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Abstract—In digital signal processing it is important to 

approximate multi-dimensional data by the method called rank 
reduction, in which we reduce the rank of multi-dimensional data from 
higher to lower.  For 2-dimennsional data, singular value 
decomposition (SVD) is one of the most known rank reduction 
techniques.  Additional, outer product expansion expanded from SVD 
was proposed and implemented for multi-dimensional data, which has 
been widely applied to image processing and pattern recognition.  
However, the multi-dimensional outer product expansion has behavior 
of great computation complex and has not orthogonally between the 
expansion terms.  Therefore we have proposed an alterative method, 
Third-order Orthogonal Tensor Product Expansion short for 3-OTPE.  
3-OTPE uses the power method instead of nonlinear optimization 
method for decreasing at computing time.  At the same time the group 
of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is 
also developed with SVD extensions for multi-dimensional data. 

3-OTPE and HOSVD are similarly on the rank reduction of 
multi-dimensional data.  Using these two methods we can obtain 
computation results respectively, some ones are the same while some 
ones are slight different.  In this paper, we compare 3-OTPE to 
HOSVD in accuracy of calculation and computing time of resolution, 
and clarify the difference between these two methods. 
 

Keywords—Singular value decomposition (SVD), higher-order 
SVD (HOSVD), higher-order tensor, outer product expansion, power 
method. 
 

I. INTRODUCTION 
HE rank reduction and approximation with low rank for 
given multi-dimensional data are important for digital 

signal processing computation.  For example, in the design of a 
multi-dimensional digital filter, the specification of 
multi-dimensional design is generally reduced to a set of 
1-dimensional (1-D) specification array.  Then the desired 
multi-dimensional filter can be obtained by combining the sets 
of 1-D digital filters [1], [2].  The outer product expansion was 
proposed to decompose for multi-dimensional data with 
product of vectors (1-D data) [3].  The method has behavior of 
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great computation complex, because which exploit the 
nonlinear optimization ordinary.  Therefore we proposed an 
alterative method which uses the power method instead of 
nonlinear optimization for decreasing computing time.  We 
also pointed out that outer product expansion has not 
orthogonally between the expansion term and showed 
definitions and calculation method of Third-order Orthogonal 
Tensor Product Expansion (3-OTPE)[4].  And we use the term 
Tensor Products Expansion (TPE) instead of outer product 
expansion in [3]. Additionally, we developed a calculation 
method of Third-order Nonnegative Tensor Product Expansion 
(3-NTPE) to design 3-D digital filter [5].  

The multi-dimensional data are necessary for applications 
such as pattern recognition, image processing, Web retrieval, 
and so on [6], [7], where the application with Higher-Order 
Singular Value Decomposition (HOSVD) proposed by group 
of B. D. Lathauwer [8], [9] become widely more and more.  
HOSVD is thought as an extension of singular value 
decomposition (SVD) [10] for multi-dimensional data.  The 
SVD is well known and widely used as decomposition method 
for matrices (2-D data) in the digital signal processing.  To 
calculate HOSVD of multi-dimensional data, the SVD method 
is employed many times.  The HOSVD can get the best 
approximation to a given tensor (multi-dimensional data) on 
specified dimension, and results the decomposed tensor with 
the product of vectors.  Therefore, the resulted vectors have 
orthogonally each other of expansion terms. 

3-TPE, 3-OTPE, and HOSVD are similarly on definitions, 
usages, and characters of resolution.  However, the numerical 
calculation method is different respectively.  In this paper, we 
compare 3-OTPE to HOSVD in accuracy of calculation and 
computing time of expansion, and clarify the difference 
between these two methods.  With our conclusion we can figure 
out the way to the improvement of both of 3-OTPE and 
HOSVD. 

We first treat 3rd-order tensor (3-D data) and describe the 
definition of decomposition method.  Next, we explain the 
expansion algorithm of 3-TPE and HOSVD, show the 
differences between the two methods, and finally analyze the 
properties both of them by some examples. 

 

II. THIRD-ORDER TENSOR PRODUCT EXPANSION 

A. Definition of Higher-Order Tensor 
In this paper, higher-order tensors are denoted by 

calligraphic letters such as A and B , and the ),,,( 21 Niii -th 
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elements of a nth-order tensor NIII ×××∈ 21RA  are denoted by 

niiia
21

 )1,,1( 11 Nn IiIi ≤≤≤≤ .  Figure 1 shows an image of 

a 3rd-order tensor. 

 
Fig. 1  Image of a 3rd-order tensor. 

