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Abstract—A suspension bridge is the most suitable type of 

structure for a long-span bridge due to rational use of structural 
materials. Increased deformability, which is conditioned by 
appearance of the elastic and kinematic displacements, is the major 
disadvantage of suspension bridges. 

The problem of increased kinematic displacements under the 
action of non-symmetrical load can be solved by prestressing. The 
prestressed suspension bridge with the span of 200 m was considered 
as an object of investigations. The cable truss with the cross web was 
considered as the main load carrying structure of the prestressed 
suspension bridge. 

The considered cable truss was optimized by 47 variable factors 
using Genetic algorithm and FEM program ANSYS. 

It was stated, that the maximum total displacements are reduced up 
to 29.9% by using of the cable truss with the rational characteristics 
instead of the single cable in the case of the worst situated load. 
 

Keywords—Decreasing displacements, Genetic algorithm.  

I. INTRODUCTION 
USPENSION bridges are structures where the deck is 
continuously supported by the stretched catenary cable [1]. 

Suspension bridges are the most important and attractive 
structures possessing a number of technical, economical and 
aesthetic advantages [2]. 

A suspension bridge is the most suitable type of structure 
for very long-span bridges at the present moment. Suspension 
bridges represent 20 or more of all the longest span bridges in 
the world. The bridge with the longest centre span of 1991m is 
the Akashi Kaikyo Bridge [3]. So long spans can be achieved 
because the main load carrying cables are subjected to tension 
and distribution of normal stresses in the cable cross-section 
are close to uniform [4]. 

Increased deformability is one of the basic disadvantages of 
suspension bridges [5]. Increased deformability is conditioned 
by appearance of elastic and kinematic displacements. The 
elastic displacements are caused by the large tensile inner 
forces. The elastic displacements are maximal at the centre of 
span in the case of symmetrical load application. The 
kinematic displacements are caused by the initial parabolic 
shape change, resulting from non-symmetrical or local loads 
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(Fig. 1) [6], [7]. These displacements are not connected with 
the cable elastic characteristics. Serviceability limit state is 
dominating for suspension cable structures. 

The elastic displacements can be reduced by applying of 
low strength steel structural profiles, elastic modulus increase, 
reinforced concrete application and cable camber increase [8]. 

 
Fig. 1 Initial shape change under the action of non-symmetrical load 

 
The problem of increased kinematic displacements can be 

solved by increasing of dead weight and imposed load 
relation, which is achieved by adding of cantledge (Fig. 2). 
However, this method causes the increase of material 
consumption. Stiffness of suspended structure can be 
increased also by increasing of girder stiffness (Fig. 3), 
increasing of main cable camber, connecting of main cable 
and girder at the centre of span (Fig. 4), application of 
diagonal suspenders (Fig. 5) or inclined additional cables 
(Fig. 6), application of two chain systems (Fig. 7), stiff chains 
(Fig. 8) and stress ribbons (Fig. 9) [8], [9], [10], [11]. 
Nevertheless, these systems are characterized also with the 
increased material consumption, and system stiffness is not 
sufficient in many cases. 

 
Fig. 2 Suspension bridge stabilization by adding of cantledge 

 

 
Fig. 3 Suspension bridge stabilization by increasing of girder stiffness 

 

 
Fig. 4 Suspension bridge stabilization by connecting of main cable 

and girder at the centre of span 
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to minimize horizontal prestressing force effects acting in the 
deck. Prestressed horizontal cables are placed along the deck 
to minimize effects of horizontal braking force (Fig. 16). The 
deck of the bridge is made of pultrusion composite trussed 
beams, pultrusion composite beams with step 1 m and  
pultrusion composite plank with height 40 mm that is covered 
with asphalt layer (Fig. 14) [15], [16], [20]. It is assumed that 
cables are covered with high-density polyethylene and are 
heated with electricity to reduce the influence of temperature 
effects [21]. Possible prestressing loosing is reduced by active 
tendons [22]. 

 
Fig. 14 The bridge deck structure. 

1 – Composite trussed beam, 2 – Composite I type beams, 3 – 
Composite plank, 4 – Cover of the bridge, 5 – Suspensions 

 
It is possible to reduce requirements for girder stiffness by 

bridge prestressing. This aspect allows to use the composite 
pultrusion materials in the deck structure and makes possible 
to develop construction of bridges with large span and reduced 
dead weight in comparison with steel or concrete bridges [10]. 

