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Abstract—In this paper we discuss the effect of unbounded 

particle interaction operator on particle growth and we study how this 

can address the choice of appropriate time steps of the numerical 

simulation. We provide also rigorous mathematical proofs showing 

that large particles become dominating with increasing time while 

small particles contribute negligibly. Second, we discuss the 

efficiency of the algorithm by performing numerical simulations tests 

and by comparing the simulated solutions with some known analytic 

solutions to the Smoluchowski equation.  

 

Keywords—Stochastic processes; Coagulation of particles; 

Numerical scheme. 

 

I. INTRODUCTION 

HE coagulation of particles is observed in various areas 

ranging from the formation of stars and planets in 

astrophysics to the behaviour of fuel mixtures in engines. In 

1916, M.V. Smoluchowski [1] has proposed an infinite system 

of differential equations which models the dynamic of such 

phenomena and describes the evolution of a large number of 

particles that can coagulate to form clusters which in turn can 

coalesce in order to form bigger clusters.  

In the simplest situation, the space homogeneous discrete 

Smoluchowski equation reads, for i=1,2,3,…and t >0: 
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Where, ),( tic is the concentration of particles of size i at time 

t. In fact, this system describes a nonlinear evolution equation 

of infinite dimension, where the initial conditions 1))0(( ≥iic  

satisfy the equation 1)0(
1

=∑
≥i

ic . The rate of merging of 

particles of size i with those of size j at time t is given by the 

coagulation kernel K(i,j) that is naturally supposed to be  

Nonnegative ( 0),( >jiK ) and symmetric ( ),(),( ijKjiK = ).  

Equation (1) has a transport differential operator on the left 

hand side and a local quadratic particle interaction operator on 

the right hand side. The first term on the right hand side shows 

that the concentration of particles of size i increases as  

a result of coagulation of particles of sizes (i-j) and j. This is 

the gain term. The coefficient ½ is due to the fact that K is 

symmetric. The second term corresponds to the depletion of 

particles of size i after coalescence with other particles. It 
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represents the loss term. The main numerical tools for solving 

such equations are Monte Carlo simulations.  

Several stochastic algorithms have been proposed [2,4,5] to 

solve the Smoluchowski system. In particular, H. Babovsky 

has proposed in [2] a computational method based on a 

modified Monte Carlo simulation in which the simulated 

particles represent masses rather than physical particles. We 

have studied in a previous paper [3], the mathematical 

convergence of this important numerical algorithm  

The objective of the present paper is twofold: First, we 

extend our study in [3] to analyze the effect of unbounded 

particle interaction operator on particle growth and how this 

can address the choice of appropriate time steps of the 

numerical simulation. In several important applications, 

particle masses are monotonously increasing with time, and 

then the operator ),( jiK
∗

is in fact unbounded and the system 

of differential equations (1) will contain components related to 

large particle sizes (i.e., “stiff” components [6]). This implies 

that there is no possible time step t∆  for which the loss term 

is bounded and at the same time we can no longer guarantee 

the positivity of the kernel. We provide rigorous mathematical 

proofs showing that large particles become dominating with 

increasing time while small particles contribute negligibly. 

Second, we validate the efficiency of the algorithm by 

performing numerical simulations tests and by comparing the 

simulated solutions with some known analytic solutions to the 

Smoluchowski equation.  

          

II.   THE BABOVSKY’S ALGORITHM 

We start by some basic notations and concepts. If N0 is the 

initial total number of particles, then at time t, ),(0 ticN

represents the total number of particles of size i and 

∑
≥1

0 ),(
i

ticN  is the total number of particles. The quantity 

),( tiic  represents the fraction at time t of the whole mass 

produced by the particles of mass i. The whole mass is  

∑=
≥1

),()(
i

tiictm . 

Multiplying equation (1) by i and summing over all ,1≥i it 

can be shown that the whole mass is conserved, i.e.,                                                

                 ,0),(
1

=∑
≥i

tiic
dt

d                                (2) 

provided that the relevant summations converge and can be 

interchanged, which is valid as long as 

.),(),(),(
1,

∞<∑
≥ji

tjcticjiK  

Bilal Barakeh 

Analytical and Numerical Approaches in 

Coagulation of Particles 

T



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:11, 2011

1669

 

 

Since particles may stick together, the total number of 

particles is a decreasing quantity and this may display a poor 

statistics for the simulation. Therefore, to avoid this deficiency 

it’s important to approximate the following mass density 

function  

          ),(),( tiictig = .                             (3) 

 

If we write )(~ tg i
instead of g(i,t), then equation (1) becomes 
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with              
j

jiK
jiK

),(
),( =∗ . 

