used for data filtering,
compression and subsequent reconstruction, is characterized
by the accuracy, the compression ratio and the related com-
putational load. The Karhunen-Loève filter (KLF) [10], [11],



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:6, 2009

418

[14]3 is known to be the optimal filter that minimizes the re-
construction error over the class of all linear data compression-
reconstruction filters. The KLF model is based on on the
solution of a rank-constrained matrix approximation problem.
Nevertheless, it may happen that the accuracy and compression
ratio associated with the KLF are still not satisfactory in some
circumstances.

The second question we address in this paper is as follows.
Is there a filter that will have greater accuracy and better
compression ratio then the KLF? An obvious but not con-
structive answer is that such a filter must be nonlinear. We
propose a constructive determination of a nonlinear filter in
the form of a sum with p terms given by (1) below, where
each term is represented as a combination of three operations
Gk, Hk and Pk for each k = 1, . . . , p. The operator Pk is
a non-linear operator that allows us to incorporate additional
information, the operator Hk is a generalized Gram-Schmidt
orthogonalization that decouples the additional information
and the operator Gk minimizes the estimation error. The
orthogonalization is used primarily to reduce the associated
numerical load.

The prime idea is to determine Gk from an iterative scheme
aimed at improving the filter performance with each step. At
the final step of the scheme, Gk is determined subject to
the prescribed rank restrictions. The scheme is described in
Section II-C. Moreover, due to the orthogonal structure created
by the Hk it turns out that Gk is determined by solution of
a separate minimization problem for each k = 1, . . . , p. See
Theorems 3 and 4 in this regard. The nonlinear operators Pk

imply non-linearity of the filter. In the case Pk = I for each
k = 1, . . . , p, where I is the identity mapping, the filter is
linear and the method presented in Sections II-C and III-B
below becomes degenerate. Examples of possible nonlinear
operators Pk are given in Section III-C.

The operations Pk and Hk are auxiliary operations related
to finding Gk, and they are described in Sections II-C and
III-C, and Lemma 2, respectively.

3) Third motivation: generalized rank-constrained matrix
approximation: Data compression filters are often based on the
solution of a best rank-constrained matrix approximation prob-
lem. This is best explained for a linear filter. In this simplest
case, the linear data compression filter (LDCF) consists of the
two parts, compressor and de-compressor. Mathematically, the
two parts are represented by an m × r matrix FC

and an
r × n matrix F

D
where r < min{m,n}. The LDCF itself

is represented as an m × n matrix F = FC FB . Thus, to
find an optimal LDCF in the sense of minimizing its cost
function, one can represent F as F = FD

F
C

and deal with
two unknowns, F

C
and F

D
. On the other hand the matrix

F such that F = F
D

F
C

can equivalently be written as F
subject to rank F ≤ r. Therefore, if finding an optimal
LDCF is formulated as the problem of determining the matrix
F that minimizes the cost function subject to rank F ≤ r
then we deal with the only one unknown. The latter is more
computationally preferable.

3The Karhunen-Loève filter is often called the rank-reduced Wiener filter
[11]. The analytic procedure is described by statisticians as Principal Com-
ponent Analysis [8].

It has been shown in [4] that for such problems the solution
given in [4] should be used. This solution has been obtained
for the case of a minimal norm matrix. In Section III-A below,
we extend the solution to a more general case and exploit it
in our filter derivation.

B. Contribution

We provide a theory for the new filter which processes
infinite sets of random signals. The filter is presented in the
form (1) and is based on a new iterative scheme (Section II-C)
that ensures the filter accuracy is improved with each step.
The final step provides signal compression and decompression
(Section III-D). This step is based on the solution of a
new rank-constrained matrix approximation problem (Section
III-A) following the methodology used in [4]. A rigorous error
analysis for the filter is also given (Section III-B).

II. METHOD DESCRIPTION AND STATEMENT OF THE

PROBLEM

A. Filter structure

Let (Ω, Σ, μ) be a probability space, where Ω = {ω} is the
set of outcomes, Σ a σ–field of measurable subsets in Ω and
μ : Σ → [0, 1] an associated probability measure on Σ with
μ(Ω) = 1.

Let x = {x(·, α) ∈ L2(Ω, Rm) | α ∈ K} where K is a
measurable set [7] in some appropriate σ–field with a measure
λ(α). Thus x ∈ L2(Ω × K, Rm). We observe an interesting
duality in the representation of x in that x is a single signal
in the space L2(Ω × K, Rm) and is an infinite set of signals
{x(·, α) ∈ L2(Ω, Rm) | α ∈ K} in the space L2(Ω, Rm). In
similar fashion we write y = {y(·, α) ∈ L2(Ω, Rm) | α ∈ K}
and y ∈ L2(Ω×K, Rm). We interpret x as a signal that should
be estimated and y as an observed signal that can be used as an
input to the filter Fp studied below. In an intuitive way y can
be regarded as a noise-corrupted version of x. For example, y
can be interpreted as y = x+n where n is white noise. In this
paper, we do not restrict ourselves to this simplest version of y

and assume that the dependence of y on x and n is arbitrary.
Let x1 = y and let x1, . . . ,xp be a sequence of estimates

of x obtained by the method described in Sections II-C, III-A
and III-B below. The filter Fp is presented in the form

Fp(y) =
p∑

k=1

GkHkPk(x1, . . . ,xk), (1)

where Pk : L2((Ω × K)k, Rn) → L2(Ω × K, Rn), Hk :
L2(Ω×K, Rn) → L2(Ω×K, Rn) and Gk : L2(Ω×K, Rn) →
L2(Ω × K, Rm).

The purpose of the components Gk, Hk and Pk has been
described above in Section I-A2. The components Pk are
defined in Sections II-C and III-C, and components the Gk

and Hk are determined in Section III-B.

B. Basic ideas

The input to the filter Fp is a stochastic signal – a random
vector y ∈ L2(Ω × K, Rm). We wish to filter and compress
y, and to reconstruct a compressed vector that is close to x.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:6, 2009

419

The first idea is to represent y as a generalized sequence of
signals

y = {y(·, α) ∈ L2(Ω, Rm) | α ∈ K}

where (typically) K ⊂ R and to use the special norm (3) in the
statement of the problems in Sections II-C and II-D. The filter
processes each y(·, α) separately but the filter components are
determined from the entire sets x and y.

The filter is best illustrated for a particular case when the
sets x and y are finite (as in Example 4 of Section VI), and we
have, in (1), p = 1, H1 and P1 are each the identity mapping,
and G1 is determined from problem (4). In such a case, we
set y = {y(·, tk) ∈ L2(Ω, Rm) | tk ∈ R ∀ k = 1, . . . , N}
and x = {x(·, tk) ∈ L2(Ω, Rm) | tk ∈ R ∀ k = 1, . . . , N}.
The estimate x̃ of x by the proposed filter is given by

x̃ = [x̃(·, t1), . . . , x̃(·, tN )] = G̃1[y(·, t1), . . . ,y(·, tN )]

where G̃1 is provided by Theorem 3 of Section III-B and,
for each k = 1, . . . , N , the estimate x̃(·, tk) = G̃1y(·, tk) is
determined separately.

