
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2912

Abstract—The complexity of today’s software systems makes
collaborative development necessary to accomplish tasks.
Frameworks are necessary to allow developers perform their tasks
independently yet collaboratively. Similarity detection is one of the
major issues to consider when developing such frameworks. It allows
developers to mine existing repositories when developing their own
views of a software artifact, and it is necessary for identifying the
correspondences between the views to allow merging them and
checking their consistency. Due to the importance of the
requirements specification stage in software development, this paper
proposes a framework for collaborative development of Object-
Oriented formal specifications along with a similarity detection
approach to support the creation, merging and consistency checking
of specifications. The paper also explores the impact of using
additional concepts on improving the matching results. Finally, the
proposed approach is empirically evaluated.

Keywords—Collaborative Development, Formal methods,
Object-Oriented, Similarity detection

I. INTRODUCTION

IMILARITY detection is an important issue in several
computer-related fields. They include (among others)

information/software retrieval [11], software reuse and
evolution [2], model management [12], collaborative
design/development [8], and plagiarism detection [15]. A
similarity detection approach should identify the mappings
that exist between the elements of some objects of interest
(views) or between a query and a repository of objects. These
mappings are generally calculated based on syntactic
similarity as well as on some other aspects, such as behavioral
or structural similarity. Similarity results are useful when they
can identify precisely most of mapping that exist between the
views.

Syntactic similarity is computed by comparing strings.
Algorithms such as Longest Common Substring (LCS) [3] and

F. Taibi is with the Faculty of Information Technology, University of Tun
Abdul Razak, Kelana Jaya (47301), Selangor, Malaysia. Phone: 603-
78092068. Fax: 603-78802404. Email: taibi@unitar.edu.my.

Dr. F. M. Abbou is with Alcatel-Lucent. He is attached to the Faculty of
Engineering, Multimedia University, Cyberjaya (63100), Selangor, Malaysia.
Email: fouad@mmu.edu.my.

Dr. M. J. Alam is with the Faculty of Information Technology, Multimedia
University, Cyberjaya (63100), Selangor, Malaysia. Email:
md.jahangir.alam@mmu.edu.my.

N-gram [7] could be used for this purpose. Syntactic similarity
helps determining the early correspondences based on which
matching is performed and cannot alone be the basis of
similarity detection. Behavioral or structural similarity is
computed based on the hierarchical relationships or
associations that exist among the objects of the views of
interest as well as the structures of these objects and the
elements they contain. Here data structure such as trees are
used to represent these links, and the computation is based on
ancestor, descendent, neighbors, and content similarities.

An overall similarity comprising both syntactic and
structural (or behavioral) similarities could be used to
determine the mappings that exist between the views of
interest based on a chosen threshold. The threshold, which is a
number between zero and one, represents the strictness of the
mapping approach. High threshold may lead to low number of
false positives (good precision), however, it may lead to many
missed matches (poor recall). Low threshold may lead to low
number of false negatives (good recall); however, it may lead
to many false matches (poor precision). A good matching
approach must be efficient (in time and space) and should
provide good precision combined with good recall. However,
this is a very challenging problem in practice. Yet, a matching
approach that provides balanced results (precision vs. recall)
is possible to achieve provided it adopts the right concepts,
and uses the right techniques.

The complexity of today’s software systems makes
collaborative development necessary to accomplish tasks.
During requirements engineering, several developers
participate to create a software specification. Each developer
creates a partial specification of the software under
development based on a particular perspective (view), the
different specifications (views) have areas of overlap, and
their combination (merging) results in a complete software
specification. Similarly, during coding, several developers’
code different aspects (packages or modules) of a software
system and the latter is obtained by integrating these
programs. Frameworks are necessary to allow developers
perform their tasks independently yet collaboratively.
Similarity detection is one of the major issues to consider
when developing such frameworks. It allows developers to
mine existing repositories when developing their own views
of a software artifact, which facilitates reuse. Moreover, it

Similarity Detection in Collaborative
Development of Object-Oriented Formal

Specifications
Fathi Taibi, Fouad Mohammed Abbou, Md. Jahangir Alam

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2913

allows identifying the correspondences between the views to
allow merging [10] them and checking their consistency [14].
Based on a good matching approach, merging the partial
views helps obtaining the intended result from a particular
development activity. Merging could even be used solely as a
consistency checking technique [16]. When used at an early
stage, such as during the development of software
requirements, merging could help in identifying and resolving
conflicts that cost higher to identify (and resolve) during later
stages of software development, which improves software
quality and reduces development cost.

