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Abstract—This paper solves the environmental/ economic dispatch
power system problem using the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelera-
tor Operator (CAO), called the NSGA-II/CAO. These multiobjective
evolutionary algorithms were applied to the standard IEEE 30-bus
six-generator test system. Several optimization runs were carried out
on different cases of problem complexity. Different quality measure
which compare the performance of the two solution techniques were
considered. The results demonstrated that the inclusion of the CAO
in the original NSGA-II improves its convergence while preserving
the diversity properties of the solution set.
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I. INTRODUCTION

HE basic goal of any solution to the optimal power flow

(OPF) problem is to determine the dispatch of generators
so as to meet the load demand while minimizing the total fuel
cost, subject to the satisfaction of all constraints on the system.
More objectives have recently been incorporated into the OPF
problem. These include optimization of active/reactive losses,
power plant emissions, voltage profile and stability. This has
extended the definition of the OPF problem from a single ob-
jective case to a multiobjective one. Many strategies have been
adopted to obtain an optimal solution for this multiobjective
OPF problem. One approach is to form a weighted sum of the
multiple objectives in order to create a composite objective
function [1]. Another approach chooses one of the objective
functions and treats the rest of the objectives as constraints by
limiting each of them within certain pre-defined limits [2]. The
problem with these methods is that they require specification
of weighting coefficients or pre-defined limits which affect
the quality of solutions obtained. Also, as common with
analytical methods, several runs have to be performed in order
to obtain different and acceptable non-dominated solutions for
the decision maker to choose from. Recently, multiobjective
evolutionary algorithms (MOEAs) have been applied to solve
the multiobjective OPF. Their population-based nature makes
it possible for them to yield multiple Pareto-optimal solutions
in a single run.

The Environmental/Economic Dispatch (EED) multiobjec-
tive problem seeks to simultaneously minimize both fuel cost
and the emissions produced by power plants. Environmental
concerns on the effect of SOy and NOx emissions produced
by the fossil-fueled power plants led to the inclusion of
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minimization of emissions as an objective in the OPF for-
mulation. The Niche Pareto Genetic Algorithm (NPGA), the
Non-dominated Sorting Genetic Algorithm (NSGA) and the
Strength Pareto Evolutionary Algorithm (SPEA) were used in
[31,[4].[5] to solve the EED problem and in [6], a comparative
study of the performance of the mentioned approaches was
done. The EED problem has also been solved using the NSGA-
IT [7] while in [8], a stochastic approach developed around the
NSGA-II was used.

The set of solutions achieved by a multiobjective optimiza-
tion algorithm is required to satisfy both convergence and
diversity criteria. The convergence criterion requires that the
obtained approximation set should be as close as possible to
the true Pareto front while the diversity criterion requires that
it should be well-spread and covering wide areas of the Pareto
front. Moreover, when dealing with real-world applications, it
is desired that the approximation set be achieved within an
acceptable amount of time and a limited budget of objective
function evaluations. Although elitist MOEAs such as the
NSGA-II do well in progressing close to the Pareto-optimal set
with a good distribution of solutions because of the inclusion
of explicit diversity-preservation operator in them, they do
not guarantee true convergence to the Pareto-optimal set [9].
This is because the diversity-preservation operator always
emphasizes the less crowded solutions in the non-dominated
set causing some solutions that are already Pareto-optimal to
be replaced by non-Pareto ones. It can be concluded from the
foregoing that elitist multiobjective optimization evolutionary
algorithms cannot simultaneously meet the requirements of
convergence to the Pareto front and maintenance of a diverse
solution set; hence the need to incorporate a mechanism that
improves convergence to the Pareto front while maintaining a
good spread of solutions [10].

A portable Convergence Accelerator Operator (CAO) for
incorporation into multiobjective optimization evolutionary
algorithms was proposed in [10],[11] and was incorporated
into both NSGA-II and SPEA2 to form NSGA-II/CAO and
SPEA2/CAO. It was demonstrated that inclusion of the CAO
improved the convergence property of the solution set obtained
by these multiobjective evolutionary algorithms.

In this study, the EED problem is solved using the NSGA-
IT and its CAO-hybridized form, the NSGA-II/CAO. Standard
performance metrics are then used to compare the solution
sets obtained by using the two algorithms.

II. EED PROBLEM FORMULATION

The environmental/economic dispatch problem involves the
simultaneous optimization of two competing objective func-
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tions, fuel cost and emission while satisfying equality and
inequality constraints. The problem is formulated as follows.