Without loss of generality, we assume that at time t=0 

                                          .1 
1

,0∑
≥

=
i

ig                                  (5) 

So, the conservation of mass leads to      

                                        ∑ =
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i
i tg                                  (6)                                          

We start with an initial N-tuple:  
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The entry )(

,0

N

iz  represents a particle of mass 1/N  with ‘label’ i 

and such that 
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where the symbol # represents the cardinality of the set.   
If we assume the monodisperse initial condition                            

                        0)0(~)0(~  ,1)0(~ 321 ==== LLggg              (8) 

we can set 
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Also, we choose a time step t∆ such that      

                                1),( <∆ ∗

∈
jiKSupt

INi,j

                              (10) 

This means that the time step has to be permanently reduced 

while particles progress in the domain of increasing mass.  

For ,INn∈  we set tntn ∆= . At t=tn, we consider a point set 
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For ,∗∈INi  we define the following independent equally 

distributed random numbers   
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Notice that 
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Applying the Euler time discretization for )(~ ni tg will lead to 
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Using now the fact that ∑ =
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1)(~

j
nj tg , we conclude that 

)(~ 1+ni tg   is defined by     
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   Then the Babovsky’s scheme proposed in [2] can now be 

described as follows: 

 

• For ,1 Ni ≤≤ choose at time t = 0,  

....}3,2,1{)0()( ∈N
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• For ,1 N≤≤ l  the transition from )()( nz N

l
to  

        )1(
)( +nz

N

l
is given by  the following random game: 

 

1. For i=1,…,N choose equidistributed random numbers 

{ }NN
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2. Choose a time step t∆ such that:  
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III. GROWTH OF PARTICLE SIZE 

The convergence of the numerical scheme has been 

concluded for the case where the operator ),( jiK
∗

is 

nonnegative and bounded, and so according to (17), we should 

have },...1{, Nm ∈∀ l .1),( <mzzp
l

 But in several 

important applications, particle masses are monotonously 

increasing with time, and then the operator ),( jiK
∗

is in fact 

unbounded and the system of differential equations (4) will 

contain components related to large particle sizes (i.e., “stiff” 

components [10]). This implies that there is no possible time 

step t∆  for which the loss term ∑
∞

=

∗

1

)(~)(~),(
j

ji
tgtgjiK  is less 

than )(~. tg iκ  with ,1|| <κ and at the same time we can no 

longer guarantee the positivity of the kernel. In this section, 

we provide rigorous mathematical proofs showing that large 

particles become dominating with increasing time while small 

particles contribute negligibly. In this respect,  Babovsky 
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suggested in [2] a modification of the scheme by choosing a 

limit value NL and allowing the particles whose mass has 

crossed this level from below to contribute to the clusters by 

merging only with other small particles. This modification 

leads to the calculation of subsolutions with fixed lower 

bounds for the time step, and the solution of the original 

problem is obtained when NL approaches infinity.  

 

Lemma 3. Suppose that the coagulation kernel is positive [i.e.,

]0),( >jiK  and assume that there exists a positive solution 

of the equation (1) on an interval [0,t0] such that all the 

applications  
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all ],0] 0tt ∈  the support of c(t) defined by 

}0),(:{: ))(supp( * ≠∈= ticINitc is unbounded [i.e.,

ntnic ∀>   0),( 0
]. 
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Integrating (19) between 0 to t, we obtain               
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The relation (20) shows that ),( tic is the sum of two positive 

terms from which we can deduce that 
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By induction, we conclude that                               
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Lemma 4. Let )(~ tg i
be a solution of (4) such that 
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Proof. By summing equation (4) from i=1 to J, we have 
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Now letting h=i-j, one can notice that      
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 Let’s define the set 
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Using now the fact that 
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For t > 0, the function Jγ (t) satisfies the following differential 

inequality  
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By Gronwell’s Lemma [10,11], one can find an upper limit for 

the function Jγ (t) as follows. Let u(t) be the solution of the 

corresponding Cauchy problem, that is, 
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This is a nonlinear differential equation with an initial 

condition. The change of variable 
1−= uϑ will reduce it to 

the linear equation 
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The solution of (31) is 
tKAet
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1)(ϑ , where A is a 

constant. Applying now the initial condition, we get       
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Then, from (32) we deduce that the upper solution u(t) is                         
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Therefore,  
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which ends the proof of Lemma 4.  

