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Abstract—This article presents a short discussion on 

optimum neighborhood size selection in a spherical self-
organizing feature map (SOFM). A majority of the literature 
on the SOFMs have addressed the issue of selecting optimal 
learning parameters in the case of Cartesian topology SOFMs. 
However, the use of a Spherical SOFM suggested that the 
learning aspects of Cartesian topology SOFM are not directly 
translated. This article presents an approach on how to 
estimate the neighborhood size of a spherical SOFM based on 
the data. It adopts the L-curve criterion, previously suggested 
for choosing the regularization parameter on problems of 
linear equations where their right-hand-side is contaminated 
with noise. Simulation results are presented on two artificial 
4D data sets of the coupled Hénon-Ikeda map. 
 

Keywords—Parameter estimation, self-organizing feature maps, 
spherical topology.  

I. INTRODUCTION 
HE Self-Organizing Feature Maps (SOFMs) [1] is a class 
of neural networks capable of recognizing the main 

features of the data they are trained on. There is extensive 
literature on its biological and mathematical concepts and 
even more on its implementation in a variety of areas 
including medicine, finance, chaos and data mining in general 
([2]-[6]). It is an unsupervised learning algorithm that clusters 
data while it is simultaneously attempting to preserve the 
topology of the input space within the structure of its 
predefined lattice. Selected examples on the various 
implementations of the SOFM and the different ways of 
visualizing the data using SOFMs can be found in [2], [3], and 
[5]. 

Adaptive learning is realized by exploiting redundant and 
complementary information embedded in the data. 
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Organization of the input is brought about by lateral 
interaction among the nodes (cluster units) in the SOFM 
lattice. Higher the degree of lateral interaction, greater is the 
degree of organized learning. Lateral interaction among the 
cluster units in the SOFM lattice is primarily determined by 
the topology of the lattice. Topology, in this context, is 
defined as the geometric connectivity between the cluster 
units or nodes in the grid that represents the configuration of 
the SOFM space. Therefore, a topological discontinuity in the 
lattice will restrict the lateral interaction between the cluster 
units and therefore restrict learning. 

The Spherical SOFMs (S-SOFMs), introduced [7] as a 
natural extension of the SOFMs, have an inherit capability of 
visualizing high dimensional data ([8]-[11]). This is attributed 
to the spherical topology of the SOFM lattice which not only 
has an overall symmetry and continuity in its structure, but 
also provides a 3D framework for visualizing the data. 

Key parameters of learning in the SOFM include the 
neighborhood size, the learning rate, and convergence of the 
algorithm. While much has been published on estimating the 
neighborhood size in Cartesian topology SOFMs, there is no 
literature on the S-SOFMs regarding this parameter. Extensive 
implementation of the spherical SOFM suggested that the 
lessons learned in the case of Cartesian topology SOFMs did 
not directly translate to S-SOFMs. This article discusses how 
to estimate an optimal neighborhood size in an S-SOFM. It is 
inspired by the findings from fundamental research literature 
on the regularization parameter on system of linear equations. 
Its implementation is illustrated using examples of simulated 
chaotic data.  

II. THE SPHERICAL SELF ORGANIZED FEATURE MAP  
An S-SOFM (also known as “glyph”) is essentially a non-

linear mapping from the data space to the surface of a sphere. 
The data space is usually of Cartesian form, but can also be of 
any other form. If P represents the m-dimensional spatially 
continuous input space that comprises of a set of activation 
patterns, defined by metric relationship pi∈P, and w denotes 
the spatially discrete S-SOFM space (Fig. 1), then, in the 
mathematical sense the S-SOFM non linear transformation 
may be expressed as 

 
Φ : P → w                  (1) 
 

where Φ is the S-SOFM non-linear mapping between the m-
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dimensional input data space and the m-dimensional weight 
vectors of the SOFM space. The SOFM space is represented 
by a network of inter-connected nodes, where each node has a 
weight vector associated with it which is of the same 
dimension as the input space. During learning, every input 
vector gets assigned to a cluster unit whose weight vector is 
closest to it in the Euclidean sense. 

 
wj(new) = wj(old) + a⋅h(r,s)⋅[pi – wj(old) ]      (2) 
 

where ‘a’ is the learning parameter and h(r,s) is the 
neighborhood function. This function is of the form 

( ))sR(rexp)s,r(h 2−= , where ‘s’ is the neighborhood size 
parameter, and ‘R’ is the size of the neighborhood that is able 
to cover a hemisphere and it is considered constant. The 
hemisphere is the largest possible neighborhood that can be 
considered.  

The cluster units in the S-SOFM space therefore represent a 
reduced set of “internally ordered” prototypical representation 
vectors of the input space. The fundamental assumption of the 
S-SOFM algorithm is that clusters existing in the input space 
will also exist in the low-dimensional mapping space. 
Therefore the distribution of the input vectors in the S-SOFM 
space will reflect some physical aspects of the data. 
Associations between the numeric vectors are reflected in the 
relative topological positions of the cluster units on the grid, 
to which they have been assigned.  
 
 

pi,1        pi,2     pi,3    …  pi,n 
 

SOFM cluster units 
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Fig. 1 The spherical self-organizing feature map [8] 

 
Learning in the S-SOFM takes place due to lateral 

interaction between neighboring nodes. Therefore the lattice 
of the S-SOFM plays a significant role in the learning process. 
A discontinuity in the lattice will result in a restricted 
neighborhood and consequently restrict learning. In the more 
common 1- and 2- dimensional SOFM some researchers have 
investigated different ways to find the optimal learning 
parameters [12]. 