Design scheme of the investigation object is shown in the 
Fig. 15 and Fig. 16. The structural material is prestressed steel 
rope [23], [24]. The dead load g that is applied to the structure 
is equal to 51.1 kN/m. The bridge is loaded by the imposed 
load q, which is equal to 82.2 kN/m [25]. Imposed load can be 
applied to any place of the span. Distributed load is reduced to 
the point load and is applied to the connections of the deck 
and suspensions. There are 39 possible points of load 
application (Fig. 15). 

 
Fig. 15 Design scheme of suspension bridge. 

q – imposed load, g – dead load, P – prestressing,  fb – bottom chord 
camber, ft – top chord camber, l – main span, b – width, a – 

suspension step. 

 
Fig. 16 Cross section of prestressed suspension bridge 

 
Position of each web element of the cable truss is defined 

by the distance from the pylon to the connection of web 
element with the top chord, depending on the distance from 
the pylon to the connection of the same element with the 
bottom chord (Fig. 17). The web elements are divided into two 
groups – the elements inclined to the centre of cable truss and 
the elements inclined to the edges of the cable truss. Each 
element of the web may have its own angle on inclination. The 
second order polynomial equation is assumed to express 
position of each web element and to minimize amount of 
variable factors. 

 
Fig. 17 Position of web elements 

 
The position of the web elements, which are inclined to the 

edges of the cable truss is expressed by Eq. (1), the position of 
web elements, inclined to the edges of cable truss, is expressed 
by Eq. (2) [17], [18]. 

 
 2

2 1 1 1– ( 1 2 3)x x root x root x root= ⋅ + ⋅ + ,  (1) 
 

 2
4 3 3 3( 4 5 6)x x root x root x root= + ⋅ + ⋅ + , (2) 

 
where x2 and x4 – distances from the pylon to the connection 
of web element and top cord; 
x1 and x3 – distances from the pylon to the connection of web 
element and bottom cord; 
root1…root6 – roots of the system of Eqs. (3) and Eqs. (4). 

 
The roots of the polynomial equation for the web elements 

were found by solving the system of Eqs. (3) and Eqs. (4). 
 

 

2
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where s1– distance x2 for x1 = a1; 
s2 – distance x2 for x1 = a2; 
s3 – distance x2 for x1 = a3; 
s4– distance x4 for x3 = a1; 
s5 – distance x4 for x3 = a2; 
s6 – distance x4 for x3 = a3; 
a1 – distance from the pylon to the connection of first web 
element with bottom chord; 
a2 – distance from the pylon to the connection of middle web 
element with bottom chord; 
a3 – distance from the pylon to the connection of last web 
element with bottom chord, counting for the middle of span. 

 
Distribution of the material among the cable truss elements 

can be expressed by Eq. (5): 
 

 
39

,
01

b t w

w w i
i

t b w

g g g g

g g

g g g g
=

= + +

=

= − −

∑ , (5) 

 
where g – material consumption of cable truss; 
gb – material consumption of bottom chord; 
gt – material consumption of top chord; 
gw – material consumption of all web elements; 
gw,i – material consumption of i-th web element. 

 
The web elements of the cable truss, which are inclined to 

the supports of the cable truss, are numbered from 1 to 20, 
starting from the support. The web elements, which are 
inclined to the centre of the cable truss, are numbered from 21 
to 39, starting from the support. 

III. TOPOLOGY OPTIMIZATION OF CABLE TRUSS WEB 
A. Definition of Optimization Problem 
The aim of optimization is to evaluate rational from the 

point of view of total vertical displacements minimization 
characteristics of the cable truss for the prestressed suspension 
bridge. 

The bottom chord camber fb, material consumption of cable 
truss g, material consumption of stabilization cable, level of 
prestressing, bridge geometrical parameters: pylon height, 
main span and suspension step are considered as constants of 
the optimization. 

Relation of the top and bottom chord cambers ft/fb, the 
distances s1, s2, s3, s4, s5, s6, the rations gb/g and gw,1/g – gw,39/g 
are variable factors for the optimization, 47 factors in all. 