A. Minimization of Fuel Cost

The objective function for total fuel cost F'(Pg) in dollars
per hour can be represented by the quadratic function:
N
F(Pg) =Y aiPg;+biPa;+ci 1)
i=1
where N: number of generators
a;,b;,c;: fuel cost of generator, ¢
Pg;: real power output of the i*" generator
Pg: vector of real power outputs of generators and
defined as

Pg =[Pg,,Pa,,...,Pay]T.

B. Minimization of Emission

The total emission E(Pg) in tons per hour of atmospheric
pollution such as sulphur oxides (SOg)and nitrogen oxides
NO, caused by the operation of fossil-fueled thermal gen-
eration can be expressed [6] as

N
E(Pg) =Y 107%(d;iPg;+eiPa;+ f;) + gicxp(hiPa;) (2)
=1

where d;, e;,fi,g; and h; are coefficients of the i*" generator
emission characteristics.

C. Constraints

The optimization problem is bounded by the following
constraints:

1) Power Balance Constraints: There must exist a balance
between the total electric power generation, the total load on
demand as well as the real power loss in transmission lines.
This is given by

N

> Pg;—Pp-PL=0 3)

i=1
where Pp is the total load (MW) and Py, is the transmission
loss (MW). P, is determined by solving the load flow problem
using the Newton-Raphson method.

2) Power Generation Limits: The power generated Pg; by
each generator should lie between its minimum and maximum
limits i.e.

PGimin < PGi < PGimaw “)

where Pg;,,;, 15 the minimum power generated and Pg;,,, 0.
is the maximum power generated

D. Formulation

The multiobjective environmental/economic dispatch prob-
lem is therefore formulated as

minimize  [F(Pg), E(Pg)]
subject to: 9(Pg) =0 (5)
h(Pg) <0,

where ¢ is the equality constraint representing the power
balance, while h is the inequality constraint representing the
generation capacity.

III. NSGA-II AND NSGA-II/CAO

In this section, we describe briefly the NSGA-II algorithm
and the component hybridized with it, the CAO.

A. The Non-Dominated Sorting Genetic Algorithm-II (NSGA-
1)

NSGA-II [12] is an elitist MOEA that uses a fast non-
dominated sorting as well as an efficient crowding-distance
assignment approach. It involves the creation of an initial
random population of solutions P, of size N which is sorted
into different levels of non-domination. Each solution is as-
signed fitness equal to its non-domination level where level 1
is the best level. Binary tournament selector with a crowded
tournament operator, recombination and mutation operators are
then used to create an offspring population Q of size N. The
parent and offspring populations are combined and a non-
dominated sorting is performed. Thereafter, solutions from
better non-dominated sets are selected to propagate to the next
generation, one set at a time until the population is filled. If the
available population slots are not adequate to accommodate all
solutions of a non-dominated set, a crowding strategy is used
to identify solutions which reside in a less-crowded area.

B. The Convergence Accelerator Operator

The Convergence Accelerator Operator (CAO) consists of
two steps; the first step is a deterministic local improvement
procedure in the objective space. This is the component
responsible for speeding up convergence. It achieves this by
steering objective values obtained by the NSGA-II towards
an improved Pareto front. The new improved values for the
objectives are determined by linearly interpolating a new value
for each objective, between its current value and the next best
value(s) achieved for that objective within the population.

The second component of the CAO consists of a neural
network (NN) trained to map the new solutions generated
in objective space by the first phase of the convergence ac-
celerator back to the corresponding decision variable vectors.
This is achieved by training a radial basis function (RBF) NN,
using exact objective vectors as inputs and their corresponding
decision variable vectors as outputs, to approximate a mapping
function from the objective space to the decision space. The
training data is the exact data resulting from the objective
function values derived within one cycle of a MOEA (in this
case, the NSGA-II).

A description of NSGA-II hybridized with the CAO is
presented in Listing 1.

-Generate random population Py, size N

-Evaluate objective values

For i=1 to Gen

-Assign rank to P,
-Determine crowding distance for each
solution in P;_4
—Generate offspring population Q,size N
Binary tournament selection
Recombination
Mutation
Evaluate objective values for the
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offspring population Q
—Combine P;_; and Q
—-Assign rank to the combined population
-Determine crowding distance for each
solution in the combined population
-Select N solutions to form F;

Apply CAO:
—Component :Neural Network training

—-Initialize an RBF NN and train

it with F;

Input: Objective vectors of P;

Output: Decision vectors of P
—Component: Objective space local
improvement of P;

—Component: Objective space to decision
space predictions
—Component: Correction Step
-Update P;
End Loop

Listing 1: The NSGA-II/CAO procedure [11]

IV. IMPLEMENTATIONS AND SETTINGS

In this paper, the feasibility of obtained non-dominated
solutions is ensured by using a constrained tournament se-
lection operator based on the constrain-domination principle.
A solution z(?) is said to constrain-dominate a solution z(/) if
any of the following conditions are true [13]:

« Solution z(?) is feasible and solution z/) is not.
« Solution £ and z() are both infeasible, but solution
2 has a smaller constraint violation.
« Solution () and 2() are feasible and solution ()
dominates solution z(?) in the usual sense.
A procedure is also incorporated to ensure feasibility of non-
dominated solutions produced by the CAO.