Merging requirements specified informally (by textual or
graphical means) is tremendously difficult and error prone due
to the ambiguous nature of natural languages and the notations
used. Formal methods offer a better alternative because of
their precise and accurate nature.

In this paper, a framework for collaborative development of
Object-Oriented (OO) formal specifications is proposed along
with a similarity detection approach to support the creation as
well as the merging of the specifications. The proposed
approach incorporates heuristics for both syntactic and
structural similarity.

In the following sections, the proposed framework and its
components are discussed first. This is followed by discussing
similarity detection and proposing a new matching approach
for the proposed framework. After that, the impact of using
additional concepts on improving the matching results is
exploited. The matching approach is then empirically
evaluated. This is followed by discussing related work, and
the final section concludes the paper and discusses future
work.

II. COLLABORATIVE DEVELOPMENT OF OBJECT-ORIENTED
FORMAL SPECIFICATIONS

Specifying software requirements requires the collaboration
of several developers. The requirements themselves are
derived through several stakeholders with different views (or
perspectives) about the software under development. Because
of the ambiguous (and sometimes misleading) nature of
informal requirements, it is tremendously difficult to process
them to perform critical tasks such as merging them and
checking their consistency. Formal methods offer a better
alternative in specifying software requirements because of
their precise and accurate nature, which makes it possible for
automatic verification through model checking. OO formal
specifications have a double advantage as they combine the
strengths of formal and OO methods. Thus, reuse is possible
because of the OO nature of the developed specifications. The
formal specification language Object-Z [17] is an OO
extension of the well-established formal specification
language Z [18]. Thus, making it a good candidate to be used
during the collaborative development of software
specifications.

Frameworks need to be developed to support collaborative
work not only at the requirement stage, but also at all stages of
software development. Because of the importance of the
requirements stage, and the lack of focus (from the intended
scope of this work) by current research on it, a complete
framework to support the collaborative development of OO
formal specifications is proposed. The framework’s
architecture is shown in figure 1.

Fig. 1 Architecture of the proposed framework

The framework is based around three main approaches:
matching, merging, and consistency checking. The matching
approach, referred to as Matcher module in the framework, is
the focus of this paper. It is responsible of detecting the
similarities between different specification views. In addition,
it helps mining a Specification Repository to support reuse,
and the creation of landmarks between specification views.
The merging and consistency checking approaches, referred to

as Merger and Consistency Checker modules, are beyond the
scope of this paper. They are responsible of combining
specification views and ensuring that the merging result is
consistent from an OO perspective.

In the framework, the use of the following operations is
proposed:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2914

1) Each developer creates an OO formal specification
representing a particular view of the developed software.
Object-Z could be used as specification language.

2) While creating their specifications, developers could mine
a repository containing other specification views of the
software system under development. They could edit,
modify, and make the necessary additions based on their
respective perspectives.

3) Based on mining results, developers could create
landmarks between the classes (and the elements) of their
views and those in the Specification Repository.

4) Individual views could be model checked before being
saved into the Specification Repository to ensure the self-
consistency of each view. For Object-Z specification,
model checkers such as FDR [5] could be used to
accomplish this task. Specification views of the same
software system are stored together under the same
package.

5) The Matcher module is responsible for identifying
similarities between specifications. It could be used to
mine the Specification Repository (as in 2). In addition, it
provides a complete list of correspondences between the
specification views that is used by the Merger and
Consistency Checker modules. The matching results may
be adjusted by a domain expert.

6) The Merger module is responsible for combining the
specification views using the results of the Matcher
module. It also ensures that the resulting specification is
consistent by calling a Consistency Checker module. The
merging result could be saved back in the Specification
Repository. Merging is triggered by a domain expert by
selecting the specification views involved.

7) The Consistency Checker module enforces structural
consistency rules for OO specifications since each
specification view is verified using a model checker (as in
4)

8) The Editor/Parser module provides an interface for
specification creation, editing, and syntax checking. It
also handles the interaction with the Model Checker, the
Matcher, the Merger, and the Specification Repository.