III. THE NEIGHBORHOOD PARAMETER BY THE L-CURVE 
CRITERION 

The neighborhood size is essentially a regularization 
parameter. One of the most promising methods for estimating 
the regularization parameter is the L-curve criterion [13]. This 
criterion is widely used in linear algebra problems for 
handling solutions of linear systems with more equations than 
unknowns, and has found applications in image de-blurring. 
The algorithm of this criterion can be summarized in the 
following steps: 
1) Estimate the smoothness and the accuracy for a wide 

range of the regularization parameter. 
2) Plot smoothness (horizontal axis) against accuracy 

(vertical axis). The resulting plot should be L-shaped 
(Fig. 2). 

3) The corner of the L-shape corresponds to the optimum 
regularization parameter. It is a value that results both 
high smoothness and high accuracy. 

The original L-curve plot [13], requires accuracy and 
smoothness to be plotted on the log-log scale. If this rule is 
relaxed using a linear scale on both axes, as is the case in the 
example data set presented in this article, the result is a sharp 
curve. 
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Fig. 2 The ideal L-curve shape 

 Note that in practice the curve may not be so sharp 

 
In the L-curve criterion, smoothness is defined as the sum 

of distances between each vertex of the glyph (wj) and the 
mean of its nearest neighbors (Wj). The lesser this sum, 
smoother is the glyph. Likewise, accuracy is defined as the 
sum of the distances between each pattern (pi) and its closest 
feature (wj). 

IV. SIMULATION RESULTS 
Consider two data sets formed by the time series of the 

Hénon map [14] (x and y) and the Ikeda map [15] (u and v) of 
lengths N1=1024 and N2=4096 
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All the time series are standardized in order to have mean 0 

and standard deviation 1. The first data set forms a 1024-by-4 
pattern space P1=[x1 y1 u1 v1] (where x1, y1, u1, and v1 are 
column vectors of length 1024) and the second data set forms 
a 4096-by-4 pattern space P2=[x2 y2 u2 v2] (where x2, y2, u2, 
and v2 are column vectors of length 4096). 

These 4 dimensional objects are very complex and cannot 
be visually perceived. They cannot be projected in a lower 
dimensional space because they have non-linear dependencies 
within them, which will be lost due to linear projection. 
Therefore non-linear data projection techniques to create 
meaningful low-dimensional representations of the data are 
much needed. 
 

(a) 

(b) 
Fig. 3 Two glyphs of the data set P1. For (a) we set s=21 (which is 

very smooth but inaccurate) and for (b) we set s=2-3 (which is very 
rough, and at the same time it is indicative of being over-fitted on the 
data) 
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Fig. 4 The L-curve for the data set P1 and the corresponding glyph 
for the optimal value of s, which is 2-0.5. 

 

 (a) 

 (b) 

     Fig. 5 Two glyphs made by the data set P2. For (a) we set s=21 
(which is very smooth but inaccurate) and for (b) we set s=2-3. 
(which is very rough, and at the same time gives the impression of 
being overfitted on the data 

Smooth 
Fig. 3(a) 

Detailed 
Fig. 3(b)

Optimum 
Fig. 4(b) 
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Fig. 6 The L-curve for the data set P2 and the corresponding glyph 
for the optimal value of s, which is 2-0.5 

 
The main disadvantage in the implementation of the S-

SOFM so far is the absence of a criterion to choose an optimal 
neighborhood size parameter ‘s’. A large neighborhood results 
in smoother glyphs (which is desirable), but ignores the small-
scale features. On the other hand, a small neighborhood takes 
into account all the features, no matter how large they are, but 
results in rough glyphs (which is undesirable). Therefore a 
cut-off point should be considered as the best tradeoff 
between smoothness and accuracy. Figs. 3 and 5 show the 
glyphs of the pattern space for neighborhoods that belong to 
the 2 extremes (i.e. s=21, and s=2-3), while Figs. 4 and 6 shows 
the L-curves and the glyphs obtained by the optimum 
neighborhood parameter choice.  

As observed in Figs. 4 and 6, the neighborhood size 
parameter ‘s’ is neither dependent on the length of the data 
set, nor on the resolution of the glyph. The optimum 
parameter size ιs the same on the short and the long data sets 
(P1 and P2 respectively). Moreover, the glyphs of Figs. 3 and 
4 have 642 nodes, while the glyphs of Figs. 5 and 6 have 2562 
nodes. We observe that in both cases of glyph resolution the 
optimum parameter size is the same. This result is very 
desirable since it indicates that the proposed method defines a 
neighborhood selection parameter which is dependent on the 
nature of the data features and not on other parameters 
irrelevant to them (like the length of the data set or the 
resolution of the glyph). 

V. CONCLUSIONS 
A method for choosing the neighborhood size parameter 

regarding the Spherical Self Organizing Feature Maps was 
presented. This method provides a means to visualize high 
dimensional data as both smooth and detailed objects. It is 
based on the L-curve criterion which has been successfully 
applied on regularization problems in the past. 

Future research in enhancing the potential of the Spherical 
SOFM as a data visualization tool requires an automatic 
estimation of the neighborhood parameter. This will save 
computational time in the proposed trial-and-error approach 
that examines different values of ‘s’ prior to estimating an 
optimal value. 

Another aspect of interest is the estimation of a reasonable 
number of training cycles (epochs). In the examples that were 
discussed, the data were trained for at most 60 cycles. 
Intuitively, this may be over-spending for the computational 
time. Unfortunately, inferences in this regard cannot be made 
based on existing methods for estimating the SOFM 
parameters. Although the performance of these methods have 
been successfully demonstrated in 1- and 2- dimensional 
SOFMs, additional research and testing is required to 
relatively comment in the context of the spherical SOFM. 
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