
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3777

Abstract—A prototype for audio and video capture and

compression in real time on a Linux platform has been developed. It
is able to visualize both the captured and the compressed video at the
same time, as well as the captured and compressed audio with the
goal of comparing their quality. As it is based on free code, the final
goal is to run it in an embedded system running Linux. Therefore, we
would implement a node to capture and compress such multimedia
information. Thus, it would be possible to consider the project within
a larger one aimed at live broadcast of audio and video using a
streaming server which would communicate with our node. Then, we
would have a very powerful and flexible system with several
practical applications.

Keywords—Audio and video compression, Linux platform, live
streaming, real time, visualization of captured and compressed video.

I. INTRODUCTION
HE growing processing capacity of modern computers
enables a common PC to do tasks that only big

mainframes could handle a few years ago. Modern personal
computers are multimedia centers which can play a music CD
and even view live broadcast video from Internet. This task,
the broadcasting of multimedia contents through the Internet,
has undergone a great impulse in the last years. Nowadays, we
can find several tools for streaming audio and video [1]–[4].

Streaming [5] is divided into two categories depending on
the origin of the data to be broadcast: the broadcast of
previously processed multimedia data, which is often
transmitted on demand, and the live broadcast of audio and /
or video. In the first case, multimedia data stored in a server is
broadcast through the Internet, i.e. broadcast of films on
demand (Pay per View). The latter, live streaming consists of
broadcasting data as it is received, normally from an external
source. Live broadcast of a music concert through the Internet
is a clear example of this technique.

Multimedia data must be compressed in order to broadcast
it on demand or live through the Internet. Otherwise, the size
of the broadband required would be prohibitive.

In live streaming, the processing capacity necessary to
capture and compress audio and video in real time is very

Manuscript received July 14, 2005. This work was supported in part by a
Research Program of Spanish Government under Project TIC2001-3595.

Authors are with the Computer Engineering Group, Computer Science
Department, University of Oviedo, 33204 Gijón, Spain (phone: +34
985182223; fax: +34 985181986; e-mail: fjsuarez@uniovi.es).

high. Moreover, the bandwidth required for transmitting even
compressed multimedia data is very significant. The level of
compression applied to the information should be high enough
to reduce this requirement. As a result, the loss of quality of
the final information, as compared to the source, will be high
too. Thus, we must apply efficient compression of the
multimedia data in two terms: it shall have low broadband
requirements and its quality must be acceptable.

Our final goal is to send multimedia data from a capturing
and compressing node running Linux to a live streaming
server.

In this paper we focus on the development of an application
prototype which will allow us to capture and compress audio
and video in real time based on open code to run in an
embedded system. Also, it shall allow us to play the captured
video and compress it in real time to view it at the same time
as the original. This will show the differences between the two
videos and the quality loss introduced by the compressing
process. The audio can be compared in the same way as the
video, although two audio sequences cannot be played at the
same time. In addition it will give us some information as to
how suitable the compression process is to real time. In Fig. 1
we can see the elements forming a video broadcasting system.

There are few tools on the market providing similar
functionality. In the Linux architecture we can find
MEnconder [20], which allows us to capture and compress
audio and video but always from a command line, so we
cannot see the final result until the compression or capturing
process is finished.

Fig. 1 Live streaming system

In Windows architectures there are a huge number of tools

for this kind of purposes. The most representative tool (only
open source) is VirtualDub [21]. This tool presents two
windows in which we can see both the captured and the

Linux based Embedded Node for Capturing,
Compression and Streaming of Digital Audio

and Video
F.J. Suárez, J.C. Granda, J. Molleda, and D.F. García

T

NETWORK

NODE

SERVER CLIENT

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3778

compressed video, but at a slower frame rate than the original,
which makes it more difficult to compare the two videos.

The organization of the rest of the paper is detailed below.
Section II shows the specifications the prototype must follow.
In section III we take into account the multithread architecture
of the prototype which is obtained from the specifications it
must fulfil. In section IV the multiple technological
possibilities to capture audio are considered. Section V
describes different options to capture video. In section VI a
solution for compressing the captured audio and video is
presented. In section VII we analyze the problems introduced
by the synchronization of two captured data streams. Section
VIII approaches the necessary synchronization for the
visualization of two videos at the same time: the original
captured video and the compressed one. Finally, in section IX
we will extract conclusions from the development of the
prototype and its operation. In addition, we will suggest
possible future works to build a complete system of streaming
of audio and video through the Internet.

II. SYSTEM SPECIFICATIONS
The prototype tool under development must fulfil a series

of requirements:
1) Capture of video: It is able to capture video in real time

with different standard formats and with different frame
rates.

