
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

570

Abstract—Extracting and elaborating software requirements and

transforming them into viable software architecture are still an
intricate task. This paper defines a solution architecture which is
based on the blurred amalgamation of problem space and solution
space. The dependencies between domain constraints, requirements
and architecture and their importance are described that are to be
considered collectively while evolving from problem space to
solution space. This paper proposes a revised version of Twin Peaks
Model named Win Peaks Model that reconciles software
requirements and architecture in more consistent and adaptable
manner. Further the conflict between stakeholders’ win-requirements
is resolved by proposed Voting methodology that is simple
adaptation of win-win requirements negotiation model and QARCC.

Keywords—Functional Requirements, Non Functional
Requirements, Twin Peaks Model, QARCC.

I. INTRODUCTION
EQUIREMENT Engineering is one of the most important
aspect of problem space. The deliverables of requirement

engineering are eventually transformed into solution space.
The outcome of requirement engineering is conventionally
classified as both functional requirements (FRs) and non-
functional requirements (NFRs), and they both constrain each
other [2]. FRs is to be mapped as functional attributes & NFRs
as quality attributes of a system. Before the emergence of
software architecture as a new subject, only FRs was
considered while devising the systems solution. But the
devised architecture is getting its importunate place in the
software development life cycle; it is arguing the importance
of NFRs as well. This paper spots the impact of major drivers
in problem space (FRs, NFRs & Domain Constraints.), over
solution space (Architecture Decisions).

According to the survey conducted by Standish Group on
software failures, it has been observed that only 61% of the
originally specified requirements were available on the
released software product. This led to 53% of the projects to
be over budget and behind schedule, while 31% were deemed
failure [1]. This shows the importance of mapping the
requirements to the solution space.

Manuscript received May 20, 2005.
Bilal Saeed Raja is with the Hamdard Institute of Information Technology,

Hamdard University, Islamabad, 44000, Pakistan (phone: 92 – 300 – 9540571;
e-mail: bilal_saeed_raja@yahoo.com).

Muhammad Ali Iqbal is with the Hamdard Institute of Information
Technology, Hamdard University, Islamabad, 44000, Pakistan (phone: 92 –
300 – 5235607; e-mail: allyiqbal@yahoo.com).

Imran Ihsan is with the Hamdard Institute of Information Technology,
Hamdard University, Islamabad, 44000, Pakistan (phone: 92 – 333 – 5118897;
e-mail: iimranihsan@gmail.com).

A. Problem Space and Solution Space
Stakeholders’ are the key to both problem space and

solution space, stakeholder identified by the problem space
state the domain constraints (DCs), FRs and NFRs. Similarly
stakeholders identified by solution space state architectural
decisions (ADs) as well as FRs and NFRs as illustrated in the
fig. 1. The relationship between set of requirements and an
effective architecture for a desired system is not readily
obvious. Requirements largely describe aspects of the problem
to be solved and constraints on the solution [4][9].

Fig. 1 Problem Space and Solution Space

In the literature, guidelines are available for modeling and

understanding the impact of architectural decisions and
requirements on each other. But there are some critical
constraints, which need to be addressed when trying to
reconcile requirements and architectures. These include:
• Requirements are frequently captured informally in a

natural language. On the other hand, entities in a software
architecture specification are usually specified in a formal
manner.

• System properties described in non-functional
requirements are commonly hard to specify in an
architectural model.

• Iterative, concurrent evolution of requirements and
architecture demands that the development of architecture
be based on incomplete requirements. Also, certain
requirements can only be understood after modeling and
even partially implementing the system architecture.

• Mapping requirements into architectures and maintaining
the consistency and traceability between the two is
complicated since a single requirement may address
multiple architectural concerns and a single architectural
element may have numerous non-trivial relations to

Moving From Problem Space to Solution Space
Bilal Saeed Raja, M. Ali Iqbal, and Imran Ihsan

R
Solution Space

Problem Space

 FRs + NFRs

Stakeholders
 (Organization, etc)
Architectural Decisions (ADs)

Stakeholders
 (Users, Customer, etc)
Domain Constraints (DCs)

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

571

various requirements [11].
• Real-world, large-scale systems have to satisfy hundreds,

and even possibly thousands of requirements. It is
difficult to identify and refine the architecturally relevant
information contained in the requirements due to this
scale.