The solution of real-world multiobjective optimization prob-
lems also requires that the approximation set be achieved
within an acceptable amount of time and a limited budget
of objective function evaluations. Hence, in this study, for fair
comparison of performance of the NSGA-II and the NSGA-
II/CAO, a fixed computational budget was used. On all ten
runs for each technique, the population size was fixed at 100.
For the NSGA-II, the maximum number of generations was
set at 300. In the case of the NSGA-II/CAO where invocation
of the CAO leads to another round of function evaluations
(since it is here called during each generation), the number of
generations was reduced to 150 so that the number of function
evaluations remains the same as for NSGA-II.

Crossover and mutation probabilities were chosen as 0.9
and 0.167, respectively. The distribution indices for crossover
and mutation operators were each set at 20 in all optimization
runs. A fixed interpolation factor of 10 was used in the first
phase of the CAO while the spread factor for the RBF neural
network was set at 0.0166. Several runs were carried out to
set the parameters of each technique in order to get the best
results for comparison. Feasibility checks were also carried
out on the non-dominated solutions obtained to ensure that

TABLE I
GENERATOR FUEL COST AND EMISSION COEFFICIENTS

G1 Ga G3 Gy GS GG
a 100 120 40 60 40 100
cost b 200 150 180 100 180 150
c 10 10 20 10 20 10
d 6.490 5.638 4.586 3.380 4.586 5.151
e -5.554 -6.047 -5.094 -3.550 -5.094 -5.555
emission  f 4.091 2.543 4.258 5.326 4.258 6.131
g 20E-4 50E4 10E-6 20E3 10E-6 1.0E-5
h 2.857 3.333 8.000 2.000 8.000 6.667
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Fig. 1. Comparison of Pareto-optimal fronts, Case 1

they satisfy the system constraints. All techniques used in this
study were implemented using MATLAB language on an Intel
Core Duo processor running at 2.33GHz.

V. RESULTS AND DISCUSSION

In this study, we apply the two techniques to the standard
IEEE six-generator 30-bus test system to assess their perfor-
mance in solving the EED problem. The line data and bus
data are as given in [6]. The values of generator fuel cost and
emission coefficients are given in Table 1.

Two different cases of problem complexity are considered
as follows:

o Case 1: The system is considered as lossless. The problem
constraints are the power balance constraint without P,
and the generation capacity constraint.

e Case 2: Pj,ss is considered in the power balance con-
straint. The generation capacity constraint is also consid-
ered.

Case 1: Both NSGA-II and NSGA-II/CAO have been ap-
plied to the EED problem and both objectives were treated
simultaneously as competing objectives. The Pareto-optimal
fronts for the best optimization run due to each technique are
shown in Fig. 1.
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Fig. 2. Comparison of Pareto-optimal fronts, Case 2
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Fig. 3. Comparison of Pareto-optimal fronts, Case 1

It is clear that the obtained fronts have good diversity
characteristics. Table II shows the best solutions obtained out
of ten runs by both NSGA-II and NSGA-II/CAO. NSGA-
II/CAO yields better fuel cost than NSGA-II while both
methods yield the same value for emission.

Case 2: With system losses considered in the problem
formulation, the Pareto fronts for the best optimization runs
for both NSGA-II and NSGA-II/CAO are shown in Fig. 2.
Table III shows the best solutions obtained out of ten runs by
both NSGA-II and NSGA-II/CAO. The results also indicate
that NSGA-II/CAO yields a solution with better fuel cost than
NSGA-IIL.

VI. PERFORMANCE METRICS

The major difficulty of multiobjective optimization assess-
ment is that the output of the optimization process is not
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Fig. 4. Comparison of Pareto-optimal fronts, Case 2

a single solution but a set of solutions representing an ap-
proximation of the Pareto front [14]. To evaluate the perfor-
mances of different multiobjective metaheuristics, one needs
to compare sets of solutions forming the non-dominated sets.
The stochastic nature of evolutionary algorithms also makes it
necessary to perform several runs to assess their performance.