Similarity detection in such frameworks is the focus of this
work and the rest of the paper solely discusses the proposed
matching approach. As a motivation example, consider the
following Object-Z classes that are taken from two views
(comprising 9 classes) of a specification of an online purchase
system.

Fig. 2 Two views of an Object-Z class

In the class ShoppingCart, only the Init schema and the
operations (Add, Remove, and PlaceOrder) are visible outside
the class. ShoppingCart composes two other classes
(PurchasedItem and CreditCard) by using them in defining its

attributes. The class’ invariant states that the total amount of
purchased items of the shopping cart should be less or equal
than the withdrawal amount available from the credit card
used in the transaction. Initially, the shopping cart is empty

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2915

and its amount is null. The operation Add adds an item to the
shopping cart. The operation Remove removes an item from
the shopping cart. Finally, the operation PlaceOrder computes
the total amount of all items included in the shopping cart and
processes payment by calling withdraw operation of the class
CreditCard. The class SCart represents another view of the

class ShoppingCart taken from another specification created
by a different developer. For esthetic reasons, the two full
specifications (around 5 pages) cannot be included here;
however, the following figure gives a preview of the classes
involved and their relationships.

Fig. 3 The classes and their relationships of two views of the same system

The class Customer in both views is an obvious match. It is
not the case of the other classes. From a syntactic similarity
perspective, ShoppingCart could weakly be matched to either
CCard or SCart. Same thing applies to the other classes, i.e.
CreditCard, PurchasedItem, Product and PItem. Precisely
matching the classes and relationships of the above views is a
challenging problem. However, the following sections will
show how this could be done with a relatively good precision.

III. A PROPOSED MATCHING APPROACH

Given two OO formal specifications S1 and S2, the
matching approach computes an overall similarity metric
between all the classes of S1 and those of S2. The matches are
identified based on a chosen threshold. Figure 4 shows the
matching algorithm.

Fig. 4 The matching algorithm

Match makes a call to an overall similarity function
(overallSimilarity) that return a value between 0 and 1 that
combines both syntactic and structural similarities. The call is
made between all the classes of the two specifications (line 4).
The classes whose overall similarity is bigger or equal to a
chosen threshold (line 5) are added to the correspondence
relation (line 6). The latter will be an input to the merging
process. The higher the threshold is, the stricter the similarity
requirement is. The overall similarity between two classes
could be used back to enhance the similarities between their

elements. This concept is further discussed in section 4.
After a match is identified and added to the correspondence

relation R, the class Bj is not discarded from the next round of
comparison. Non-removal of a class Bj with a confirmed
match in S1 is motivated by the fact that it is up to the merging
process (or a domain expert) to normalize the correspondence
relation by choosing the correct match among the
correspondences available in case of multiple matches for a
given class (or element).

In addition to the matched classes, the correspondence

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2916

relation R stores the correspondences between the elements
(such as attributes, operations and relationships) of the
matched classes processed during the computation of the
overallSimilarity. In case the overall similarity between two
classes is below the threshold, all the elements added to R
during the computation of the overallSimilarity (i.e. associated
with the current classes (Ai, Bj)) are removed from it (line 7).

The overallSimilarity between two classes is a normalized
value (between 0 and 1) of their structural similarity by their
syntactic similarity; it is computed using the following
formula:

 (1)

Where SSyntactic and SStructural represent the syntactic and
structural similarities respectively.

Given two strings X and Y, the syntactic similarity SSyntactic

between them is obtained by taking the maximum value from
the LCS and 2-gram algorithms respectively. This is motivated
by three reasons. The first is that LCS does not provide
accurate results in case of a change in word order. For
example, itemsPurchased and purchasedItems are 0.643
similar based on LCS while 2-gram provide better results
(0.923 in this case). The second is that 2-gram algorithm does
not provide accurate results in case of short strings, e.g. cr and
crd are 0.66 similar based on 2-gram while LCS provides
better results (0.8 in this case). The third is that the 2-gram
algorithm does not provide accurate results in case of long
strings where a substring has been replaced by a different
word. For example, the similarity between PurchasedItems
and ShoppingCartItems is 0.276 based on 2-gram while LCS
provides better a result (0.323 in this case). Consequently,
taking the maximum value derived from both algorithms
could give good early mappings provided the computation is
case-insensitive and all the non-relevant characters such as
space are not taken into account. For both algorithms, the
similarity metric is defined as:

