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Application of Generalized NAUT B-Spline Curve
on Circular Domain to Generate Circle Involute

Ashok Ganguly,Pranjali Arondekar

Abstract—In the present paper, we use generalized B-Spline curve
in trigonometric form on circular domain, to capture the transcen-
dental nature of circle involute curve and uncertainty characteristic
of design. The required involute curve get generated within the given
tolerance limit and is useful in gear design.
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I. INTRODUCTION

IN recent years, several new spline curves and surface
schemes have been proposed for geometric modeling in

CAGD.
For the higher order curve, uniform hyperbolic polynomial

B-Splines were presented by Lü et al. [11] over the space
spanned by {1, t, ., ., ., tk−3,cosh(t), sinh(t)}using an integral
approach. Q. Chang and Wang [14] used this integral approach
to present a class of Bézier like curve over trigonometric space.
Wang et al.[10] presented a new kind of splines called non
uniform algebraic trigonometric (NUAT) B-Spline and showed
that NUAT B-Spline curves shares most of the properties of
B-Spline curves.

In [1] a hyperbolic class of B-Spline curve was presented in
generalized way by an integral approach by taking parameter
values α and m respectively as scale and shape parameters,
generated over space
Ωk(t) = span{1, t, tk−3, sinh(mt), cosh(mt)}
where k ≥ 3,m ∈ R − {0} and α ∈ R

+ − {0} and it
has shown that the basis behaves like conventional B-Spline
curve in the limiting case of definition and defines hyperbolic
class of B-Spline curve in generalized form. Further this
curve shows most of the properties of B-Spline curve over
polynomial space. The parameter values are used as weights
in rational form of B-Spline curve, and give more accurate
result compared to rational form of B-Spline curve, in case of
generation of transcendental curve.

For α and m = 1, if we replace sinh(t) by sin(t), we
get non uniform algebraic trigonometric basis, see Wang et
al.[10].

But in practical way for curves and surfaces representation
fixed parameter values generate some problems. First, fixed
value constraints bring up conflicts at later design stages,
specifying determined parameter values implicitly adds rigid
constraints on geometry. If an interval instead of a fixed value
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is assigned to a parameter so that any real value within the
interval is valid, the degree of freedom of geometric entities is
increased. Second, the requirement of fixed parameter values
makes the development of conceptual design tools difficult.
In fact, at this stage, actual values of parameter may not
be known. The problem of parameter partial integrity can
be solved if a parameter is specified in a range. Sederberg
and Farouki [15] introduced the interval Bézier curve that
can transfer a complete description of approximation errors
along with the curve to applications in other system. Shen and
Patrikalakis [16] presented numerical and geometric properties
of interval B-Splines. Tuohy et al. [18] presented an interesting
paper on interval B-Spline curve and surfaces, respectively
adding a new dimension to robustness in solid modeling
system and reverse engineering. Further in [2] we discussed
an interval form of B-Spline curve and obtained an envelope
of interval B-Spline curve as well as presented a method to
find vector interval based on de- Boor algorithm. We extended
the idea of rectangular representation and gave least square
approximation to fit scattered data using B-Spline curve on
circular domain [3] using disk arithmetic ( [9], [12] ).

S.Baron [17] presented a gear geometric design by B-Spline
curve fitting and sweep surface modeling. But Baron used
conventional B-Spline in algebraic form for curve fitting of
involute profile used for gear geometric design. The iterative
algorithm mentioned is quite lengthy and time consuming.
However, this problem lies in the transcendental nature of
circle involute curve. To do away with it, Fumitaka et al. [7]
developed an approximation algorithm for circle involute curve
in terms of polynomial functions. The circle involute curve
is approximated using Chebeyshev approximated formula [7],
which enables to represent the involute in term of polynomial
as Bézier curve.