2) Capture of audio: It is possible to capture audio with
various numbers of channels (mono, stereo), numbers of
samples per second, etc.

3) Compression of video: It is able to compress the video
signal using different codecs, especially those following
the MPEG-4 standard [7], e.g. [8] and [9], in order to
save the data to disk in Audio Video Interleave (avi)
format [10]. In the future, it will be possible to broadcast
the data to a streaming server instead of saving it to disk.

4) Compression of audio: It is able to compress the captured
audio using different audio codecs. We are mainly
interested in the use of MPEG-1 Layer 3 codecs [19], e.g.
[11].

5) Viewing of video: It views both the original captured
video and that resulting from the compression process at
the same time, in order to compare quality.

6) The source code of every module used for developing the
prototype must be open source. It is possible to optimize
it, removing non-essential parts, to make it run in an
embedded system.

Due to the real time characteristics desired in the
implementation of the prototype, several considerations must
be taken into account, i.e. data compression time and its
saving-to-disk time, in order to meet goals of functionality and
throughput, a multithread prototype has been developed. The
essential necessity of task parallelization: the synchronization
of different threads and processes, will make the final
implementation more difficult.

In Fig. 2 we can see the different computational elements

which make up the system. Below, we will see how these
elements will become threads in the final prototype.

Fig. 2 Computacional elements of the prototype

III. MULTITHREAD ARCHITECTURE
Most of the tasks the prototype will carry out need a great

many resources, sometimes even exclusive attention from the
process. Thus, functionality must be broken down into small
tasks. These tasks will be implemented as threads, so we will
have an efficient modular design, whether or not it runs in a
multiprocessor.

A server-client relation will be held between different
threads. The client is blocked, waiting for any data the server
sends through a fifo queue.

The functions of each thread of the prototype are described
below:

A. Video Capture Thread
One thread must be dedicated to capturing video. The

thread is blocked until a new video frame is ready. Once the
frame is received, it is inserted in a fifo queue as long as the
compression thread is running to compress it (which may not
be necessary depending on the configuration options of the
prototype). If a video is not being saved to disk nor a
compressed video being viewed, then it is not necessary for
the frame to be processed or inserted in the queue.

B. Audio Capture Thread
The mission of the capture thread is the same as the

previous thread mission. It must be blocked in a similar way
as the video thread, waiting for audio samples in constant time
periods. Next, it inserts them in a fifo queue to compress them
later. This thread must play the captured or the compressed
audio, depending on which audio sequence the user wants to
play.

C. Video Compression Thread
This thread compresses video data using a codec selected

V
ID

E
O

A
U

D
IO

Captured Frames

...

CAPTURE COMPRESSION

...
Compressed Frames

...

Decompressed Frame

DECOMPRESSION

SAVING

CAPTURE
Captured Samples

...

COMPRESSION

...
Compressed Samples

...

DECOMPRESSION ...
Decompressed Samples

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3779

by the user. It is blocked in a semaphore until the video
capture thread inserts a frame in the queue and sends a signal
to the semaphore. Once the thread is unblocked and extracts a
video frame from the queue, it compresses the frame using the
aforementioned codec and acts as a compressed frame server
to the decompression and saving threads.

There must always be tow queues, one for each thread, as
both of them need to process all frames. With only one queue,
if one thread extracts a frame from the queue, that frame
would not be available for the other thread. However, the two
queues must be implemented without duplicating memory.

D. Video Decompression Thread
This thread waits for the video compression thread to

deliver compressed video frames. Once the compressed video
frame is received, this thread decompresses it. Where possible,
the same codec used for compression is used for
decompression. Otherwise, an alternative one is used.

After the video frame is decompressed, it is passed to the
video capture thread for viewing.

E. Saving to Disk Thread
This thread receives compressed video frames and audio

data and saves them together at the same time in an avi or wav
file, depending on the presence of audio data. It is important
to maintain synchronism between audio and video.

The saving thread is a client of the video compression and
the audio capture threads. We cannot use the communication
method used above to transfer data from two server threads to
a client. The thread may be blocked waiting for data in a
queue while it is receiving data from the other queue. Thus, a
non-blocking method must be used.

This problem can be solved by introducing the concept of
audio or video guided capture. This consists of identifying
which data stream is used to determine the point of
synchronization. This will be discussed in the following
sections.