The second idea is based on the following observation. It is
natural to expect that the filter performance would be better
if the input to Fp was x, and not y. Indeed, in this case,
no transformation of y to x need be done and in particular,
no noise filtering is necessary. The filter would provide only
compression and subsequent decompression. This means that
the error associated with such a filter performance will be
linked only to compression and decompression, and will not
be increased by an error associated with the transformation of
y to x. Hence, in such a case, the overall error will be less.

Therefore, our next idea is to construct an iterative scheme
such that, at each step, the scheme allows us:

(a) to find a new input for Fp which is closer to x than
those determined in preceding steps,

(b) to determine operators G1, . . . ,Gk that minimize the
associated error at each step, and

(c) to define operators H1, . . . ,Hk so that the desired op-
erators G1, . . . ,Gk are determined from a numerically simple
scheme (see Section III-E1 for more detail).

This idea is realized below in Sections II-C and III-B in such
a way that Fp is determined from a sequence of associated
error minimization problems.

C. Basic device

Let the model for the filter Fp be given by (1). The proposed
device for determining operators Hk, Gk and Pk in (1) is
as follows. The operators Hk in (1) are defined by Lemma
2 of Section III-B below. The recommended procedure for
determining the operators Gk and Pk consists of p successive
steps based on the following idea. If x1 = y and the
subsequent estimates of x denoted by x2, . . . ,xk−1 have been
determined from successive steps then for the kth step, we
define

xk =
k−1∑
j=1

G̃jHj(y1
, . . . ,yj) (2)

where yj = Pj(x1, . . . ,xj) and Pj is conceptually defined in
(1) and where G̃1, . . ., G̃k are determined from the proposed
error minimization criteria. We propose the following scheme.

First, we introduce the norm ‖ · ‖K,Ω defined by

‖x‖2

K,Ω =
1

λ(K)

∫∫
Ω×K

‖x(ω, α)‖2

2
d(μ(ω), λ(α)), (3)

where λ(K) =
∫

K
dλ(α) is the measure of K and where

‖x(ω, α)‖2 is the Euclidean norm of x(ω, α) ∈ R
m. More

explanation is given in Section VI.
The proposed scheme consists of a sequence of steps.

Step 1 The initial step. For k = 1, let x1 := y and let P1 = I
and H1 = I so that y

1
:= x1 and find G̃1 that satisfies

‖x − G̃1(y1
)‖2

K,Ω = min
G1

‖x − G1(y1
)‖2

K,Ω. (4)

Set x2 = G̃1(x1).
Step �−1 for � = 3, . . . , p. The filtering steps. Let x2, . . . ,x�−1

be known from the preceding � − 2 steps. For k = � − 1 in
(2) define P�−1 so that y�−1

= P�−1(x1, . . . ,x�−1) and find
G̃1, G̃2, ..., G̃�−1 that satisfy

‖x −
�−1∑
j=1

G̃jHj(y1
, . . . ,yj)]‖2

K,Ω

= min
G1,...,G�−1

‖x −
�−1∑
j=1

GjHj(y1
, . . . ,yj)‖2

K,Ω. (5)

Set x� =
∑�−1

j=1
G̃jHj(y1

, . . . ,yj).
Step p. The reconstruction step. At the final step, for k = p in
(2) define Pp so that yp = Pp(x1, . . . ,xp) and find Ĝ1, Ĝ2,
..., Ĝp that satisfy

‖x −
p∑

j=1

ĜjHj(y1
, . . . ,yj)]‖2

K,Ω

= min
G1,...,Gp

‖x −
p∑

j=1

GjHj(y1
, . . . ,yj)‖2

K,Ω (6)

subject to the rank constraints
p∑

j=1

rank Ĝj ≤ r ≤ min{m, n} and rank Ĝj ≤ rj (7)

with
p∑

j=1

rj = r.

We set xp+1 =
∑p

i=1
ĜiHi(y1

, . . . ,yi).
Due to condition (7), this step provides data compression–

reconstruction as it is shown in Section III-D below.

D. Statement of the problem

The problem we solve follows from the basic structure
presented above. Let x and y be random signals where x

is an unobservable signal and y is an observable input signal.
Both x and y are analytically unknown and the only available
information is given by covariance matrices formed from x

and y. We wish to find a filter of the form (1) with G1, . . . ,Gp

determined from the error minimization problems (4)–(7). The
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filter must satisfy the requirements (a), (b) and (c) of the
Section II-B.

The main differences of the problem given by (1), (4)–(7)
from known problems are as follows. First, we are looking for
the optimal filter that minimizes the associated error for any
signal from an infinite signal set. This is achieved due to the
new norm given by (3). The second major difference is the spe-
cial structure of the filter (1)–(7). Each step of the suggested
procedure represents the solution of a best approximation
problem that minimizes an associated error. If the final stage
Step p is omitted the scheme performs filtering only. If Step
p is included then the scheme provides simultaneous signal
filtering and compression and the subsequent reconstruction.

Solutions to problems (4)–(7) are given below under as-
sumptions that certain covariance matrices are known. The
assumptions are specified in Theorems 3 and 4 below. It
is important to note that for new signals constructed during
the phase of iterative improvement the required covariance
matrices can be constructed from the original data.

E. Advantages of the filter

The advantages of the proposed filter are discussed in
Section III-E.

III. MAIN RESULTS

The solution to the problem (6)–(7) is based on the results
presented in Section III-A. The solution itself is given in
Theorem 4 below.

A. Generic low-rank matrix approximation problem

Let C
m×n be the set of m × n complex valued matrices,

and denote by R(m,n, k) ⊆ C
m×n the variety of all m × n

matrices of rank k at most. Fix A = [aij ]
m,n
i,j=1

∈ C
m×n. Then

A∗ ∈ C
n×m is the conjugate transpose of A. Let the SVD of

A be given by
A = UAΣAV ∗

A, (8)

where UA ∈ C
m×m and VA ∈ C

n×n are unitary matrices and

ΣA := diag(σ1(A), . . . , σmin(m,n)(A)) ∈ C
m×n

is a generalized diagonal matrix with singular values σ1(A) ≥
σ2(A) ≥ . . . ≥ 0 on the main diagonal. We write

A† = VAΣ†
AU∗

A

for the Moore-Penrose pseudo-inverse [1] of the matrix A. In
this definition

Σ†
A := diag(σ1(A)†, . . . , σmin(m,n)(A)†) ∈ C

n×m

where we use the notation

σj(A)† =
{

σj(A)−1 if σj(A) 
= 0
0 otherwise.

