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Abstract—Effect of viscosity of media on kinetic parameters of 

the coupled enzyme system NADH:FMN-oxidoreductase–luciferase 
was investigated with addition of organic solvents (glycerol and 
sucrose), because bioluminescent enzyme systems based on bacterial 
luciferases offer a unique and general tool for analysis of the many 
analytes and enzymes in the environment, research and clinical 
laboratories and other fields. The possibility of stabilization and 
increase of activity of the coupled enzyme system NADH:FMN-
oxidoreductase–luciferase activity in vicious aqueous-organic 
mixtures have been shown. 
 

Keywords—The coupled enzyme system of bioluminescence 
bacteria NAD(P)H:FMN-oxidoreductase–luciferase, glycerol, 
stabilization of enzymes, sucrose.  

I. INTRODUCTION 
IOLUMINESCENT enzyme systems based on bacterial 
luciferases offer a unique and general tool for analysis of 

the many analytes and enzymes in the environment, research 
and clinical laboratories and other fields. It is a useful tool in 
environmental risk assessment and monitoring of various 
aquatic and terrestrial ecosystems. The coupled enzyme 
system NADH:FMN-oxidoreductase–luciferase emits light at 
490 nm in the presence of FMN, NAD(P)H, a long-chain 
aliphatic aldehyde and molecular oxygen [1]-[5]. The use of 
bioluminescent toxicity testing based on measurements of the 
glow of luminous bacteria and their enzymes (luciferase) has 
grown steadily in recent years.  

Development of physico-chemical basis of bioluminescence 
assay, extension of the scopes of bioluminescence assay, 
increase of activity, selectivity and stability of enzymes of 
coupled enzyme system of bioluminescence bacteria are great 
importance now. An addition, the interaction between proteins 
and solvents is a general problem concerning the 
understanding of enzyme catalysis mechanisms. The protein—
solvent interaction is a general problem concerning the 
understanding of enzyme catalysis mechanisms simple 
alteration of the solvent composition may modulate enzyme 
activity for biotechnological applications or for reproducing 
such behaviors observed in vivo.  

One of approach to solve these problems is reaction media 
design. 

To solve the basic problem on coupling and operating 
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mechanisms of enzyme metabolic chains in the cell we have 
developed experimental models where the chain linking 
luciferase with other enzymes of luminous bacteria is realized 
in gel matrix. The tow prototypes of experimental models 
were developed: the thermodynamic, kinetic and spectral 
parameters of bioluminescence reaction in the presence of 
sucrose and glycerol have been investigated. The models 
imitate enzymes activity in vicious microenvironment.  

The protein–solvent interaction is a general problem 
concerning the understanding of enzyme catalysis mechanisms 
too. Over the last few years, many studies have focused on the 
effects induced by organic solvents, water–organic solvent 
mixtures and super-critical fluids on the structure and on the 
catalytic properties of proteins [6]-[10]. A protein that is 
swelled or dissolved in a non-aqueous medium is modified in 
its secondary and tertiary structure, since the solvent alters 
inter- and intra-molecular electrostatic and hydrophobic 
interactions.  

In earlier reports [11]-[13], we described the effects of 
organic solvents on catalytic activity of bacterial luciferases. 
Most of the organic solvents tested are effective in stimulating 
bacterial bioluminescence in vitro with the photoreduced 
FMNH2 to a greater or lesser degree. If the spectral properties 
of the emitter of bacterial bioluminescence reaction are 
influenced by not only its interaction with luciferase, but 
properties of reaction mixture (dielectric constant, logP, 
polarity index, ionic strength, viscosity, рН and et. al.), 
addition of organic solvents might affect the bioluminescence.  

A perspective approach in the study of interaction types at 
the formation of enzyme–substrate complexes is the kinetic 
analysis of the fermentative act at the addition of organic 
solvents in a reaction medium.  

The effects of viscosity and pH of organic solvents on 
enzymes are accounted for both as their direct influence on the 
hydrate shell and/or active centre of the protein, and changes 
of electrostatic and hydrophobic intra- and intermolecular 
interactions, which accordingly change the efficiency of 
contacts between the biocatalytic reaction participants.  

II.  MATERIALS AND METHODS 
Тhe coupled enzyme system NADH:FMN-oxidoreductase–

luciferase (the luciferase from Photobacterium leiognathi, 
strain 208) used in the work has undergone high purification 
by ion-exchange chromatography [8].   

In this work we used the recombinant luciferase from 
Esсheriсhia coli SL-60 strain with cloned genes lux A and lux 
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