But as Bézier curve has global support property, it is always
better to use B-Spline curve having local support property.
Also B-Spline curve has less oscillation, strong convex hull
property etc. compare to Bézier curve [6]. So in the present
paper, we use generalized B-Spline curve in trigonometric
form on circular domain, covering the idea of [1], [3], [7],
[10], [13] and [17], to capture the transcendental nature of
circle involute curve and uncertainty characteristic of design.
The required involute curve gets generated within the given
tolerance limit.

The paper is organized as; section 2 consists of definition
of NAUT B-Spline basis functions in generalized way with
the definition of curve on circular domain, in this section we
also mention the differential geometry of circle involute curve
for the use of reader. In section 3 we give the method to
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approximate circle involute curve using generalized NAUT B-
Spline curve on circular domain by transforming the B-Spline
parameter range according to the length of the involute curve.
Section 4 consists of software implementation and in section
5 we presents an illustrative example with an application of
generated involute curve in spur gear, and comparison of our
method with previous method.

II. BASIC DEFINITIONS AND DIFFERENTIAL
GEOMETRY OF CIRCLE INVOLUTE CURVE

For the advantage of reader we present the definition of
basis functions from [1] in generalized form as special case in
trigonometric form. Then we define a NAUT B-Spline curve in
generalized way on circular domain and the basic differential
geometry and terminology of involute profile.

A. Definition of Generalized NAUT B-Spline Basis Functions

Let T be a given set of knot vectors with ti < ti+1 and α
be considered as a shifting parameter which can be assumed
constant for a particular case. We first give a set of initial
functions over Ω2[T ]:

Ni,2(t) =

⎧⎪⎨
⎪⎩

sin(m(t−αti))
sin(m(αti+1−αti)) , αti < t ≤ αti+1
sin(m(αti+2−t)

sin(m(αti+2−αti+1)) , αti+1 < t ≤ αti+2
0, otherwise

(1)
where m ∈ R − {0)is considered as shape parameter and

α ∈ (0, 1) with αm < π.

The generalized NAUT B-Spline basis function for order
k>3 in the space can be defined recursively as:

Ni,k(t) =

∫ t

−∞
(δi,k−1Ni,k−1(s)− δi+1,k−1(s)Ni+1,k−1) ds

(2)
for k ≥ 3.
where δ−1i,k is the area bounded by Ni,k(t) and the parameter

axis, given by

δi,k =

(∫ ∞

−∞
Ni,k(t)dt

)−1
. (3)

with
∫∞
−∞ δi,kNi,k(t)dt = 1.

In case of multiple knot sequence [10], set δi,kNi,k = 0
when Ni,k = 0 , however in order to ensure that Ni,k have
partition of unity when Ni,k = 0, consider

∫ t

−∞
δi,kNi,k(t)dt =

{
1, t ≥ ti+k
0, t < ti+k

(4)

The derivatives are given by

N ′
i,k(t) = δi,k−1Ni,k−1(t)− δi+1,k−1Ni+1,k−1(t)

N
′′
i,k(t) = δi,k−1N

′
i,k−1(t)− δi+1,k−1N

′
i+1,k−1(t)

}
(5)

B. Representation of NAUT B-Spline Curve on Circular Do-
main

To define the parameter in an interval, we [3] used the
interval on circular domain, i.e., in a disk format, presented by
Lin et al. [12], and gave a method to fit data using B-Spline
curve on circular domain [3]. On this basis generalized NAUT
B-Spline curve on circular domain is defined as

(P )ε,θf t =
n∑
i=0

(Pi)Ni,k(t) (6)

where,
(Pi) = (Cxi , Cyi) + εi(cos θf , sin θf ) for 0 ≤ θf ≤ 2π.
and
Ni,k(t) is given by (1) and (2), (Cxi , Cyi) are the given

polygon points, with allowable error εi.
Thus interval NAUT B-Spline curve on circular domain is

a set of all NAUT B-Spline curves P (t) defined by control
points Pi ∈ (Pi) for i = 0, 1,−−−, n.The required curve is
one of these curves. It has two components as mentioned in
[3], written as

(P )t =
(
C
)
t+ (cos θf , sin θf )(E)t (7)

where
(
C
)
t, is centered curve and error component is given

by (E)t. It can be viewed as a NAUT B-Spline curve with
given error tolerance as shown in figure 1.