Let UA = [u1 u2 . . . um] and VA = [v1 v2 . . . vn] be the
representations of U and V in terms of their columns. Let r =
rank A and write UA = [UA1 UA2] where UA1 ∈ C

m×r and

UA2 ∈ C
m×(m−r) and VA = [VA1 VA2] where VA1 ∈ C

n×r

and VA2 ∈ C
n×(n−r). Then

PA,L :=
r∑

i=1

uiu
∗
i = UA1U

∗
A1

and PA,R :=
r∑

i=1

viv
∗
i = VA1V

∗
A1

(9)
are the orthogonal projections on the ranges of A and A∗,
respectively. We note that ΣA = U∗

AAVA and we will use the
notation

ΣA =
[

U∗
A1

U∗
A2

]
A
[

VA1 VA2

]

=
[

U∗
A1

AVA1 U∗
A1

aVA2

U∗
A2

AVA1 U∗
A2

AVA2

]
=
[

A1 O

O O

]
.

Define

Ak := (A)k :=
k∑

i=1

σi(A)uiv
∗
i = UAkΣAkV ∗

Ak ∈ C
m×n

(10)
for k = 1, . . . , rank A − 1, where

UAk = [u1 u2 . . . uk], ΣAk = diag(σ1(A), . . . , σk(A))
and VAk = [v1 v2 . . . vk]. (11)

For k ≥ rank A, we note that Ak := A = (A)rank A. For
1 ≤ k < rank A, the matrix Ak is uniquely defined if and
only if σk(A) > σk+1(A).

Lemma 1: Let A ∈ C
m×n. If R ∈ C

m×m and S ∈ C
n×n

are unitary matrices then R(A)kS∗ = (RAS∗)k.
Proof. If A = UAΣAV ∗

A is the singular value decomposition
for A then RAS∗ = (RUA)ΣA(SVA)∗ is the singular value
decomposition of RAS∗. Thus

(RAS∗)k =
k∑

i=1

σi(A)(Rui)(Svi)∗ = R

[
k∑

i=1

σi(A)uiv
∗
i

]
S∗

= R(A)kS∗.

Henceforth ‖ · ‖F denotes the Frobenius norm. Below, we
provide generalizations of the classical minimization problem
due to Eckart and Young [3]. First, we present the result
obtained in [4].

Theorem 1: [4] Let matrices A ∈ C
m×n, B ∈ C

m×p and
C ∈ C

q×n be given. Then

X = B†(PB,LAPC,R)kC† (12)

is a solution to the minimization problem

min
X∈R(p,q,k)

||A − BXC||F , (13)

having the minimal ||X||F . This solution is unique if and only
if either

k ≥ rank (PB,LAPC,R)

or
1 ≤ k < rank (PB,LAPC,R)

and σk(PB,LAPC,R) > σk+1(PB,LAPC,R).

We will explain this result as briefly as possible and refer
the reader to the original article by Friedland and Torokhti [4]
for more details. Let s = rank B and t = rank C. Using the
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notation introduced above we write UB = [UB1 UB2] where
UB1 ∈ C

m×s and UB2 ∈ C
m×(m−s) and VC = [VC1 VC2]

where VC1 ∈ C
n×t and VC2 ∈ C

n×(n−t). Thus we have

ΣB =
[

U∗
B1

U∗
B2

]
A
[

VB1 VB2

]

=
[

U∗
B1

BVB1 U∗
B1

BVB2

U∗
B2

BVB1 U∗
B2

BVB2

]
=
[

B1 O

O O

]

and

ΣC =
[

U∗
C1

U∗
C2

]
A
[

VC1 VC2

]

=
[

U∗
C1

CVC1 U∗
C1

CVC2

U∗
C2

CVC1 U∗
C2

CVC2

]
=
[

C1 O

O O

]

We will write

Ã = U∗
BAVC =

[
A11 A12

A21 A22

]

where A11 = U∗
B1

AVC1 ∈ C
s×t, A12 = U∗

B1
AVC2 ∈

C
s×(n−t), A21 = U∗

B2
AVC1 ∈ C

(m−s)×t and A22 =
U∗

B2
AVC2 ∈ C

(m−s)×(n−t). The idea behind our explanation
of Theorem 1 is simple. The Frobenius norm is not changed
when we multiply on the left or the right by a unitary matrix.
Thus we have

‖A − BXC‖F = ‖U∗
B(A − UBΣBV ∗

BXUCΣCV ∗
C)VC‖F

= ‖Ã − ΣBX̂ΣC‖F

where

X̂ = V ∗
BXUC =

[
X11 X12

X21 X22

]
.

Since

ΣB =
[

B1 O

O O

]
and ΣC =

[
C1 O

O O

]

it follows that

‖A − BXC‖F = ‖A11 − B1X11C1‖F

+‖A12‖F + ‖A21‖F + ‖A22‖F

from which it follows that the solution X = X0 to problem
(13) is given by X11 = B−1

1
(A11)kC−1

1
, X12 = O, X21 =

O and X22 = O. We will use the following argument on
a number of occasions. We observe B−1

1
= V ∗

B1
B†UB1 and

C−1

1
= V ∗

C1
C†UC1 and hence deduce

X11 = B−1

1
(A11)kC−1

1

=
[

B−1

1
O
]([ Is O

O O

] [
A11 A12

A21 A22

] [
It O

O O

])
k

×
[

C−1

1

O

]

= V ∗
B1

B† [ UB1 UB2

]([ U∗
B1

O

]
A
[

VC1 O
])

k

×
[

V ∗
C1

V ∗
C2

]
C†UC1

= V ∗
B1

B† (UB1U
∗
B1

AVC1V
∗
C1

)k C†UC1

= V ∗
B1

B†(PB,LAPC,R)kC†UC1.

We know that VB1V
∗
B1

= B†B and UC1U
∗
C1

= CC† and so

VB1X11U
∗
C1

= PB,RB†(PB,LAPC,R)kC†PC,L

= B†(PB,LAPC,R)kC†.

Therefore

X0 =
[

VB1 VB2

] [ B−1

1
(A11)kC−1

1
O

O O

] [
U∗

C1

U∗
C2

]

= B†(PB,LAPC,R)kC†.

To find a general solution to problem (13) without the con-
straint of the minimal ||X||F we must have

X = VBX̂U∗
C with X̂ =

[
X11 X12

X21 X22

]
, (14)

where X11 = V ∗
B1

B†(PB,LAPC,R)kC†UC1 and X12, X21 and
X22 are chosen in such a way that X̂ ∈ R(p, q, k). In Theorem
2 below, we show how to choose X12, X21 and X22 (see (21))
to satisfy the condition X̂ ∈ R(p, q, k).