 (2)

For LCS, LengthSame is the cardinality of the set comprising
all similar characters between X and Y. LengthSame is the
cardinality of the set comprising all similar substrings of size
2 obtained from X and Y respectively. LengthAll is the
cardinality of the set comprising the disjoint union of the
characters of both strings for LCS. Whereas, for 2-gram,
LengthAll is the cardinality of the set comprising the disjoint
union of the substrings of size 2 obtained from both strings.
For example, the syntactic similarity between the strings
ShoppingCart and SCart is 0.471, which is the maximum
value returned from LCS and 2-gram algorithms (0.471 and
0.4) respectively.

Given two classes or two class’ elements such as operations
and relationships, SStructural is calculated using the following
formula:

 (3)

Where sum is obtained by cumulating the syntactic
similarities between all the compatible elements of the two
classes of interest (or the items of the two elements of
interest), and count is the number of elements (or items) used
in the calculation of sum. The following is a list of basic
elements/items taken into account when computing SStructural.

The class’ name – applies to classes, attributes,
operations, and all kind of relationships.
The class’ visibility list (public members) – applies to
classes, attributes and operations.
The class’ ancestor(s) / descendent (s) – applies to
classes.
The class(es) aggregating (or composing) the class –
applies to classes.
The class’ neighbor(s) (sibling(s)) – applies to classes and
may also be applied to operations.
The class’ attributes – applies to classes.
The type of an attribute – applies to class’ attributes.
The class’ Invariant (predicate) – applies to classes.
The class’ Init (predicate) – applies to classes.
The name of an operation – applies to operations.
The list of Inputs / Outputs of an operation– applies to
operations.
The pre/post conditions (predicate) of an operation –
applies to operations.

During the computation of SStructural for classes and
operations, attribute names, inputs and outputs are replayed by
their respective type. In addition, the same technique is
applied to predicates (Inits, invariants, preconditions, and
postconditions). The reason behind this is that for all the latter
elements; type is the most important factor; names as well as
their order of appearance could be ignored. Thus, the impact
of SSyntactic on SStructural is reduced for behaviorally similar
classes and operations. For example to compute the structural
similarity between two operations, the names of the two
classes containing the operations, the names of the two
operations, the lists of the operations’ inputs/outputs (replaced
by their respective type), and their pre/post conditions (where
names are replaced by their respective type) could be used.
Even if the operations names, inputs and outputs are poorly
syntactically similar, SStructural is capable of providing a more
accurate value showing how much they are structurally
(behaviorally) similar. SStructural for the operations Add and
New (Figure 2) is 0.604 even if the syntactic similarity
between their names is null.

The structural similarity of class’ elements could be re-
enforced once the class’ overall similarity is computed. This
concept is called mutual enforcing relationship and it is
discussed in the following section along with other concepts
intended to improve similarity detection.

IV. IMPROVING SIMILARITY DETECTION

A similarity detection approach that provides good
balanced results (precision vs. recall) should integrate the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2917

benefits of several methods because no particular method is
better than others are. Thus, four additional concepts that
could be used to strengthen the proposed similarity approach
have been identified.

The first concept is the use of early landmarks. Assuming
that the first view in figure 3 is created before the second
view, after mining the specification repository, the developer
of the second view could decide to create landmarks for
classes/relationships that should be compared between the
first view and the one he/she is about to create. These
landmarks represent the classes/relationships that are most
likely to match. This could greatly help improving the
approach’s efficiency. For example, if the developer of the
second view decides to create landmarks between the classes
{ShoppingCart, CreditCard} and {SCart, CCard}
respectively, this reduces the number of class’ comparisons
from 20 down to 8 (i.e. 60% improvement in the time
efficiency). In addition, the created landmarks improve the
precision of the matching approach by reducing the number of
false positives; i.e. less comparisons reduces the probability of
additional false positives.