• Requirements and the software architecture emerge in a
process involving heterogeneous stakeholders with
conflicting goals, expectations, and terminology.

Requirements are derived from the concepts and
relationships in the problem space. Sometimes they reflect
conflicting, interests of a given system’s stakeholders
(customers, users, managers, developers). The conflict
resolution process for the right balance of requirements and
architecture is complex and difficult due to the following
obstacles [5][6]:

Difficulties in coordinating multiple stakeholders’
interests and priorities. Users feel that full functionality,
dependability, and ease of use are the most important
attributes. The primary concerns of customers are cost and
schedule and acceptable level of quality. Developers are
mostly concerned about the low project risks and reusability
of software components and assets. Maintainers are strongly
concerned about the good diagnostics and easy maintenance
means. Finding the middle ground among these requirements
is quite difficult in reality.

Complicated dependencies and tradeoff analyses among
quality attributes. Every decision to improve some quality or
functionality may impact other quality attributes , particularly
the cost and schedule. Some requirement and decisions may
be not compatible with others.

Exponentially increasing resolution option space. In order
to resolve a conflict, several items should be considered. For
example, which functionality should be reduced and by how
much to get the project back on track? Which constraints can
be degraded in terms of solution architecture?

B. Dependencies among Factors
All Strong dependencies exist among DCs, FRs, NFRs and

ADs (Fig. 2). They constrain or realize each other. So a
natural and obvious architecture requires a balanced selection
and alignment of these factors. Also it is ominous to
overestimate any one and underestimate any other of these
factors.

1. DCs and NFRs constrains each other
2. NFRs realizes DCs
3. FRs realizes DCs
4. DCs and FRs constrains each other
5. FRs realizes NFRs
6. FRs and NFRs constrains each other
7. ADs realizes NFRs
8. ADs and NFRs constrains each other
9. ADs realizes FRs
10. ADs and FRs constrains each other

Fig. 2 Dependencies between FRs, NFRs, ADs and DCs

II. EXISTING SOLUTIONS

A. Classical Twin Peak Model
As illustrated in the fig 2, dependencies show that often we

are restricted to specific architecture decision due to certain
requirements. If the adopted life cycle model or the system
lets us take specific architecture decision first then we have to
compromise over FRs or NFRs some times. Specially talking
about water fall model that yields frozen requirements leads
towards constrained system architecture that not only restricts
user but also handicaps the developer.

Except for well-defined problem domains and strict
contractual procedures, most software-development projects
address requirements specification and design issues
simultaneously—and justifiably so. In reality, candidate
architectures can constrain designers from meeting particular
requirements, and the choice of requirements can influence the
architecture that designers select or develop.

Twin Peaks Model emphasizes equally on requirements and
architectures [3]. Although this model develops requirements
and architectural specifications concurrently, it continues to
separate problem structure and specification from solution
structure and specification, in an iterative process that
produces progressively more detailed requirements and design
specifications.

The Twin Peaks model addresses the three management
concerns IKIWISI, COTS, and Rapid Change.
• I’ll Know It When I See It (IKIWISI). Requirements

often emerge only after users have had an opportunity to
view and provide feedback on models or prototypes.
Twin Peaks explicitly allows the user to explore the
solution space early, permitting incremental development
and consequent risk management.

• Commercial off-the-shelf software (COTS). Increasingly,
software development is actually a process of identifying
and selecting desirable requirements from existing
commercially available software packages. With Twin
Peaks, developers can identify requirements and match
architectures with commercially available products,

realizes
constrains

DC

NFR FR

AD

3

5

2
4 1

6
9 7

10 8

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

572

rapidly and incrementally. The developer benefits by
quickly narrowing the selections or making key
architectural decisions to accommodate existing COTS
solutions.

• Rapid change. Managing change continues to be a
fundamental problem in software development and
project management. Focusing on finer-grain
development, Twin Peaks is receptive to changes as they
occur. Analyzing and identifying a software system’s core
requirements are requisite to developing stable software
architecture amid changing requirements.

B. Win-Win Spiral Model
Win-Win is a groupware support system for determining

software requirements as negotiated win conditions. It is
based on the Win-Win Spiral Model which uses Theory W to
generate the stakeholder win-win situation incrementally
through the Spiral Model [5]. Win-Win assists the identified
stakeholders in identifying and negotiating issues (i.e.,
conflicts among their win conditions), since the goal of
Theory W, “Make everyone a winner,” involves stakeholders
identifying their win conditions, and reconciling conflicts
among win conditions.