Theorem 2: If the requirement that ‖X‖F should be min-
imized is omitted then the solution to problem (13) is not
unique. In this case the general solution to problem (13) can
be written in the form

X = B†(PB,LAPC,R)kC† + K. (15)

where

K =
[

PB,R I − PB,R

] [ O K12

K21 K22

] [
PC,L

I − PC,L

]
,

(16)

K12 = VB1X11QU∗
C2

, K21 = VB2PX11U
∗
C1

, (17)

K22 = VB2PX11QU∗
C2

, X11 = V ∗
B1

B†(PB,LAPC,R)kC†UC1,

and where P ∈ C
(p−s)×s and Q ∈ C

t×(q−t) are arbitrary.
Proof. To preserve rank X̂ = rank X11 we should choose
X12, X21 and X22 from (14) in a compatible form. To be
specific there must exist matrices P ∈ C

(p−s)×s and Q ∈
C

t×(q−t) such that[
I O

−P I

] [
X11 X12

X21 X22

] [
I −Q
O I

]
=
[

X11 O

O O

]

from which it follows that

X12 = X11Q, X21 = PX11 and X22 = PX11Q (18)

where X11 = V ∗
B1

B†(PB,LAPC,R)kC†UC1. Since

X = VBX̂U∗
C = VB

[
X11 O

O O

]
U∗

C+VB

[
O X12

X21 X22

]
U∗

C

we have

X = B†(PB,LAPC,R)kC† + VB1X12U
∗
C2

+VB2X21U
∗
C1

+ VB2X22U
∗
C2

.

We note that VB1 = VB1V
∗
B1

VB1 = PB,RVB1, U∗
C1

=
U∗

C1
UC1U

∗
C1

= U∗
C1

PC,L, VB2 = VB2V
∗
B2

VB2 = (Ip −
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PB,R)VB2 and U∗
C2

= U∗
C2

UC2U
∗
C2

= U∗
C2

(Iq − PC,L) and
hence

X = B†(PB,LAPC,R)kC† + PB,RVB1X11QU∗
C2

(Iq − PC,L)
+(Ip − PB,R)VB2PX11U

∗
C1

PC,L

+(Ip − PB,R)VB2PX11QU∗
C2

(Iq − PC,L)
= B†(PB,LAPC,R)kC† + PB,RK12(Iq − PC,L)

+(Ip − PB,R)K21PC,L + (Ip − PB,R)K22(Iq − PC,L)

where K12 = VB1X11QU∗
C2

, K21 = VB2PX11U
∗
C1

, K22 =
VB2PX11QU∗

C2
and X11 = V ∗

B1
B†(PB,LAPC,R)kC†UC1.

The following Corollary will be used in the next Section.
Corollary 1: Let p = m, q = n and B = I and define

Ã = AVC = [A1 A2] where A1 = AVC1 ∈ C
m×t and A2 =

AVC2 ∈ C
m×(n−t). The general solution to the problem

min
X∈R(m,n,k)

||A − XC||F (19)

is given by

X = (APC,R)kC† + (APC,R)kC†UC1QU∗
C2

(Iq − PC,L).
(20)

where Q ∈ C
t×(n−t) is arbitrary.

Proof Let X̂ = XUC = X[UC1 UC2] = [X1 X2]. Since

‖A − XC‖F = ‖Ã − X̂ΣC‖F = ‖A1 − X1C1‖F + ‖A2‖F

it follows that the solution to problem () with minimum value
for ‖X‖F is given by X = (A1PC,R)kCF †. Now consider
the problem without the constraint requiring a minimum value
for ‖X‖F . To preserve rank X̂ = rank X1 we should choose
X2 in a compatible form. To be specific there must exist a
matrix Q ∈ C

t×(q−t) such that

[
X1 X2

] [ I −Q
O I

]
=
[

X1 O
]

from which it follows that

X2 − X1Q = O. (21)

By adapting the general argument used in the previous the-
orem we can see that X1 = (APC,R)kC†UC1 and X2 =
(APC,R)kC†UC1Q. Therefore

X = X̂U∗
C = X1U

∗
C1

+ X2U
∗
C2

and so X = (APC,R)kC† +(APC,R)kC†UC1QU∗
C2

. We note
that U∗

C2
= U∗

C2
UC2U

∗
C2

= U∗
C2

(Iq − PC,L) and hence

X = (APC,R)kC† + (APC,R)kC†UC1QU∗
C2

(Iq − PC,L).

Remark 1: The Eckart-Young theorem [3] follows from
Theorem 2 as a particular case when p = m, q = n, B = Im

and C = In.

B. Solution of the problems (4)–(5) and (6)–(7)

Let x = {x(·, α) ∈ L2(Ω, Rm) | α ∈ K} ∈ L2(Ω×K, Rm)
and y = {y(·, α) ∈ L2(Ω, Rm) | α ∈ K} ∈ L2(Ω × K, Rm)
where K is a measurable set with finite measure λ(K) in some
sigma field of measurable sets [7].

We write x = (x(1), . . . , x(m))T and y = (y(1), . . . , y(n))T

where x(i) ∈ L2(Ω × K, R) for i = 1, . . . , m and y(j) ∈
L2(Ω × K, R) for j = 1, . . . , n are real valued random
variables. Let

〈x(i), y(j)〉 =
1

λ(K)

∫∫
Ω×K

x(i)(ω, α)y(j)(ω, α) d(μ(ω), λ(α))

(22)
and

〈y(i), y(j)〉 =
1

λ(K)

∫∫
Ω×K

y(i)(ω, α)y(j)(ω, α) d(μ(ω), λ(α))

(23)
and define covariance matrices

R[xy
T ] =

[
〈x(i), y(j)〉

]
∈ R

m×n (24)

and
R[yy

T ] =
[
〈y(i), y(j)〉

]
∈ R

n×n. (25)

If M ∈ R
m×n then we define a corresponding operator

M : L2(Ω × K, Rn) → L2(Ω × K, Rm) by the formula

[M(y)](ω, α) = M [y(ω, α)]. (26)

Henceforth all such operators will be denoted by a calligraphic
letter.

We wish

(i) to give explicit solutions to the problems (4)–(5) and
(6)–(7), and

(ii) to show that the error associated with the proposed
method decreases as the number k of steps (4)–(7)
increases.

First, we give a method for the determination of the oper-
ators H1, . . . ,Hk in the filter model (1).

Definition 1: The random vectors {vi}i=1,...,k ⊂ L2(Ω ×
K, Rn) are called pairwise orthogonal if

R[viv
T
j ] = O ∈ R

n×n (27)

for i 
= j with i, j = 1, . . . , k.
Lemma 2: Let yi = Pi(x1, . . . ,xi) and vi =

Hi(y1
, . . . ,yi) for each i = 1, 2, . . . , k where the linear op-

erators Hi : L2((Ω×K)i, Rn) 
→ L2(Ω×K, Rn) are defined
inductively by the generalized Gram-Schmidt algorithm

v1 = y
1

and vi = yi −
i−1∑
�=1

Li�(v�) (28)

with Li� : L2(Ω × K, Rn) → L2(Ω × K, Rn) defined by
Li�(v�) = Li�v� where

Li� = R[yiv
T
� ]R[v�v

T
� ]†+Mi�(I−R[v�v

T
� ]R[v�v

T
� ]†) (29)

and Mi� ∈ R
n×n is arbitrary for each i = 2, . . . , k. Then

the vectors v1,v2 . . . ,vk are pairwise orthogonal in L2(Ω ×
K, Rn).
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Proof. The proof follows directly from (28), (29) and
Definition 1 on the basis of the relation R[yiv

T
� ] =

R[yiv
T
� ]R[v�v

T
� ]†R[v�v

T
� ]. We refer the reader to Torokhti

and Howlett [14], p. 168 for additional information.