Fig. 1. Some cubic NAUT B-Spline curves of the family on Circular domain.

C. Differential Geometry of Circle Involute Curve

A circle involute curve represents the underlying geometry
behind a gear tooth.

The involute of a circle is defined as the curve which is
generated by the end point of chord which is kept taut while
being unwound from a circle.

The equation of circle of radius rb centered at origin is given
by

X = rb cos(θ), Y = rb sin(θ).for0 ≤ θ ≤ 2π. (8)

The mathematical equation for involute curve ([8],[5] ) is
given by
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X = rb(sin(θ)− θ cos(θ))
Y = rb(cos(θ) + θ sin(θ))

}
(9)

To generate all tooth of the profile, we consider the equation

Xn = X cos(nθc)− Y sin(nθc)
Yn = X sin(nθc) + Y cos(nθc)

}
(10)

where θc is the angle of rotation corresponding to circular
pitch of the gear.

The arc length, unit tangent vector and radius of curvature
for involute curve( [7],[ 8]) is derived as

S (θ) = rbθ
2

2
T (θ) = (cos (θ) , sin (θ))
R (θ) = rbθ

⎫⎬
⎭ (11)

The radius of curvature of involute varies directly as varies
θ. The radius of curvature is zero or the curvature is infinite at
the base circle, where the tracing point of the chord leaves the
base circle. Thus curve near the base circle is very difficult to
produce and should be avoided whenever possible [7].

The involute curve is used in design of gear tooth profile.
The ending point of the involute curve along the tooth profile
is determined by computing the intersection point between the
circle involute curve and the addendum circle of radius ra .

Thus

r2a = r
2
b (1 + θ

2). (12)

From which the parametric value of θa of the intersection
is derived to be

θa=

√
r2a − r2b
rb

(13)

Therefore tooth profile is obtained by equation (9) varying
parameter θ from 0 ≤ θ ≤ θa . The arc length of gear tooth
profile is given by

S (θ) =
rbθ

2
a

2
(14)

The circle involute curve of gear tooth under construction is
defined by selecting module M, the number of gear teeth Z,
and pressure angle Φ[8]. The pitch circle radius r, base circle
radius rb and addendum circle radius ra are related by

r = MZ
2

rb = r cos(Φ)
ra = r +M

⎫⎬
⎭ (15)

III. NAUT B-SPLINE APPROXIMATION OF
INVOLUTE CURVE

To generate circle involute curve we are using generalized
NAUT B-Spline curve with open knot vectors given by
T = {αti}n+k0 as

Ti = 0, 0 ≤ i ≤ k
Ti = (i− k)α k + 1 ≤ i ≤ n+ 1
Ti = (n− k + 2)α n+ 1 ≤ i ≤ n+ k

⎫⎬
⎭ (16)

Basis functions are given by equations (1) and (2), for n+1
as number of polygon points and k − 1 as degree of NAUT
B-Spline curve.

To generate involute profile using theses knot vectors we
transform the involute parameter range 0 ≤ θ ≤ θa to 0 ≤
t ≤ tmα by transformation

t =

(
θ

θa

)
tmα (17)

where tm = (n − k + 2) and α = θa
tm
,as an example

for n = 8 and k = 4 open knot vector is given by set{
0 0 0 0 α 2α 3α 4α 5α 6α 6α 6α 6α

}
and α = θa

6 , so that the NAUT B-Spline parameter ‘t’ will
varies from 0 to θa .