IV. AUDIO CAPTURE
The audio capture mechanism must be flexible enough to

capture audio from different sources with several qualities.
On the Linux platform we can find two standards providing

audio support to the operating system: Open Sound System
(O.S.S.) [12] and Advanced Linux Sound Architecture
(A.L.S.A.) [13]. A.L.S.A. is designed to replace the older
Standard, O.S.S., offering backwards compatibility and
adding new functionality. Thus, the audio capture process is
implemented using ALSA-lib [14], which is a library
providing A.L.S.A. native support to user applications.

Another advantage of using A.L.S.A., essential in our case,
is that its code is open source, whereas O.S.S. is a commercial
implementation. On the other hand, A.L.S.A. is only available
on Linux platforms, so the portability of the applications
following this standard will be reduced. However, this is not
important because we are sure about the platform on which
our prototype will be run.

The audio capture and playback process consists of
defining a capture or playback buffer whose temporal size can
be set by the application. Audio captured or outgoing samples
will be stored in this buffer until the application receives them
or the audio hardware reads them. Audio is captured in
constant time periods.

V. VIDEO CAPTURE
The architecture offers the applications various possibilities

for capturing video. Most of drivers used in video capture on
Linux platforms follow any of the Video for Linux standard
(V4L) versions [17]. Currently, there are two incompatible
versions, V4L and V4L2, so we must either provide support
for both versions, or decide which one we follow. In this case,
we have decided to use V4L2 because all modern Linux
systems implement V4L2, since the introduction of kernel
2.6.x. Moreover, V4L2 is designed to replace V4L.

Having established the version of Video for Linux, we must
choose a video capture driver to follow it, capable of
communicating with the capture card. We use a card with a
Brooktree [16] chip which is very popular and widely used in
many televisions tuner cards.

The driver chosen is the popular Bttv [17], well known in
the Linux World, providing support to any of the cards based
on the Brooktree chip.

VI. AUDIO AND VIDEO COMPRESSION
In order to compress captured audio and video we must

communicate with codecs. The problem is that there is no
standardized Application Program Interface (API) to access
codecs on Linux platforms. Every codec defines its own API,
so the use of several codecs with different APIs increases the
difficulty of the final implementation.

Another problem with codecs is that there are few codecs
with a Linux version; instead they are usually developed for
other platform. Ideally, we could use this kind of codecs, e.g.
codecs for Windows platforms.

To solve these two problems we decided to use the
AVIFILE [18] library, which allows access to different
codecs. AVIFILE is an open source multiplatform library
which provides a work frame to manipulate multimedia data
using avi files. It can access codecs using plug-ins
implementing a common API for any codec. Furthermore, it is
possible to set up most of the parameters of these codecs.
Another interesting characteristic of AVIFILE is that it allows
us to access to Windows codecs distributed in Dynamic Link
Library (dll) files.

On the other hand, it is a little documented library so the
user must invest time in learning its management. Moreover,
some of the plug-ins that comes with it presents
undocumented faults which decrease the power of the codecs.

AVIFILE was released in 2000 and nowadays is most
commonly used for playing films compressed with DivX in an
acceptable way on a Linux platform. The library has been
greatly developed and now supports a great number of audio

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3780

codecs, as well as video codecs.
It is easy to add new codecs to the library. A version of the

codec for the Windows platform in a dll file can be put in a
specific directory. On the other hand, if the codec is Linux
native, we must develop a plug-in for the library in order to
use it.

VII. SYNCHRONIZATION
In order to obtain satisfactory results using two different

continuous data streams, they must be synchronized. For
example, an undesired effect in audio and video broadcasting
occurs when the streams are not synchronized and the audio
does not match the facial movements of the speaker.

In our prototype application we can find two different types
of synchronization. The first involves saving to disk or
broadcasting using streaming of compressed audio and video.
The second involves viewing the captured and compressed
video frames simultaneously in order to verify the quality
decreased through the compression process. The latter will be
discussed in following sections.

The first type of synchronization, involving two
compressed streams for streaming, can be split into two: the
stream level synchronization and the intra-stream
synchronization. In the first, all the streams to be broadcast
must begin and end at the same time instants. That is, they
must begin at the same time and have the same duration. The
mechanism of synchronization can be seen in Fig. 3

Fig. 3 Two streams synchronization

The synchronization of audio and video captured data in

order to save them to disk is carried out by the saving to disk
thread. It takes audio and video data from the two queues and
it saves them in an interlaced way using timestamps.

In Fig. 3, the video stream can be seen as a discontinuous
segment of data whereas the audio stream is continuous. The
synchronization process is guided by the video stream as it
determines when the capture process starts and finishes. In
other words, the audio thread will start before the video and
will finish later.