Remark 2: In practice it is usual to take Mi� = O.
Remark 3: The Gram-Schmidt formula can be rearranged

to give

y
1

= v1 and yi = vi +
i−1∑
�=1

Li�v�

for each i = 2, . . . , k. Thus we can write

y
(i) = (Iim + Li)v(i)

⇔

⎡
⎢⎢⎢⎢⎢⎣

y
1

y
2

y
3

...
yi

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Im O O · · · O

L21 Im O · · · O

L31 L32 Im · · · O

...
...

...
. . .

...
Li1 Li2 Li3 · · · Im

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v1

v2

v3

...
vi

⎤
⎥⎥⎥⎥⎥⎦

from which it follows easily that

v
(i) = (Iim + Li)−1

y
(i)

=

⎡
⎢⎢⎢⎢⎢⎣

Im O O · · · O

H21 Im O · · · O

H31 H32 Im · · · O

...
...

...
. . .

...
Hi1 Hi2 Hi3 · · · Im

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

y
1

y
2

y
3

...
yi

⎤
⎥⎥⎥⎥⎥⎦

is well defined. This formula shows clearly that vi =
Hi(y1

, . . . ,yi) = Hi1y1
+ · · · + Hi(i−1)yi−1

+ yi.
The matrices R[xv

T
j ], R[yiv

T
j ] and R[vjv

T
j ] are assumed

known. Estimation of these matrices is discussed in Section
5.3 of the book by Torokhti and Howlett [14].

Theorem 3: For k = 1, . . . , p − 1 the solution G̃j to
problems (4)–(5) is

G̃j = R[xv
T
j ]R†[vjv

T
j ] + Mj(I − R[vjv

T
j ]R†[vjv

T
j ]) (30)

where Mj is arbitrary for each j = 1, . . . , k − 1 and vj =
Hj(y1

, . . . ,yj) has been determined for each j = 1, 2, . . . , k
by Lemma 2. The associated error is

‖x−xk‖2

K,Ω = tr

⎧⎨
⎩R[xx

T ] −
k−1∑
j=1

R[xv
T
j ]R[vjv

T
j ]†R[vjx

T ]

⎫⎬
⎭ .

Proof We write δk = ‖x − xk‖2

K,Ω. We have ‖x‖2

K,Ω =
tr{R[xx

T ]}. Therefore, for k = 1, . . . , p,

δk = tr

⎧⎪⎨
⎪⎩R

⎡
⎢⎣
⎛
⎝x −

k−1∑
j=1

Gj(vj)

⎞
⎠
⎛
⎝x −

k−1∑
j=1

Gj(vj)

⎞
⎠

T
⎤
⎥⎦
⎫⎪⎬
⎪⎭

= tr

⎧⎨
⎩R[xx

T ] −
k−1∑
j=1

(
R[xv

T
j ]GT

j + GjR[vjx
T ]
)

+R

⎡
⎢⎣
⎛
⎝k−1∑

j=1

Gj(vj)

⎞
⎠
⎛
⎝k−1∑

j=1

Gj(vj)

⎞
⎠

T
⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (31)

In (31),

R

⎡
⎢⎣
⎛
⎝k−1∑

j=1

Gj(vj)

⎞
⎠
⎛
⎝k−1∑

j=1

Gj(vj)

⎞
⎠

T
⎤
⎥⎦ =

k∑
j=1

GjR[vjv
T
j ]GT

j

owing to the orthogonality of vectors v1,v2 . . . ,vk. Thus,

δk = ‖R1/2[xx
T ]‖2

F

−
k−1∑
j=1

‖R[xv
T
j ](R[vjv

T
j ]1/2)†‖2

F +
k−1∑
j=1

Jj(Gj) (32)

where

Jj(Gj) = ‖Aj − GjCj‖2

F . (33)

Because the terms J1(G1), . . . , Jk(Gk) in the sum∑k
j=1

Jj(Gj) are determined independently we have

min
G1,...,Gk

k∑
j=1

Jj(Gj) =
k∑

j=1

min
Gj

Jj(Gj). (34)

Therefore, for k = 1, . . . , p − 1, the minimum in (4)–(5) is
achieved if

Aj−GjCj = O ⇔ (GjR[vjv
T
j ]−R[xv

T
j ])(R[vjv

T
j ]1/2)† = O

and if we multiply on the right by (R[vjv
T
j ]1/2)†R[vjv

T
j ] we

can see that

GjR[vjv
T
j ] − R[xv

T
j ] = O.

According to [1] a general solution to this equation is given
by (30) if and only if R[xv

T
j ] = R[xv

T
j ]R[vjv

T
j ]†R[vjv

T
j ].

This is clearly true. Therefore the optimal value G̃j is given
by

G̃j = R[xv
T
j ]R[vjv

T
j ]† + Mj(I − R[xv

T
j ]R[vjv

T
j ]†)

where Mj is arbitrary for all j = 1, 2, . . . , k − 1.
Remark 4: We remind the reader that there is no rank re-

striction on the matrix operators during the filtration procedure.
Thus Theorem 3 solves a matrix optimization problem with
no rank restriction.

Define

Aj = R[xv
T
j ]R[vjv

T
j ]1/2† and Cj = R[vjv

T
j ]1/2.

and let

Aj = UAj ΣAj V
T
Aj

and Cj = UCj ΣCj V
T
Cj

(35)

be the singular value decompositions for Aj and Cj respec-
tively. We use a similar notation to that used in (8). To derive
a solution to the problem (6)–(7) define

UCj = [UCj1 UCj2] and VCj = [VCj1 VCj2]

and let Ãj = AjVCj and Dj = diag(σ1(Cj), . . . , σtj (Cj)) ∈
C

tj×tj with tj = rank Cj and

Kj = (Ãj1)rj D
−1

j QjU
T
j2(I − CjC

†
j )

where Qj is arbitrary. The singular values of matrix Aj are
denoted by σk(Aj). The matrix

(Aj)rj
= UAjrj

ΣAjrj
V T

Ajrj
(36)
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is determined similarly to (A)k given by (10) with the replace-
ment of A and k by A1 and r1, respectively.

Theorem 4: The solution to problem (6)–(7) is given by

Ĝj = (Aj)rj C
†
j + Kj (37)

and the associated error is

‖x − xp+1‖2

K,Ω = ‖R1/2[xx
T ]‖2 −

p∑
j=1

rj∑
k=1

[σk(Aj)]2. (38)

Proof. We write ε = ‖x − xp+1‖2

K,Ω. By an argument
analogous to that which established (32) and (34) we have

ε = ‖R1/2[xx
T ]‖2

F

−
p∑

j=1

‖R[xv
T
j ](R[vjv

T
j ])1/2†‖2

F +
p∑

j=1

Jj(Gj) (39)

and

min
rank Gj ,≤rj∀j

p∑
j=1

‖Aj − GjCj‖2

F

=
p∑

j=1

min
rank Gj≤rj

‖Aj − GjCj‖2

F . (40)

By Corollary 1 the solution to

min
rank Gj≤rj

‖Aj − GjCj‖2

F

is attained when

Gj = (AjPCj ,R)rj V
T
Cj

C†
j + Kj = (Aj)rj C

†
j + Kj = Ĝj .