 

B. Definition of Tensor Product Expansion 
By applying the tensor product expansion (TPE), a 

NML ××  3rd-order tensor A  can be decomposed as 

( )iii
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,21 rσσσ ≥≥≥  
where the expansion vectors iu , iv , and iw  correspond to the 
singular vectors of the SVD of a matrix, the expansion 
coefficients iσ  and the number of expansion terms r  
correspond to the singular values and the rank of a matrix 
similarly, and ⊗  denotes the outer product operation [3].  The 
expansion vectors are normalized as 
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where )( jiu , )( jiv , and )( jiw  show the j-th element of the 
vector iu , iv , and iw  respectively. 
 

C. Third-Order Tensor Product Expansion by the Power 
Method 

The algorithm for calculating the Third-order Tensor 
Product Expansion (3-TPE) by the power method is described 
as follows [4]. 
 
Step 1. Choose the initial vectors )( p

nu , )( p
nv , and )( p

nw  
arbitrarily, where these vectors must be normalized, and the 
subscript p and n are set to 0 and 1 respectively at the 
beginning of this repetitious procedure. 

 
Step 2. The residual 3rd-order tensor B  is obtained by 

subtracting sum of products of the expansion vectors iu , 

iv , and iw , which has been calculated by this time, from 
original tensor A  as follows 
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σAB                (3) 

Step 3. Calculate the ML × matrix F by multiplying B  by 
vector )( p

nw  as 

.)( p
nwF ⋅= B

 
                                   (4) 

The ),( ji -th element of the matrix F can be represented as 

)(),,(),( )( kkjiji p
n

k
wF ∑= B .            (5) 

Next, apply the power method to the matrix F as follows:  
., )1()1()()1( +++ == p
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n uFvFvu              (6) 
Likewise the NM ×  matrix G and the LN ×  matrix H are 
obtained by 
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where the obtained vectors )1( +p
nu , )1( +p

nv , and )1( +p
nw  must 

be normalized.
 Repeat Step 3 until the following conditions are satisfied 

for sufficiently small value ε  
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Step 4.  The nth expansion vectors )1( +p
nu , )1( +p

nv , and )1( +p
nw  

are obtained from Step 3.  Here, these vectors are renamed 
as nu , nv , and nw . 

The nth coefficient nσ  is obtained by performing an 
inner product operation as 

).( nnnn wvu ⊗⊗= Bσ        (10) 
 

Step 5.  After increasing n and set p to 0, repeat this procedure 
from Step 1. 

 

D. Third-Order Orthogonal Tensor Product Expansion  
Since the resultant expansion terms of TPE do not satisfy 

orthogonality, the Third-order Orthogonal Tensor Product 
Expansion (3-OTPE) is defined by 
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where ijkσ  are the expansion coefficients [4].  This expansion 
can be calculated by introducing the Gram-Schmidt 
orthogonalization process into the Step 3 of the algorithm 
described in Section C as follows 
 
Step 3.1. Along with the Gram-Schmidt process, calculate the 

vectors )1(' +p
nu , )1(' +p

nv , and )1(' +p
nw  by subtracting the 

previously obtained terms from vectors )1( +p
nu , )1( +p

nv , and 
)1( +p

nw  respectively as 
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Normalize the vectors in these equations to obtain 

)1( +p
nu , )1( +p

nv , and )1( +p
nw . 

 
Step 3.2. By performing the Step 3.1, vectors in the equation 

(16) are obtained in ascending order of magnitude, where 
m = min(L, M, N).  In case that L>m, the remaining 

)( mL −  vectors can be calculated by using Gram-Schmidt 
orthogonalization process as 
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where nu  are arbitrary chosen vectors initially and the 

vectors '
nu  are to renamed as nu  after they are 

normalized.  Likewise vectors Mm vv ,,1+  and 

Nm ww ,,1+  are calculated. 
 
Step 3.3. For every combination of p, q and r, calculate the 

expansion coefficients pqrσ  as 
)( rqppqr wvu ⊗⊗= Aσ ,              (17) 

( Lp ,2,1= , Mq ,2,1= , Nr ,2,1= ). 
 

To improve in calculation time of these steps, a part of the 
Step 3.1 is modified.  The modification is described below [5].  
After the calculation of the expansion vectors 121 ,,, −muuu , 
the vector mu  can be calculated by  

,)(

)()(

11

2211
'

−−−

−−=

mm
T
m

m
T

m
T

mm

uuu

uuuuuuuu
         (18) 

where mu  is set to arbitrary value initially.  The vector '
mu  is 

normalized immediately, then the vector renamed as mu .  This 
slight modification leads to an improvement in calculation 
time.  
 