As both of the streams start at different time instants, it is
necessary to truncate that which begins first: in our case, the
audio stream. This is called the initial synchronization.

In the same way, the final time moment of the streams does
not match, so that which ends later must be truncated. This
process is called the final synchronization.

The steps necessary for these synchronizations are
discussed below.

A. Initial Synchronization
The streams should begin at the same time. We use the

video stream to determine when the capture process must
start, that is, we take the first video frame out the queue and,
depending on its timestamp, we reject all audio data captured
before this time. If no audio data is available in the queue, we
reject the video frame and we restart this process. Once we
find the audio period corresponding to the video frame
timestamp, we reject all the samples within the period before
the timestamp, so only those captured later are accepted.

B. Final Synchronization
As in initial synchronization, one stream must be truncated,

in this case at the end. We save all captured audio periods
before the last video frame. The last period must be truncated
in order to remove those audio samples later than the time
determined by the video frame timestamp.

One might think that it would be better to truncate the video
stream instead of the audio stream. However, if we decide to
make an audio stream guided capture of a video in which one
frame per second were being captured, we might miss the first
frame of the video sequence. As a result, we may not capture
what the user wanted.

Once the beginning and the end of the streams are
determined, it is necessary to interlace data into an avi file, for
playback. This kind of synchronization it is called intra-
stream.

VIII. SIMULTANEOUS VIEW
Another kind of synchronization in our prototype involves

simultaneous viewing of the captured and the compressed
video. Of course, playing the captured and the compressed
audio could be considered a new kind of synchronization, but
in fact it is not because we can only play one audio sequence
at the same time, discarding the audio samples of the audio
sequence not being played.

In order to view the compressed video, we need to
compress the captured video and then decompress it to
compare it with the original one. This implies an extra
overhead in the system which may not be admissible in certain
situations, depending on the characteristic of the video
(frames per second, size, image movements, compression
level, etc.).

Therefore, it is necessary to evaluate the computational time
required for the compression and the decompression of the
different video frames. The sum of these two times must be
less than the exposure time of each video frame, making the
processor utilization factor less than 1. In this case, the
viewing of the compressed video can take place in real time.

A. Captured Video Viewing
A video sequence is a collection of video frames. The

period of time between consecutive video frames is constant
and it is the inverse of the frame rate. This is very important
when viewing video in a computer: we must keep the original
timing between two consecutive video frames.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3781

The multithread architecture of the prototype is
fundamental. There is one thread capturing video, another for
capturing audio, and a third one for saving data to disk. The
video capture thread receives the images which compose the
video sequence periodically. This period time might not
always be the same, as it may be affected by an error due to
the stochastic of the computing systems. Considering this
error as negligible (but inevitable), the same thread used for
video capturing can also be used for rendering images on the
screen. As soon as a new video frame arrives and is added to
the fifo queue, it is rendered. So the video is rendered on
screen at its nominal frame rate, but with a small error
corresponding to the computational time necessary to add the
video frame to the queue and render it. However, this time is
still negligible.

B. Compressed Video Viewing
In the case of viewing the compressed video, another

method is needed. The original captured video frame must be
compressed before decompressing it to render it on the screen.
The delay introduced by this extra computation may derive in
synchronism loss.

Depending on the time necessary to compress and
decompress each video frame, two cases can be detailed:
1) The sum of the computation times of the compression and

the decompression of the video frame is greater than the
exposure time of the video frame. In this case, it is not
possible to view the compressed video in real time, as the
time necessary to process a frame is greater than the
exposure time. The utilization factor of the processor
would be greater or equal to 1 so the original frame rate
could not be kept.

2) The computation time necessary to compress and
decompress the video frame is less than the exposure time
of the frame. In this case, the viewing of the compressed
video can be carried out in real time. While one video
frame is being rendered, another can be processed for
rendering.

Hereafter, only the second condition will be accepted.
Otherwise, the compressed video cannot be viewed in real
time. If this condition were not met, the computer on which
the prototype is being run must be upgraded to reach
compatible computational capacity.

The times needed to compress and decompress a video
frame, are not always constant, but may vary greatly from one
frame to another. For example, the compression time of a

Key-Frame (the whole image instead of differences between
successive frames or movement vectors) needs a much higher
compression time than that needed to compress other kinds of
frames. Moreover, the time may change depending on the type
of the video to be compressed, e.g. frame rate, size, etc.

C. Delay of the Video Stream and Simultaneous Viewing
As we saw in previous sections, delay in viewing the

captured video in contrast to the original one is negligible as it
is not detectable by the user.