We refer to [4] for more details. If Ĝj is substituted instead
of Gj in (39), then we have

ε = ‖R1/2[xx
T ]‖2

F −
p∑

j=1

‖R[xv
T
j ](R[vjv

T
j ])1/2†‖2

F

+
p∑

j=1

‖Aj − [(Aj)rj C
†
j + Kj ]Cj‖2

F

= ‖R1/2[xx
T ]‖2

F −
p∑

j=1

‖Aj‖2

F +
p∑

j=1

‖Aj − (Aj)rj‖2

F (41)

= ‖R1/2[xx
T ]‖2

F −
p∑

j=1

rj∑
k=1

[σk(Aj)]2 (42)

since (Aj)rj
= (Aj)rj

C†
j Cj by [14].

Remark 5: In (38) the number p is the number of steps in
the procedure described by (4)– (7). It follows from Theorem
4 that the error given by (38) decreases as p increases.

Remark 6: It follows from Theorems 3 and 4 that the
components G̃j and Ĝj of the proposed filter are computed
separately and require computation of m×n and n×n matrices
for G̃j and m × rj and rj × n matrices for Ĝj . To the
best of our knowledge, a filter that is able to process infinite
signal sets is not previously known. Therefore we compare
the computational loads needed for our proposed filters with
those for known filters in the case of finite sets of signals
only. In this case most known nonlinear filters [14] require

computation of much larger matrices than those mentioned
above. The procedures presented in Theorems 3 and 4 are
advantageous from a numerical point of view because they
require much less computational work.

C. Choice of operators Pk for (1)–(7)

The purpose of using the operators Pk in our filter has been
discussed in Section I-A2. Here, we illustrate the choice of Pk

with some possible particular suggestions.
For instance, Pk could be chosen using the Hadamard

product as in [12], [13] or in the form

[Pk(x1, . . . ,xk)](ω, α) =
1
γ

k∑
j=1

γjxj(ω, α)

where γ =
∑k

j=1
γj and γj ∈ R is a constant.

Another possible choice for Pk is a time shifting operator
similar to that used in [9]. For the case considered in Example
4 of Section VI, we define

Pk(x1, . . . ,xk) = Pk[xk(· , t1), . . . ,xk(· , tN )]

= [xk(· , t1 − Δ1), . . . ,xk(· , tN − ΔN )]

with Δk ∈ R for all k = 1, . . . , p.
Alternatively Pk could be chosen as a k-linear operator. In

particular, Pk could be a k-linear integral operator. We cite
[2] in this regard.

D. Device for data compression and reconstruction

Let us denote D
(1)

j = UAjrj
ΣAjrj

and D
(2)

j = V T
Ajrj

C†
j .

See (35) and (36) in this regard. In (37) the matrix Kj is
arbitrary. Let us assume that Kj = O. Then the filter (1)
based on solutions (30) and (37) to problems (4)–(5) and (6)–
(7), respectively, is given by

F (y) =
p∑

j=1

D
(1)

j D
(2)

j vj

where vj = Hjxj . Note that D
(1)

j ∈ R
m×rj and D

(2)

j ∈
R

rj×n. Thus D
(2)

j provides compression of a vector vj with n

components to a vector D
(2)

j vj with rj components while D
(1)

j

provides decompression (reconstruction) from a vector with rj

components to a vector with m components. The compression
ratio is given by

c =
r

min{m, n} , where r = r1 + . . . + rp. (43)

We reiterate that m and n are the numbers of components
in signals x and y, respectively, and r is the number of
components in the compressed data. By the condition (7),
r ≤ min{m,n}, i.e. the compressed data should be ‘shorter’
than x and y. See also Section 1 in this regard. In Section 4
below, we consider examples of our filters with compression
ratio c = 25/116 and c = 9/116.
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E. Advantages associated with filtering based on scheme (4)–
(7)

1) General advantages: The proposed filter consists of the
two parts. The first one is the filtering of a random signal y

based on the concatenation of solutions to p−1 unconstrained
error minimization problems given by (4)–(5). This filter is
important in its own right since it can be considered as a stand
alone filter aimed at optimal filtering of stochastic signals.

The second part is based on the solution of the constrained
error minimization problem given by (6)–(7). As a result, while
this part is still filtering the input, it also compresses and
decompresses the input. The latter procedure is realized via
the solution of the problem (6)–(7) and is described in Section
III-B.

The overall advantages of our proposed approach are the
ability to determine a single optimal filter to process an infinite
set of signals and the progressive decrease in the filtering error
with an increase in the number of steps (4)–(7).

The mathematical advantages include simplification of the
numerical procedure for determining the filter components
Ĝ1, . . . , Ĝk in (4)–(6) which we address in Remark 6 above,
the rigorous theoretical justification of the results given in
Sections III-A and III-B and the effective procedure for signal
compression and decompression presented in Section III-D.

In the following Section, we consider other specific advan-
tages by comparison with known filters.

2) Specific advantage: comparison with the known filters:
As we have mentioned in Section I-A1, to the best of our
knowledge, the previously known filters can process only finite
sets of random signals. Our filter processes infinite sets of
random signals. Therefore, a comparison between the known
filters and the proposed one can only be done for the particular
case when each set x and y (see Section II-A) consists of one
signal only. In such a case, the results obtained above are
presented in terms of the norm (46), ‖ · ‖2

Ω
(see Section VI

below). The norm (46) is a particular case of the norm (3),
‖ · ‖2

X,Ω.
The errors associated with the Karhunen-Loève filter (KLF)

[14] and the Wiener filter [14] follow from Theorems above
if p = 1, k = 1 and the norm ‖ · ‖2

X,Ω is replaced with the
norm ‖ · ‖2

Ω
. The errors presented in Theorems above are less

than those for the KLF and Wiener filter if p = 2, 3, . . . and
k = 2, 3, . . .. Thus our filter provides improved accuracy when
compared to the KLF and Wiener filter.

The compression ratio of the KLF is η/ min{m,n} where η
is the number of components in the compressed signal. Thus,
the compression ratio (43) of our filter is better than that of
the KLF if r1 + . . . + rp < η.

A comparison with other known filters [14] can be done in
a similar way and leads to similar conclusions.

IV. NUMERICAL EXAMPLES AND SIMULATIONS

The following elementary Example 1 illustrates the pro-
posed filter performance in the case of infinite sets of signals.