To avoid high curvature span of curve near base circle we
change the involute parameter range by using hundredth of
arc length of tooth profile, as calculating θs =

√
sa

100rb
and

varying parameter from θs ≤ θ ≤ θa.
Now the first step of fitting procedure, using generalized

NAUT B-Spline on circular domain concerns with the se-
lection or detection of n + 1 data points (Dc)j for j =
0, 1,− − −, n.Than we parameterize the data points (D)i =
(Dc, Dε)i with parameter ti as t0 = θs and ti =

(
i
n

)
θa, for

1 ≤ i ≤ n for equally spaced data points or using chord length
approximation for unevenly spaced data points [4]as

t0 = θs, ti =

i∑
k=0

∣∣(Dc)k+1 − (Dc)k∣∣
m−1∑
k=0

∣∣(Dc)k+1 − (Dc) k∣∣
tmα (18)

for i = 1, 2,− − −, n.Now data point (Dc)i is on the
required centered NAUT B-Spline curve corresponding to
parameter ti, so we can write the following system of equation

(Dc)i =

n∑
i=0

(Pci)Ni,k(tj) (19)

for j = 0, 1,−−−, n . The (n+ 1) by (n+ 1) system of
equation can be easily solved to get unknown control points
PciThus we find the center coordinate point for each control
disk using least square approximation and assume the radius
for each control disk is same as that of selection error of
corresponding data point.

Now using (6) we generate the family of NAUT B-Spline
curve for the given involute points, on circular domain. The
best fit involute curve out of theses generated family of
involute is obtained by finding average deviation of each
generated curve with theoretical involute. We select the best
fit curve within the given tolerance limit having minimum
deviation from given involute, using the following

E =

√√√√ N∑
j=0

(
Pε,θf (tj)− I (θj)

)2

N
(20)
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where θj =
tjθa
tmα

, 0 ≤ θf ≤ 2π, 0 ≤ ε ≤

∑
i

εi

n and N
is the total number of points used to find deviation. Now by
varying ε and θf we find the best fit involute curve for the
minimum average deviation ‘E’.

Now the first and second derivatives of generated involute
curve is given by

P ′(t) =
n−1∑
i=0

(Pi)N
′
i,k(t)

P ′′(t) =
n−1∑
i=0

(Pi)N
′′
i,k(t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(21)

where N ′
i,k(t) and N”

i,k(t) are given by (5). First and second
derivative of theoretical involute is given by

X ′ (θ) = rbθ sin θ, Y ′ (θ) = rbθ cos θ
X ′′ (θ) = rb (cos θ − θ sin θ) , Y ′′ (θ) = rb (sin θ + θ cos θ)

}

(22)
Using these derivatives values, we compare the tangents

and curvature values of generated involute curve with the true
involute curve at corresponding θj =

tjθa
tmα

and obtained the
result with reasonable fidelity [13].

IV. SOFTWARE IMPLEMENTATION

Input detected points on invloute profile, with possible error
of detection.

Input addendum and base circle radius of involute.
System responds with required open knot vectors using

equation (16) and (17) corresponding to number of points for
cubic NAUT B-Spline curve.

System find center of each control disc using system of
equation (19) required to fit centered NAUT B-Spline for the
input points, following equations (18) as per the points equally
spaced or unequally spaced.

Using these centered control disk points, and with radius of
control disk same as that of input error mentioned for points,
we get family of NAUT B-Spline curve for involute profile.

Input the required error tolerance and select NAUT B-Spline
curve out of generated family with minimum average deviation
from theoretical involute using (20).

If this deviation is within given tolerance we get the required
profile otherwise system increases the number of input points
and repeats the process.

The program made in C++ can generate involute profile for
any number of points using cubic NAUT B-Spline curve on
circular domain.

V. APPLICATION TO SPUR GEAR MODELING

Ones we get the required involute profile within the given
error tolerance, input module ‘M’ and number of teeth ‘Z’ of
the gear.

The circular pitch is given by P = πM ([8],[5] ). Find the
mirror image of involute profile with rotation corresponding to
half of circular pitch. One tooth profile of gear gets generated.
Now to get all teeth as per the number, rotate this tooth using

equation (10) on the base circle with rotation corresponding
to circular pitch.