III. HIGHER-ORDER SVD 

A. Unfolding Matrices of Nth-Order Tensor 
A higher-order tensor is represented by some matrices 

(2nd-order tensor), which are called unfolding matrices.  By 
using this representation, an nth-order tensor nx III ×××∈ 2R  A is 
unfolded n matrices )(

)(
12121 −++×∈ nNnnn IIIIIII

n RA .  Hence a 

3rd-order tensor 321 III ××∈ RA has 3 unfolding matrices 

)(
)1(

321 III ×∈ RA , )(
)2(

132 III ×∈ RA , and )(
)3(

213 III ×∈ RA  as 
illustrated in Fig. 2. 

Each unfolding matrix can be decomposed by SVD as 
follows 

Tnnn
n

)()()(
)( VΣUA ⋅⋅= ,           (19) 

where the vectors )(nU  and )(nV  are left and right singular 
vectors of matrix )(nA , and matrix )(nΣ  is a diagonal matrix 
whose diagonal elements are the singular values. 
 

 
Fig. 2  Unfolding of the 3rd-order tensor 321 III ××∈RA to matrix 

)(
)1(

321 III ×∈ RA , )(
)2(

132 III ×∈RA , and )(
)3(

213 III ×∈ RA . 
 

B. n-Mode Product  

The n-mode product of a tensor A  by a matrix nn IJ ×∈ RU  is 
denoted by a symbol n×  as A n× U .  The elements of resultant 
tensor is defined as 

∑
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By using this n-mode product representation, equation (19) can 
be written as 

)(
2

)(
1

)(
)(

nnn
n VUΣA ××= .           (21) 

 

C. HOSVD Algorithm  
An nth-order tensor A  can be denoted by n-mode product as 
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where, the matrices )()2()1( ,,, NUUU   are the orthogonal 
matrices which is obtained by applying SVD to each n-mode 
unfolding matrix, )()2()1( ,,,

21

N
iii n

UUU  are column vectors of 

that orthogonal matrices )()2()1( ,,, NUUU respectively [8].  
S  is an Nth-order tensor called core tensor whose elements are 
denoted by ,,1( 1121

Iis
niii ≤≤ )1 Nn Ii ≤≤ , and it is obtained 

by 
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1 UUU ×××= AS .      (23) 

As described above, we can calculate HOSVD of any 
higher-order tensors by exploiting the SVD technique for 
matrices.  

 

D. Best rank-(R1,R2, ... ,RN) approximation 
The rank of an n-mode unfolding matrix of an Nth-order 

tensor NIII ×××∈ 21RA  is called n-rank and defined as 
)rank()(rank )(nn A=A .           (24) 

The best approximation tensor for given tensor A  at the 
specified n-mode rank rank-(R1,R2, ... ,RN), where 

)(rank11 A=R , )(rank22 A=R , ... , )(rank ANNR = , can also 
be obtained by HOSVD.  This approximated tensor 

NIII ×××∈ 21ˆ RA  minimizes the squared norm
2

ÂA − .  

The tensor Â  is decomposed as 
)()2(

2
)1(

1
ˆ N

N UUU ×××= BA ,        (25) 

where 11)1( RI ×∈ RU , 22)2( RI ×∈ RU , ... , NN RIN ×∈ RU )( are the 
orthogonal matrices and NRRR ×××∈ 21RB  is approximated core 
tensor.  The calculation algorithm of this decomposition is as 
follows [9]:  
 
Step 1 Calculate orthogonal matrices )()2()1( ,,, NUUU  for a 

given tensor A  by HOSVD, and rename these matrices as 
)1()(

0 Nnn ≤≤U . 
Step 2 Set the every element of the i-th column vectors of 

matrices )2()(
0 Nnn ≤≤U to zero, where nRi > .  Repeat 

following calculation to obtain the new matrices one after 
another. 
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where )1( −− nRn  column vectors of the obtained matrices 
must be set zero. 

Repeat Step 2 until the following convergence condition 
is satisfied. 
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Performing above steps, the best rank-(R1, R2, ... , RN) 
approximation tensor Â  can be obtained as 
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E. Best Rank-1 Approximation 
As the special case of the best rank-(R1, R2, ... , RN) 

approximation, the best rank-1 approximation tensor can be 

obtained by outer product of the vectors 1)1( IRU ∈ , 
2)2( IRU ∈ , ... , NIN RU ∈)(  and core tensor 1R∈B  as 
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where 111b  is the (1,1,1)-th element of the core tensor B . 