Example 1. Let

x = {x(ω, t) = [ωt2, ω2t]T | ω ∈ [0, 1], t ∈ [0, 1]}

and

y = {y(ω, t) = [0.8ωt2, 1.2ω2t]T | ω ∈ [0, 1], t ∈ [0, 1]}.
That is x and y are represented by infinite sets of signals.
For such signals, the norm (3) is reduced to the particular
case given by (48). Accordingly, matrices R[xy

T ] and R[yy
T ]

given by (22)–(24) are determined in terms of the norm (48).
For instance, the entries of R[xy

T ] are

〈x(i),y(j)〉 =
∫

1

0

∫
1

0

x
(i)(ω, t)y(j)(ω, t)dωdt.

Therefore

R[xy
T ] =

[
0.053 0.075
0.050 0.080

]
, R[yy

T ] =
[

0.011 0.060
0.060 0.096

]

and R[yy
T ]† =

[ −37.7358 23.5849
23.5849 −4.3239

]
.

Let us first consider the simplest case of our filter presented
by (1) with p = 1, H1 and P1 given by the identity, and
G1 = G̃1 where G̃1 is determined by (30) with M1 = O.
Then for any ω ∈ [0, 1] and t ∈ [0, 1], the estimate of signals
x(ω, t) by the considered particular case of our filter is given
by

x̃(ω, t) = R[xy
T ]R[yy

T ]†[0.8ωt2, 1.2ω2t]T . (44)

Note that (44) does not coincide with an estimate by the
generalized Wiener filter which can process a fixed random
signal-vector [14], but is not able to process infinite sets
of signals. Differences between (44) and an estimate by
the generalized Wiener filter [14] are matrices R[xy

T ] and
R[yy

T ]† determined in terms of the norm (47) used in (44),
and the term [0.8ωt2, 1.2ω2t]T .

Table 1 contains magnitudes of the error Δ1 = ‖x(ω, t) −
x̃(ω, t)‖2

2
with respect to some particular values of ω and t.

Next, let us now consider other simplest case of the pro-
posed filter when in (1), as before, p = 1, H1 and P1 are the
identity, but G1 = Ĝ1 where Ĝ1 is determined by (37) with
r1 = 1 and K1 = O. Then for any ω ∈ [0, 1] and t ∈ [0, 1],
the estimate of signals x(ω, t) by this particular case of our
filter is given by

x̂(ω, t) = (A1)r1C
†
1
[0.8ωt2, 1.2ω2t]T (45)

where A1 = R[xy
T ]R[yy

T ]1/2†, C1 = R[yy
T ]1/2 and

(A1)r1 is determined by (36). Compression and decompres-
sion is realized by (A1)r1C

†
1

as those described in Section
III-D above. For the same values of ω and t as those in Table 1,
the error Δ2 = ‖x(ω, t)−x̂(ω, t)‖2

2
is worse than the error Δ1

by approximately 20%. This is because x̂(ω, t) is determined
with the truncated SVD given by (36).

The estimate x̂(ω, t) does not coincide with an estimate
by the KLF [14] for reasons which are similar to those
described above for x̃(ω, t) when making comparison with
the generalized Wiener filter.

Of course, in many instances, matrices R[xy
T ] and R[yy

T ]
are unknown and should be estimated. Some estimation meth-
ods can be found in [14].

Example 2. Here, we consider a case where x and y are
represented by finite signal sets and illustrate advantages of
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the proposed approach over the known methods. This case
has been discussed briefly in Section I-A1.

Let x = {x(1),x(2), . . . ,x(N)} and y =
{y

(1)
,y

(2)
, . . . ,y

(N)
}, where N = 8 and x(j),y(j) ∈

L2(Ω, Rn) with n = 116 for each j = 1, . . . , 8. Random
vectors y

(j) and x(j) are interpreted as an input of the filter
and its ‘idealistic’ output, respectively. That is x(j) is the
signal that should be estimated by the filter. In this example,
x(j) and y

(j) are simulated as digital images presented by
116 × 256 matrices X(j) and Y(j), respectively. The columns
of matrices X(j) and Y(j) represent a realization of signals
x(j) and y

(j), respectively.
Each picture X(j) in the sequence X(1), . . . , X(8) has

been taken at a certain time tj with j = 1, . . . , 8. Images
Y(1), . . . , Y(8) have been simulated from X(1), . . . , X(8) in
the form Y(j) = X(j) • rand(j) for each j = 1, . . . , 8.
Here, • means the Hadamard product and rand(j) is a
116 × 256 matrix whose elements are uniformly distributed
in the interval (0, 1). Images X(1), . . . , X(8) are presented in
Fig. 1. Image Y(3) is given in Fig. 2 (a) as an example of
images Y(1), . . . , Y(8). Other images Y(j) with j = 1, . . . , 8,
j 
= 3 are similar.

For finite signal sets x and y considered in this example,
the norm (47) is used. As a consequence, for j = 1, 2, matrix
R[xv

T
j ] in (30) and (37) is presented by

R[xv
T
j ] = {rik}116,256

i,q=1

with

riq =
1
8

8∑
k=1

∫
Ω

x
(i)(ω, tk)v(q)

j (ω, tk)dμ(ω).

The matrix R[vjv
T
j ] is determined similarly.

First, the simplest case of our filter defined from (4) by
Theorem 3 with p = 1 has been applied to the considered
signal sets. Then R[xv

T
1
] = R[xy

T ] and R[v1v
T
1
] = R[yy

T ].
In (1), G1 is determined as G̃1 by (30). An estimate of X(3)

by this filter is denoted by X̃1,(3) and the filter itself is denoted
by F̃1.

To illustrate the performance of the proposed filters asso-
ciated with different steps of the scheme (5)-(7), their related
versions have also been applied to the given signal sets.
Estimates of X(3) are denoted as follows:

• X̃2,(3) is the estimate by F̃2 defined by (5) and Theorem
3 with p = 3;

• X̂2,(3) is the estimate by F̂2 defined by (6)-(7) and
Theorem 4 with p = 2, r1 = 10 and r2 = 15, with
the compression ratio c = 25/116; and

• X̄2,(3) is the estimate by F̄2 defined by (6)-(7) and
Theorem 4 with p = 2, r1 = 4 and r2 = 5, with the
compression ratio c = 9/116.

We point out again that by the proposed method, the same
filter is applied to each pair of signals Y(j) and X(j) for
j = 1, . . . , 8. That is the form presented by (1), (4)–(7)
and Theorems 3, 4 is invariant with respect to different pairs
(Y(j), X(j)). In particular the matrices determined by (30) and
(37) remain the same regardless of which pair (Y(j), X(j)) is
processed.

The known filters based on the Wiener filtering approach
[14] are specifically constructed for each pair (Y(j), X(j)). As
a result, such filters incur much greater computational load.
Therefore, by comparison with known filters, this important
difference should be borne in mind. We denote by X̃2,(3) and
XKLF,(3) the estimate of X(3) by the Wiener filter and by the
KLF of rank=25, respectively. The compression ratio of the
KLF with rank=25 is c = 25/116.

In Fig. 2, estimates of signal X(3) by different filters are
presented. Numerical results related to estimation of o signal
X(3) are given in Tables 2 and 3. Results associated with
estimates of other signals X(j) with j = 1, . . . , 8, j 
= 3 are
similar.