Various metrics to assess the quality of the non-dominated
sets in terms of their convergence and diversity character-
istics have been suggested in the literature [15],[16],[17].
Convergence-based quality indicators include set coverage
(also called C-metric), error ratio and generational distance
metrics. Diversity indicators include metrics determining the
distance between outer non-dominated solutions (also called
the extent of Pareto front), spacing and entropy.

Table IV shows the comparison of results between NSGA-
IT and NSGA-II/CAO with respect to the set coverage metric.
It can be seen that in Case 1, an average of 66.1% of
non-dominated solutions returned by NSGA-II are covered
by those of NSGA-II/CAO while only 16.4% of NSGA-
II/CAO solutions are covered by NSGA-II solutions. From
these values, it can be seen that solutions obtained by NSGA-
II/CAO have better convergence properties.

Table V shows the comparison of results for the metric
determining the extent of Pareto fronts obtained by NSGA-II
and NSGA-II/CAO. In each of Case 1 and Case 2, NSGA-
II/CAO has a larger average value for this metric than NSGA-
II, although the standard deviation for the latter is lower.

Another metric which simultaneously compares non-
dominated solutions from different MOEA techniques was
proposed in [6]. This metric determines each technique’s con-
tribution of non-dominated solutions to a reference Pareto set
which is an elite set extracted from a combination of all non-
dominated solutions obtained by each MOEA technique over
all optimization runs. Figures 3 and 4 show the contributions of
both the NSGA-II and NSGA-II/CAO to the reference Pareto
set in each of Casel and Case 2.
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TABLE II
BEST SOLUTIONS OUT OF TEN RUNS FOR COST AND EMISSION OF NSGA-II AND NSGA-II/CAO, CASE 1

NSGA-II NSGA-II/CAO

Fuel Cost Emission Fuel Cost Emission

Pg, 0.0786 0.3988 0.1228 0.4123
Pg, 0.2885 0.4573 0.2837 0.4627
Pg, 0.5090 0.5330 0.5137 0.5182
Pg, 0.9654 0.3958 1.0152 0.3946
Pgy 0.6055 0.5492 0.5234 0.5598
Pgy 0.3870 0.5007 0.3753 0.5032
Cost  600.7422 636.7316 600.2056 641.4809
Emission 0.2204 0.1942 0.2217 0.1942

TABLE III

BEST SOLUTIONS OUT OF TEN RUNS FOR COST AND EMISSION OF NSGA-II AND NSGA-II/CAO, CASE 2

NSGA-II NSGA-II/CAO

Fuel Cost Emission Fuel Cost Emission

Pg, 0.0919 0.3958 0.1055 0.4117
Pg, 0.3229 0.4578 0.2931 0.4622
Pg, 0.6015 0.5641 0.5377 0.5624
Pg, 1.0081 0.4148 0.9940 0.4045
Pg, 0.5225 0.5540 0.5701 0.5510
Pg, 0.3466 0.5079 0.3931 0.5041
Cost  613.6759 648.7090 613.5488 650.7343
Emission 0.2223 0.1942 0.2205 0.1942

TABLE IV

RESULTS OF THE SET COVERAGE METRIC (A= NSGA-II/CAO, B= NSGA-II)

Set Coverage Case 1 Case 2

(%) C(AB) C(B,A) C(A,B) C(B,A)

Best 84 46 93 24

Worst 41 9 38 4

Average 66.1 16.4 71.8 11.8

Median 70 13 73.5 8.5

Std.Dev.  13.0337 10.9057 16.0125 7.3907

TABLE VI

NORMALIZED DISTANCE METRIC

Normalized Distance

Case 1 Case 2
NSGA-II 09112 0.9817
NSGA-II/CAO  0.9870 0.9873

The results indicate that NSGA-II/CAO was able to find
more solutions that are members of the reference Pareto set
than NSGA-II. This is in agreement with results for the set
coverage metric. The inclusion of the CAO thus definitely
improves the convergence of obtained solutions towards the
true Pareto front.

The normalized distance between the outer non-dominated
solutions contributed by each technique to the reference Pareto
set is shown in Table VI. This measure gave relatively larger
values for NSGA-II/CAO. It can be concluded that inclusion
of the CAO in the algorithm does not cause a deterioration of
the diversity of the non-dominated solutions.

VII. CONCLUSION

In this study, an evolutionary algorithm, the NSGA-II and
a hybrid evolutionary algorithm, the NSGA-II/CAO have
been successfully applied to solve the environmental/economic
power dispatch problem and a comparison made between
them. The techniques have been compared with each other on
the basis of their convergence to the Pareto-optimal front and
the diversity of the solutions. The results indicate that NSGA-
II/CAO possesses better convergence properties than NSGA-II.
Moreover, hybridization with the CAO preserves the diversity
of solutions in the non-dominated set.
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