IV. COMPARISON AND EXPERIMENTS 

A. 3-TPE and Best Rank-1 Approximation 
1) Computation Accuracy 

 
Example 1:  We consider the super symmetric 3rd-order tensor 

222 ××∈ RA  which all the elements are equal to 1 except for 
2111 =a [9].  The tensor A  is represented by the 1-mode 

unfolding matrix as 
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Table I shows the resultant expansion coefficients and the 
expansion vectors of 3-TPE and best rank-1 approximation, 
where the coefficients of the latter method are the elements of 
the core tensor S which were renumbered in ascending order of 
magnitude. 

Since the resulted coefficients and the elements of the 
vectors by both methods are the same except the sign of the 
coefficients, we see that 3-TPE by the power method and the 
repeated best rank-1 approximation method do quite the same 
expansion. 

 
TABLE I 

EXPANSION COEFFICIENTS AND EXPANSION VECTORS OF 3-TPE AND 
BEST RANK-1 APPROXIMATION 

 3-TPE Best rank-1 

i 
Expansion 
term iσ  

Expansion 
vectors iu  

Expansio
n term iλ  

Expansion 

vectors )1(
iU  
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3 +0.3212 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

9992.0
0392.0  +0.3212 ⎟⎟
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2) Computation Time 
 

Example 2: We consider the following magnitude 
specification ),,( kjid zyxh  of a 3-D digital filter design 
problem [2]. 
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The elements ijka  of a 3rd-order tensor A  is given by 

).,,( kjidijk zyxa h=            (35) 
Since the magnitude specification ),,( kjid zyxh  is zero when 

6.0≥r , the size of A  can be reduced to L×M×N, where 
,6.0×′= LL  ,6.0×′= MM  .6.0×′= NN  

 
In Fig. 3 the computation time of both methods to calculate 5 

terms are plotted when L=M=N=2, 3, … , 13, 18, 24.  From the 
figure, we see that 3-TPE can reduce the computation time 
considerably as compared with the best rank-1 method.  
Because the best rank-1 approximation which repeats SVD 
many times takes a lot of time. 
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Fig. 3 Computation time of 3-TPE and best rank-1 

B. 3-OTPE and HOSVD 
1) Computation Accuracy 
The expansion coefficients and the expansion vectors are 

calculated for the example 2 by 3-OTPE and HOSVD.  The size 
of the tensor A  is fixed to L=M=N=3 (L’=M’=N’=5). 

In the Table II, i-th column vectors of U  and T)1(U are 
denoted by iu  and T

i
)1(U  respectively.  From the table we see 

that although both methods have the orthogonally regulation, 
the expansion vectors of 3-OTPE are different to the column 
vectors of the matrices of HOSVD. 

 
 
 
 
 

TABLE II   
EXPANSION VECTORS BY 3-OTPE AND COLUMN VECTORS OF THE 

ORTHOGONAL MATRICES BY HOSVD 
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In this case the orthogonal matrices V  and W by 3-OTPE 

are obtained as 
( )
( ) ( ).,

,

321321
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uuuWuuuV
uuuU
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=

 

Similarly the orthogonal matrices )2(U  and )3(U  by HOSVD 
are obtained as 
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2) Expansion Coefficients 
 

By using the orthogonal vectors obtained above, the 
expansion coefficients are calculated.  In the table III and table 
IV the resulted coefficients 

321 iiiσ by 3-OTPE and 
321 iiis  by 

HOSVD are listed in the ascending order of magnitude.  The 
residuals are defined by || A - jA || where jA  is a following j-th 
expansion term. 

∑
=

⊗⊗=
j

i
iiiiii

1
)(

321321
wvuσjA .         (36) 

These residuals are listed in the tables together with the 
coefficients. 
 