Optimization problem is to minimize objective function: 
 

  1 2 3 4 5 6 1 2, , , , , , , , t
tot

b

f
w s s s s s s g g

f
⎛ ⎞
⎜ ⎟
⎝ ⎠

, (6) 

subject to: 
 
 ( ) { } ( )K U U F U⋅ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , (7) 

and Eqs. (1)-(6), 
 
where [K (U)] is stiffness matrix, {U} is displacement vector 
and [F (U)] is force vector. 
 

Total displacements wtot are found by summing 
displacements upwards w+ and displacements downwards w– 
(Fig. 18). Maximum vertical displacements for suspended 
cable structures appears under the action of load applied to 
different parts of span, therefore 39 different loading cases 
were analysed. The problem has to be solved in static and in 
non-linear stage. 

 

w
−

w+

wt
ot

 
Fig. 18 Deformed shape of prestressed suspension bridge in non-

symmetrical loading case 

B. Optimization Method for Calculation of Rational 
Characteristics of Cable Truss 

The optimization of the cable truss by 47 variable factors is 
done by genetic algorithm [17], [26], [27]. 

The genetic algorithm is a method for solving both 
constrained and unconstrained optimization problems that are 
based on natural selection, the process that drives biological 
evolution. The genetic algorithm repeatedly modifies a 
population of individual solutions. At each step, the genetic 
algorithm selects individuals at random from the current 
population to be parents and uses them to produce the children 
for the next generation. Over successive generations, the 
population “evolves” towards an optimal solution. Genetic 
algorithms are used to solve a variety of optimization 
problems that are not well suited for standard optimization 
algorithms, including problems in which the objective 
function is discontinuous, non-differentiable, stochastic, or 
highly nonlinear [28]. 

The genetic algorithm uses three main types of rules at each 
step to create the next generation from the current population: 

-Selection rules select the individuals, called parents, which 
contribute to the population at the next generation. 

 -Crossover rules combine two parents to form children for 
the next generation. 

  -Mutation rules apply random changes to individual 
parents to form children [28]. 
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9 

Relation of material 
consumption of i-th web 
element and whole truss 

gw,1/g 0.00206 33 gw,25/g 0.00039 
10 gw,2/g 0.00102 34 gw,26/g 0.00132 
11 gw,3/g 0.00109 35 gw,27/g 0.00056 
12 gw,4/g 0.00107 36 gw,28/g 0.00086 
13 gw,5/g 0.00112 37 gw,29/g 0.00064 
14 gw,6/g 0.00134 38 gw,30/g 0.00144 
15 gw,7/g 0.00461 39 gw,31/g 0.00279 
16 gw,8/g 0.00270 40 gw,32/g 0.00278 
17 gw,9/g 0.00351 41 gw,33/g 0.00440 
18 gw,10/g 0.00457 42 gw,34/g 0.00332 
19 gw,11/g 0.00249 43 gw,35/g 0.00251 
20 gw,12/g 0.00389 44 gw,36/g 0.00489 
21 gw,13/g 0.00440 45 gw,37/g 0.00262 
22 gw,14/g 0.00184 46 gw,38/g 0.00205 
23 gw,15/g 0.00209 47 gw,39/g 0.00436 
24 gw,16/g 0.00401     

 
IV. COMPARATIVE ANALYSIS OF PRESTRESSED SUSPENSION 

BRIDGES WITH SINGLE CABLE AND CABLE TRUSS 
The displacements of the prestressed suspension bridges 

with the rational cable truss and single cable were compared. 
The material consumption of the cable truss was the same as 
the material consumption of the single cable. The analysis 
were carried out by the FEM software ANSYS. 

The maximum total displacements are reduced up to 29.9% 
by using of the cable truss instead of the single cable in the 
case of the worst situated load. 

V.   CONCLUSION 
New possibility to improve the main disadvantage of the 

cable structures (increased deformability) is proposed. 
Rational from the point of view of displacements decrease 
structure of the cable truss was developed. Rational relation of 
the top chord camber/the bottom chord camber and material 
consumption of the bottom chord/material consumption of the 
whole truss are equal to 0.48 and 0.40, correspondingly. The 
topology optimization of the cable truss web was realized. 

It was stated, that displacements of the cable truss 
optimized by 47 variable factors are smaller by 4.5%, than 
displacements of the cable truss, optimized by 9 variable 
factors. 

The maximum total displacements are reduced up to 29.9% 
by using of the cable truss instead of the single cable in the 
case of the worst situated load. 
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