Input it into CAD system to model gear.
As an illustrative application, an invloute profile for the

following data1 of gear has been modeled by the method
described above.
• The number of teeth Z = 20
• The module M = 1/16
• Pressure angle = 14.5 o

• The Pitch Diameter (D) = Z ∗M = 20/16 = 1.25”
• The Pitch Radius(r) = D/2 = .625”
• The Base Circle Diameter

(Db) = D ∗ COS(Φ) = 1.210”
• The Base Circle Radius (rb) = Db/2 = 0.605”
• The Addendum (a) = 1/16 = 0.0625
• The Dedendum (d) = 1.157/P = 1.157/16 = 0.0723”

(rounding off at 0.0001”)
• Outside Diameter (DO) = D + 2 ∗ a = 1.375”
• Addendum Radius (ra) = r +M = 0.6875”
• Root Diameter(Dr) = D − 2 ∗ b = 1.1054”
• Root Radius (rr) = r − d = 0.625”− 0.0723” = 0.5527
Calculated Results
θa = 0.5397” by eqn(10).
For n=8,K=4 we get tm=6 and α =0.08995" ,
For n=11, k=4 we get tm=9 and α=0.059966".
We detect the equally spaced points on true involute profile

with error of detection 0.0001 and m=1. We summarized the
result in following table, showing the variation of generated
profile with the true involute profile. A comparison of men-
tioned method with the Baron method [17] is also given in the
table.

TABLE I
SUMMARY OF NORMALIZED DEVIATION COMPUTED AS DIFFERENCE

BETWEEN GENERATED CURVE AND TRUE INVOLUTE CURVE.

Number
of polygon
points(n+1)
and degree
(k-1)

Average Devi-
ation (mm)

Maximum De-
viation(mm)

S.Baron’s n = 8, k = 4 2.1X10−3 11x10−3
Method n = 11, k = 4 0.57x10−3 2.9x10−3
Our Method n = 8, k = 4 3.99x10−5 9.46x10−5

n = 11, k = 4 2.50x10−5 7.08x10−5

Figure 2 and 3 shows the generated involute profile for
n = 8, k = 4 and n = 11, k = 4 respectively. In figure 3
theoretical profile get overlapped by generated profile as error
is negligible. Figure 4 shows the tangent plots and deviation of
slop of tangent with tangent slop of theoretical involute. Figure
5 shows curvature plots for n = 8 and n = 11 with k = 4.
It is noticed that the tangent and curvature plot for n = 11
matches with the tangent and curvature plot for theoretical
involute profile and the result can be improved for large n.
Figure 6 shows the generated spur gear as an application.

1Source of data: From already designed gear www.cartertools.com /The
Involute Curve, Drafting a Gear in CAD and Applications (April 27th , 2007)
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Fig. 2. Generated and true Involute profile for n+1= 9, k=4.

fig 4(a):Tangent plot for n=8,k=4.

Fig. 3. Generated and true Involute profile for n+1= 12, k=4.

fig 4(b) :Tangent plot for n=11,k=4.
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fig 4(c):Plot of deviations d (mm) between the slopes
unit tangent vector of generated involute and unit

tangent vector of theoretical involute for n+1=9 and
k=4, with average deviation of slopes = 0.00007859.

fig 5(a) :Curvature plot for n=8, k=4 of generated
involute.

fig 4(d) Plot of deviations d (mm) between the slopes
unit tangent vector of generated involute and unit tangent
vector of theoretical involute for n+1=11 and k=4, with

average deviation of slopes = 0.000049042

fig 5(b):Curvature plot for n=11 ,k=4 of generated
involute
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Fig 6: Generated Gear, two
dimensional view.

VI. CONCLUSION

Thus, a generalized B-Spline curve in trigonometric form on
circular domain is used to generate circle involute curve within
the given tolerance limit also a spur gear is generated as an
application. The error is much improved vis-à-vis S.Baron’s
method and other methods mentioned in the introduction. The
error analysis has confirmed the validity of generated involute.
The technique can be applied to various gear typologies
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