TABLE III   
EXPANSION COEFFICIENTS AND RESIDUALS BY 3-OTPE 

3-OTPE 

j 321 iiiσ  residual 
index 

( 321 ,, iii ) 
1 3.8007E+00 2.6073E-01 σ(1,1,1) 
2 -5.0980E-01 2.2630E-01 σ(1,2,1) 
3 -5.0980E-01 1.8559E-01 σ(1,3,1) 
4 -5.0980E-01 1.3295E-01 σ(2,1,1) 
5 3.4057E-01 1.0096E-01 σ(2,2,1) 
6 -1.6093E-01 9.2313E-02 σ(2,3,1) 
7 -1.6093E-01 8.2770E-02 σ(3,1,1) 
8 -1.6093E-01 7.1972E-02 σ(3,2,1) 
9 -1.6093E-01 5.9238E-02 σ(3,3,1) 

10 -1.6093E-01 4.2875E-02 σ(1,1,2) 
11 -1.6093E-01 1.2937E-02 σ(1,2,2) 
12 2.7371E-02 1.0910E-02 σ(1,3,2) 
13 2.7371E-02 8.4075E-03 σ(2,1,2) 
14 2.7371E-02 4.7275E-03 σ(2,2,2) 
15 -1.0658E-02 3.8755E-03 σ(2,3,2) 
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TABLE IV   
EXPANSION COEFFICIENTS AND RESIDUALS BY HOSVD 

HOSVD 

j 321 iiis  residual 
index 

( 321 ,, iii ) 
1 -3.7996E+00 2.6177E-01 σ(1,1,1) 
2 5.5640E-01 2.2034E-01 σ(2,1,2) 
3 5.5640E-01 1.6904E-01 σ(1,2,2) 
4 5.5640E-01 9.2739E-02 σ(2,2,1) 
5 2.9316E-01 5.5276E-02 σ(2,2,2) 
6 7.6487E-02 5.1749E-02 σ(3,2,2) 
7 7.6487E-02 4.7963E-02 σ(2,3,2) 
8 7.6487E-02 4.3852E-02 σ(2,2,3) 
9 -7.0743E-02 4.0001E-02 σ(1,3,3) 

10 -7.0743E-02 3.5738E-02 σ(3,3,1) 
11 -7.0743E-02 3.0892E-02 σ(3,1,3) 
12 5.8833E-02 2.7037E-02 σ(1,2,1) 
13 5.8833E-02 2.2532E-02 σ(2,1,1) 
14 5.8833E-02 1.6863E-02 σ(1,1,2) 
15 -2.5177E-02 1.5603E-02 σ(3,2,1) 
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Fig. 4 Expansion coefficients by 3-OTPE and HOSVD 
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Fig. 5 Residuals by 3-OTPE and HOSVD 

 
All of the coefficients and residuals are plotted in Fig. 4 and 

Fig. 5.  We compared the accuracy of calculation and the 
computing time for decomposition both of methods.  Because 
the decomposition definition with the product of the vectors is 
common, both methods can expand a given tensor to a sum of 
L×M×N rank-1 tensors without residual.  Fig. 5 shows this fact 
apparently.  We see also that when breaks off expansion 
calculation on the way, the residuals of 3-OTPE are smaller 
than HOSVD and that the convergence of 3-OTPE is earlier 
than HOSVD. 

It is guaranteed to obtain the best approximation by the first 
term of 3-OTPE for given 3rd-order tensor thoroughly same to 
TPE. Since second term, 3-OTPE obtains the better 
approximation of the residual tensor when we impose an 
orthogonal condition.  But HOSVD uses all 27 term to 
approximate for a given data, and does not consider the 
residuals of expansion on the way. 

 
3) Computation Time 

 
Fig. 6 shows the computation time of 3-OTPE and HOSVD 

when the size of tensor L=M=N=6, 12, 18, 24, 30, 36, 42, 48 
for example 2.  
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Fig. 6 Computation time of 3-OTPE and HOSVD 

 
From this figure we see that HOSVD requires a lot of 

computation time compared with 3-OTPE.  Since the SVD 
which spends much computation time [11] is performed for 3 
unfolding matrices of the tensor, the difference of computation 
time comes out. 

 

V. CONCLUSION 
We compared the method 3-OTPE to HOSVD for a given 

3rd-order tensor.  It was confirmed that the computing of OTPE 
was greatly fast and the accuracy of decomposition on the case 
of 3rd-order tensor is the same as HOSVD or better. 

HOSVD can approximate the low level data very well for the 
specified rank by the best rank-(R1, R2, ... , RN) approximation.  
Recently OTPE can not get results as good as HOSVD, we will 
improve OTPE in our future work.  Moreover, another one of 
our future work is to make the OTPE calculation toward higher 
dimension, which will easily achieve, we think. 

We confirmed that the calculation speed of TPE by using the 
power method is much higher than HOSVD by best rank-1 
approximation.  In addition, we think our method has 
advantages for application because we can add the condition to 
decompose by the product of the vectors which have 
nonnegative values. 
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