On the other hand, the delay produced viewing the
compressed video in contrast to the captured one is
significant, so we must approach to the problem of the
synchronization of the two videos in two different ways:
1) The delay produced between one and the other is

considered negligible and we do not need a higher level
of synchronism.

2) The delay is considered to be significant and real
synchronization is needed between the two video
sequences.

In our case the second supposition is true. One solution is to
introduce an extra delay in both videos in contrast to the
original one. This is like calculating the lowest common
multiple of the delays present in the captured and the
compressed videos. This can be done by viewing the previous
video frame at the moment that the next frame is being
captured. Then, we insert enough time to allow the previous
frame to be compressed and decompressed (supposing that the
time to carry out these two operations is less than the exposure
time).

Therefore, it is necessary to have a buffer to store the
previous video frame and view it only when the next is
captured. Thus, the fact of capturing a video frame is useful to
synchronize the two video sequences. As a result, the video
capture thread has to play back both the captured and
compressed video sequences while it is capturing the different
video frames. In Fig. 4 the most important windows of the
prototype can be seen while comparing both the captured and
the compressed video streams.

The compressed audio can be played at the same time as the
compressed video. The multithread structured designed for the
playback of video must be duplicated, so the audio must be
decompressed in order to play it. A new thread would be
necessary to decompress the audio and feed the audio
hardware with audio samples.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3782

Fig. 4 The most important windows in the prototype

IX. CONCLUSIONS
We have developed a prototype application which is

designed to implement a node for capturing and compressing
audio and video in real time on a Linux platform. This node
will communicate with a streaming server in order to provide
a live broadcasting service. Moreover, we have developed
extra functionality to view the captured and the compressed
videos simultaneously in order to we can compare the
qualities of both videos.

Several tests have been done, mainly using two video
codecs, DivX and XviD, with positive results. The
compression and the decompression in real time can take
place with a moderate level of occupancy of the processor.

The weak point of the prototype is that it can only
manipulate old fashioned codecs (circa 2002-03 versions),
because of the long delays between new releases of the
AVIFILE library.

Future work may include the possibility of communicating
with a streaming server to implement a live broadcasting
video server. Moreover, a mechanism to objectively evaluate
the quality of the compressed video could be added, e.g. Peak
Signal to Noise Radio (PNSR) [6] which measures the power
of the resulting signal.

REFERENCES
[1] Quicktime Streaming Server [Online]. Available:

http://www.apple.com/quicktime/products/qtss/
[2] Darwin Streaming Server [Online]. Available:

http://developer.apple.com/darwin/projects/streaming/
[3] Icecast Streaming Media Server [Online]. Available:

http://www.icecast.org/

[4] Fluid Streaming Server [Online]. Available: http://fluid.sourceforge.net/
[5] D. Wu, Y. T. Hou, W. Zhu, Y. Zhang and J. M. Peha. “Streaming video

over the Internet: Approaches and directions”. IEEE Transactions on
Circuits and Systems for Video Technology, vol. 11, no 3, pp. 1-19,
March 2001. Available:
http://ieeexplore.ieee.org/iel5/76/19666/00911156.pdf

[6] MEncoder. MPlayer [Online]. Available:
http://www.mplayerhq.hu/homepage/index.html

[7] VirtualDub [Online]. Available: http://www.virtualdub.org/
[8] Overview of the MPEG-4 Standard [Online]. Available:

http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
[9] XviD codec [Online]. Available: http://www.xvid.org/
[10] Divx [Online]. Available: http://www.divx.com/
[11] AVI File Format Specification [Online]. Available:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directshow/htm/avifileformat.asp

[12] MPEG-1 Standard [Online]. Available:
http://www.chiariglione.org/mpeg/standards/mpeg-1/mpeg-1.htm

[13] L.A.M.E. mp3 encoder [Online]. Available: http://lame.sourceforge.net/
[14] Open Sound System [Online]. Available:

http://www.opensound.com/linux.html
[15] Advanced Linux Sound Architecture [Online]. Available:

http://www.alsa-project.org/
[16] ALSA-lib [Online]. Available:

http://www.alsa-project.org/alsa-doc/alsa-lib/
[17] Video for Linux [Online]. Available: http://linux.bytesex.org/v4l2/
[18] Conexant Systems [Online]. Available: http://www.conexant.com/
[19] Bttv driver [Online]. Available: http://linux.bytesex.org/v4l2/bttv.html
[20] Linux AVI file Library [Online]. Available:

http://avifile.sourceforge.net/
[21] Peter M. Kuhn and et al. “Complexity and PSNR-comparison of several

fast motion estimation algorithms for MPEG-4”. Technical University of
Munich, 1998.