C. Win-Win Negotiation Model
The Win-Win negotiation model is based on four artifact

types: Win Conditions, Issues, Options and Agreements [7].
Win conditions capture the stakeholder goals and concerns
with respect to the new system. If a Win condition is non-
controversial, it is adopted by an Agreement. Otherwise, an
Issue artifact is created to record the resulting conflict among
Win Conditions. Options allow stakeholders to suggest
alternative solutions, which address Issues. Finally agreements
may be used to adopt an Option, which resolves the Issue.

D. QARCC
QARCC (Quality Attribute Risk & Conflict Consultant) is

an exploratory knowledge-based tool for identifying potential
conflicts and risks among quality requirements early in the
software life cycle. QARCC uses the “Attributes” portion of
Win-Win’s domain taxonomy to identify potential quality
attributes conflicts [5]. As stakeholders enter Win Conditions,
they identify which domain taxonomy elements are relevant.

III. PROPOSED SOLUTION

A. Classical Twin Peaks Model Revisited
Although Twin Peaks Model is one of the most appreciated

and adopted models that tackles the dilemma of requirements
and architecture integration. While talking in the context of
FRs, NFRs, DCs and ADs, it is observed to exhibit few
lacking.
• It is deficient in narrating evolutionary aspects of the

system with respect to system implementation.
• In twin peak model, requirements and architecture are

placed independently, but as observed it’s never so.
Requirements and architecture strongly overlap and such

demarcation is impossible [12].
• Model is quite abstract in terms of different types of

requirements and architectural aspects and the
relationship between requirements and architectures.

• It is hard to understand that where the model actually lies,
whether it is in problem space or solution space domain.

B. Win Peaks Model
Win Peaks Model adapts Classical Twin Peaks Model and

tries to remove the deficiencies observed in Classical Model.
Name of the Model “Win Peaks” is of importance with respect
to its adaptation from Classical Twin Peaks Model. It is why
because it extends basic theme of Twin Peaks in more details
and adopts Win-Win Spiral Model for incremental system
evolution. Additionally “Win Peaks” is more justified by
using Win-Win Negotiation Model to resolve conflicts
between requirements. Distinctive factors of Win Peaks
Model are:
• It maps requirements and architecture onto the

demarcated problem space and solution space.
• It extends implementation details of the system in terms

of FRs, NFRs, DCs and ADs.
• It ideally imposes the dependencies among FRs, NFRs,

DCs and ADs, as described in Fig. 1.
• It relates these factors as they fall in contact with each

other and affect each other. As FRs & NFRs related with
DCs in problem space, FRs & NFRs related with ADs in
solution space and then FRs & NFRs of both spaces
related to each other that affects ADs.

• The model expresses the overlaps & intermixes of
requirements & architecture.

• The model expresses that the requirements are more
general and by the time system evolves they are
transformed into more specific architecture.

• The spiral nature of this model tries to negotiate between
requirements in each increment by using Requirements
Voting Methodology as presented below.

• It also exhibits the benefits of Classical Twin Peaks
Model.

C. Requirement Voting Methodology
Most of the stakeholders’ Win Conditions are non-

controversial [7]. Negotiating requirements is one of the first
steps in any software system life cycle, but its results have
probably the most significant impact on the system’s value.
However, the processes of requirements negotiation are not
well understood.

The Win-Win Negotiation Model has been formally
specified and analyzed for consistency but only little is known
about the correctness and usefulness of assumptions made
during this process. To challenge its acceptability certain
questions have been raised which are given below [8]:
• How are the stakeholders’ and negotiation results affected

by using a negotiation tool such as Win-Win?
• How similar are the negotiation results if stakeholders for

all groups have a similar win conditions to start with and

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

573

a pre-defined negotiation model to follow?
• How do people factors, like work experience or age,

effect the process and the outcome of the negotiation?
• Do people use the tool as it was anticipated by the model?

There are also many other unanswered questions. Some of
these questions are general; others are more related to the
specific Win-Win methodology. However, knowing the
answers to these questions is vital in providing more useful
and powerful negotiation aids for stakeholders.