In particular, while the error associated with the filter F̃1 is
‖X(3) − X̃1,(3)‖2 = 0.9893e + 07, the error ‖X(3) − X̃2,(3)‖2

associated with the filter F̃2 is significantly lesser. This
numerical illustration relates to Remark 5.

Next, we observe, that for the same compression ratio, c =
25/116, the error ‖X(3)−X̂2,(3)‖2 associated with the filter F̂2

is four times less than the error ‖X(3)−XKLF,(3)‖2 associated
with the KLF.

It is interesting to compare compression ratios of those fil-
ters in the case when associated error are similar. In particular,
it follows from the first and third columns of Table 3, that
while the errors associated with the filter F̄2 and the KLF
are almost the same, the compression ratio of the filter F̄2

(i.e. c = 9/116) is more than two times better that the KLF
compression ratio (which is c = 25/116).

V. CONCLUSION

We have provided the theory for a new approach to filtering,
compression and decompression for infinite sets of stochastic
signals. Distinctive features of the proposed approach are as
follows. While we consider processing infinite signal sets,
the proposed filter is nevertheless fixed for all signal pairs.
The filter is nonlinear and consists of p steps. Each step
contains three components represented by three consecutive
operations. The various operations are determined at each step
by an iterative scheme designed to improve filter performance
as the number of steps increases. Signal compression and
decompression is provided by the final step of the scheme.
The final step is based on a new method [4] for the best rank-
constrained matrix approximation. The error associated with
our filter decreases when the number of steps in the iterative
scheme increases.

VI. APPENDIX A: PARTICULAR CASES OF THE NORM (3)

Here, we consider some particular norms that lead to the
norm (3) used in our statement of the problem in Sections
II-C–II-D.

Example 3. Let x ∈ L2(Ω, Rm). Then we set

‖x‖2

Ω
=
∫

Ω

‖x(ω)‖2

2
dμ(ω). (46)

Note, that most of results related to Wiener-like optimal fil-
tering have been obtained using the norm (46). Some relevant
references can be found in [14].

Example 4. Let x = {x(·, tk) ∈ L2(Ω, Rm) | tk ∈
R ∀ k = 1, . . . , N}. Thus, x ∈ L2(Ω× [t1, . . . , tN ], Rm). In
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other words, in the space L2(Ω×[t1, . . . , tN ], Rm), x is a fixed
signal, but in the space L2(Ω, Rm), x is represented by the set
of signals {x(·, tk) ∈ L2(Ω, Rm) | tk ∈ R ∀ k = 1, . . . , N}.

Let us put

‖x‖2

[t1,...,tN ],Ω =
1
N

N∑
k=1

∫
Ω

‖x(ω, tk)‖2

2
dμ(ω). (47)

We note that ‖x‖2

[t1,...,tN ],Ω can be represented as

‖x‖2

[t1,...,tN ],Ω =
1
N

N∑
k=1

‖x(·, tk)‖2

Ω
,

where

‖x(·, tk)‖2

Ω
=
∫

Ω

‖x(ω, tk)‖2

2
dμ(ω).

The norm (46) follows from (47) if the set x consists of a
single signal, x(·, tk), with tk fixed.

Example 5. Let x = {x(·, t) ∈ L2(Ω, Rm) | t ∈ [a, b] ⊂ R}.
Thus x ∈ L2(Ω × [a, b], Rm). We set

‖x‖2

[a,b],Ω =
1

b − a

∫ b

a

∫
Ω

‖x(ω, t)‖2

2
dμ(ω)dt. (48)

Similarly to Example 4,

‖x‖2

[a,b],Ω =
1

b − a

∫ b

a

‖x(·, t)‖2

Ω
dt.

The norm (46) follows from (48) if the set x consists of a
single signal, x(·, t), with t fixed.

Example 6. Let x = {x(·, τ) ∈ L2(Ω, Rm) | τ ∈ Cq ⊂ R
q}

where Cq is a q-dimensional cube in R
q . We put

‖x‖2

Cq,Ω =
1
V

∫
Cq

∫
Ω

‖x(ω, τ)‖2

2
dμ(ω)dτ

=
1
V

∫
Cq

‖x(·, τ)‖2

Ω
dτ, (49)

where V =
∫

Cq dτ . Then ‖x‖2

Ω
follows from ‖x‖2

Cq,Ω if the
set x consists of a single signal, x(·, τ), with τ fixed.

The norms given by (46)–(49) are generalized in the fol-
lowing way. Let x = {x(·, α) ∈ L2(Ω, Rm) | α ∈ K} where
K is a measurable set [7] with a measure λ(α). Thus, x is a
single signal in the space L2(Ω × K, Rm) and is the infinite
set of signals {x(·, α) ∈ L2(Ω, Rm) | α ∈ K} in the space
L2(Ω, Rm).

Let us set the norm by

‖x‖2

K,Ω =
1

λ(K)

∫
K

∫
Ω

‖x(ω, α)‖2

2
dμ(ω)dλ(α), (50)

where λ(K) =
∫

K
dλ(x). Then the norms given by (46)–(49)

follow from ‖x‖2

K,Ω for a suitable choice of K and λ(α). In
particular, ‖x‖2

Ω
follows from ‖x‖2

K,Ω if X consists of a single
signal only, x(·, α), with α fixed.
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(h) Signal X(8).

Fig. 1. Signals X1, . . . , X8 to be estimated from observed data.

Table I
Magnitudes of error Δ1 for some particular values of ω and t.

Δ1 0.86 × 10−4 1.16 × 10−2 1.13 × 10−4 1.35 × 10−2 2.90 × 10−3

ω 0.5 0.4 0.4 0.2 0.9
t 0.5 0.7 0.3 0.8 0.9
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(a) Observed data Y(3).
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(b) XW,(3).
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(c) ˜X2,(3).
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(d) XKLF,(3) with c = 25/116.
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(e) ̂X2,(3) with c = 25/116.
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(f) X̄2,(3) with c = 9/116.

Fig. 2. Illustration to signal X(3) estimation by different filters. Here, XW,(3) is the estimate by the Wiener filter, ˜X2,(3) is the estimate that follows from
(5) with p = 3, XKLF,(3) is the estimate by KLF with c = 25/116, ̂X2,(3) is the estimate that follows from (6)-(7) with c = 25/116, and X̄2,(3) is the
estimate that follows from (6)-(7) with c = 9/116.

Table II
Error estimations of signal X(3).

Here, XW,(3) is the estimate by the Wiener filter,
X̃2,(3) is the estimate (5) with p = 3.

‖X(3) − XW,(3)‖2 ‖X(3) − X̃2,(3)‖2

0.7555e + 07 1.5089e − 07

Table III
Error estimations of signal X(3) by the KLT and (5) with p = 3,

for some different compression ratios c.

‖X(3) − XKLF,(3)‖2 ‖X(3) − X̂2,(3)‖2 ‖X(3) − X̄2,(3)‖2

c = 25/116 c = 25/116 c = 9/116
8.8739e + 06 2.1730e + 06 8.2173e + 06