IV. NUMERICAL SIMULATIONS 

In this section, we aim to numerically validate the 

convergence of the algorithm described above. It is well 

known that for three particular kernels K(i,j) and in the case of 

the monodisperse initial configuration, i.e. 

             

      1)0,1( =c and 0)0,(  ,1 =>∀ ici ,                    (35) 

explicit solutions of Smoluchowski’s coagulation equation are 

available [12]. Here we consider the unbounded linear kernel 

K(i,j)=i+j, we compute the simulated solutions and compare 

them to their corresponding exact solutions. 

A. Approximation of the moments 

According to our notations, if ),( tic is the solution of 

equation (1) at time t, the moment of order k of ),( tic is  
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In particular, the moment of order zero is 
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and )(00 tmN  is the total number of clusters at time t. At time 

tn, )(0 ntm is approximated, according to (13) and (15), by 
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B. Numerical results 

The numerical algorithm derived in section 2 is readily 

transformed into a computer program. The computations are 

performed using “Mathematica” but our computer program 

can be easily implemented with other calculators. We consider 

N particles, a time interval [0,tf ], and P time steps where P = 

1/ ∆t and 0 < ∆t < tf.. The quantity EN,P=m0(t)- m0 (tn) 

represents the error between the exact and the approximated 

solutions for N particles and P time steps. 

For the kernel K(i,j)= i +j, the exact solution of (1) is 
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e
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Then,  
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and the exact solution is  

.)(0
t
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Since the linear kernel is not bounded, it’s important to 

determine an appropriate time step ∆t before running the 
numerical simulation. Next we choose a time step small 

enough so that time discretization error is negligible relative to 

the Monte Carlo error. Figs 1 (a), 2 (a) and 3 (a) (in  the left) 

represent the exact and the computed solutions for N=1000, 

10000 and 100000 with P=400and tf =2.5. In the right, Figs. 1 

(b), 2  (b) and 3  (b) represent the corresponding errors.  
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Fig.1 (a) Computed & Exact 

solutions: N=1000, P=400 tf=2.5. 

 

 
    Fig. 2 (a) Computed & Exact 

     solutions: N=10000, P=400 tf=2.5. 

 

 
Fig.3 (a) Computed & Exact 

solutions: N=100000, P=400, tf=2.5. 

 

 

 

 

C. Comments on the Results 

The analysis of the results shows a good agreement between 

numerical and exact values for the kernel used in this test. The 

scheme provides tangible results even for modest particle 

numbers like 1000 particles or even less. This confirms the 

efficiency of the scheme. However, the scheme is affected 

with fluctuations which are hard to be controlled 

quantitatively. The main source of errors in the computations 

for a system consisting of mass-one particles only comes from 

the use of repeated random selections. A forthcoming paper 

will present numerical simulations that measure the 

fluctuations which are inherent to the scheme. Despite the 

flexibility of the scheme, It’s important to notice that in some 

cases the scheme can be quite slow, because its convergence 

rate is only O(1/N
1/2
). An approach based on the use of quasi-

random numbers can accelerate the convergence and achieve 

better convergence in certain cases [9], but we lose the 

randomness in the selection of the particles. 
 

 

 

 

 

 

 

 
Fig.1 (b) The error EN,P . 

 

 

 
    Fig. 2 (b) The error EN,P 

 

 

 
Fig.3 (b) The error EN,P 

 

 

 

V.  CONCLUSION 

In this paper a procedure for solving Smoluchowski’s 

coagulation equation is analyzed. The important case of 

unbounded interaction operator has been considered and we 

presented some insights on the mathematical proofs showing 

that large particles become dominating with increasing time 

while small particles contribute negligibly. Numerical 

simulations have also been performed and they show good 

agreement with analytic solutions of the Smoluchowsi 

equation. Also convergence of the simulation as the number of 

particles N increases has been verified. An important addition 

to this work is to investigate other stochastic schemes for the 

resolution of the Smoluchowski’s system and to modify them 

in order to increase their numerical efficiency.   
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