Requirement Voting Methodology is a solution for related
problems as discussed above. It starts with QARCC to identify
potential quality attributes (NFRs) and their related conflicts
to stakeholders’ win conditions. It helps in addressing the
stakeholders and their respective NFRs in the problem space
as well as solution space.

Then for each requirement, we cast votes of respective
stakeholder and record their categorization for that
requirement with respect to its impact on system success.
Requirements’ impact classification is made into two; high-
medium and medium-low, for better applicability and ease in
selection or rejection. Stakeholders can more easily categorize
requirements into these two according to their assumption
about requirements’ effect on system success.

Requirement conflict will be resolved in the following
fashion.
• If the number of votes is lying under high-medium, then

particular requirement will be accepted.
• If the number of votes is lying under medium-low, then

particular requirement will be rejected.
• If the equal number of votes is lying under high-medium

and medium-low, that means this conflict requires more
effort to be resolved. So it is put under Win-Win
Negotiation Model. And as already discussed,
stakeholders’ Win Conditions, Issues and Options are to
be prepared to get some agreement.

Requirement Voting Methodology can be practiced in any

increment cycle of win-win spiral of Win Peaks Model. The
proposed artifact that records requirement voting is sketched
below.

Fig. 3 Requirement Voting Artifact

IV. CONCLUSION
Integrating requirements, domain constrains and

architecture is still a striking issue in devising the win-
solution. Proposed Win Peaks Model and Requirement Voting
Methodology are placed in position to be practiced more for

their acceptance. But certain inspirations tried to be imposed
in proposed hypotheses are;
• Win Peaks Model helps avoiding Kitchen-Sink

architectures, which tries to address all conceivable in
problem space [10].

• It employs the theory “architecture should focus as much
on what to leave out as on what to put in”. [10]

• Win Peaks and Voting facilitates producing a natural and
obvious solution architecture that is not seemed to be
stuck with the problem [10].

REFERENCES
[1] Standish Research Paper, Chaos Study, 1995, available on-line at

http://www.standishgroup.com .
[2] B. Paech, A.H. Detroit, D. Kerkow and A. von Knethen, “Functional

requirements, non-functional requirements, and architecture should not
be separated - A position paper”. REFSQ' 2002, Essen, Germany,
September 9-10 2002.

[3] Bashar Nuselbeh, “Weaving Together Requirements and Architectures”,
in proceedings of IEEE Computer, 34, 3 (March 2001), pp. 115-119.

[4] Paul Grünbacher, Alexander Egyed, and Nenad Medvidovic.
“Reconciling Software Requirements and Architectures: The CBSP
Approach.” in Proceedings of the Fifth IEEE International Symposium
on Requirement Engineering, 2001.

[5] Boehm, Barry “Conflict Analysis and Negotiation Aids for Cost-Quality
Requirements”, Center for Software Engineering and Computer Science
Department, University of Southern California, 1999.

[6] Hall, J.G.; Jackson, M.; Laney, R.C.; Nuseibeh, B.; Rapanotti, L.
“Relating software requirements and architectures using problem
frames”. Proceedings of the IEEE Joint International Requirements
Engineering Conference (RE'02), Essen, Germany, 9-13 September,
2002, Pages: 137- 144.

[7] Boehm, B. and Egyed, A., “Software Requirements Negotiation: Some
Lessons Learned”, in proceedings of the 20th International Conference
on Software Engineering, April 1998.

[8] Alexander Egyed, Barry Boehm, “Analysis of System Requirements
Negotiation Behavior Patterns”. Proceedings of 7th Annual
International Symposium on Systems Engineering, 1997.

[9] Robert Glass, “Software Runaways: Lessons Learned from Massive
Project Failure” published in the magazine Computerworld, 1989.

[10] Steve McConnell, “Software Project Survival Guide” a book published
by Microsoft Press, 1998.

[11] Awais Rashid , Ana Moreira , Joāo Araújo, “Modularisation and
composition of aspectual requirements”, Proceedings of the 2nd
international conference on Aspect-oriented software development, p.11-
20, March 17-21, 2003, Boston, Massachusetts.

[12] Hall J.G., Rapanotti, L., “A reference model for requirements
engineering”, in IEEE Proceedings of International Requirements
Engineering Conference (RE'03), USA, September 2003.

NFR High - Med Med - Low

Stakeholder 1 - -
: - -

Stakeholder n - -
Result Accept Reject Conflict

Resolution