The second concept is automatically indexing the classes of
the specifications created. An index could be the most
frequent attribute(s) used in a class, and if used in the
computation of structural similarity, it could improve the
matching results. The other option is to use classes’
descriptions (in natural language) that could be used when
computing structural similarity. However, this option requires
extra storage space as well as extra processing resources.
Thus, automatic indexing seems to be a better option. For
example, items could be used as an index for the
ShoppingCart and SCart classes respectively. Thus, the
similarity of their indexes is 1, which enhances their similarity
scoring.

The third concept is the use Mutual-Enforcing-Relationship
concept, i.e. after computing the overall similarity between
classes, the results is used back to re-compute the similarity of
the classes’ elements. In other word, classes are similar if they
have similar elements and elements are similar if they are
contained in similar classes. This could improve the matching
results of attributes, operations and relationships.

The final concept is the use of neighbors (siblings)
similarity when computing structural similarity. For example
when computing the structural similarity between the classes
CreditCard and CCard, their neighbors (i.e. PurchasedItem
and SCard) could be taken into account in the computation.
The same concept could be applied to operations. However,
the challenge is that the classes (and operations) order is not
important, which makes choosing a suitable neighbor
problematic. To solve this problem, the class (or operation)
with the best possible match could be used as a sibling to all
the classes (or operations) whose structural similarities have
yet to be computed. For example, in figure 2, when computing
the structural similarity between Remove and Cancel, the
operations Add and New could be used as their neighbors
respectively. The next section empirically evaluates the

proposed approach and the impact of the introduced similarity
improvement concepts on its performance.

V. EMPIRICAL EVALUATION

It has been argued that in case of small models developers
may find it easy to identify the similarities manually.
However, the proposed approach is intended to provide a
quick and accurate way to identify matches when manual
matching is not possible (or hard to achieve), which is the case
of OO specifications intended for medium or large-scale
software. Moreover, even for small models, experience has
shown that identifying similarities manually is very difficult
and error prone, especially for formal specifications.

A matching approach is useful if it produces accurate
results with cheap processing means (i.e. time & space). The
complexity of the proposed matching approach is O(mn)
where m and n represent the number of classes in the two
specifications respectively. This complexity could be reduced
if the matched class of the second specification (or the
matched classes of both specifications) is discarded from the
next rounds of comparisons. However, leaving both matched
classes was chosen, as it is possible to find better matches
during the next rounds. In addition, normalizing
(automatically or by a domain expert) the correspondence
relation R is proposed before the start of the merging process.
Finally, the use of landmarks reduces of the complexity from
O(mn) to O(k+(m-k)*(n-k)) where k is the number of
landmarks created. The matching approach is effective if it
does not produce too many incorrect matches (false positives)
and does not produce too many missed matches (false
negatives). Precision and recall metrics were used in the
evaluation. Precision measures quality and is the ratio of
correct matches found to the total number of matches found.
Recall measures coverage and is the ratio of the correct
matches found to the total number of all correct matches.

The proposed approach has been intensively evaluated
based on several small/medium sized case studies. One of
them includes the views of figure 3 and the following table
summarizes their characteristics. Precision and recall were
computed for a threshold ranging from 0.5 up to 0.9. The
following figure shows the results obtained using Match
algorithm without/with the similarity improvement concepts.

The results obtained (figure 5(a)) are in line with the
theoretical assumption that elements with strong syntactic
similarity are more likely to match. The elements with low
syntactic similarity such as ShoppingCart and SCart (0.471)
where confirmed as match through structural similarity (for
the latter case it was 0.7). The overall similarity between
ShoppingCart and SCart was 0.799. Low threshold (0.5 up to
0.6) has resulted in good recall (77%-92%) and
acceptable/good precision (67%-83%). Medium threshold
(0.65 up to 0.75) has resulted in low/acceptable recall (38%-
69%) and good precision (90%-100%). Finally, high threshold
(0.8 up to 0.9) has resulted in low recall (8%-31%) and perfect
precision (100%).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2918

Fig. 5 Matching results for the two views of the online purchase system

Using the similarity improvement concepts of the previous
section, the results (figure 5(b)) have showed a significant
improvement in recall. Perfect recall (100%) was obtained for
thresholds ranging from 0.5 up to 0.7. However, the
improvements made on the method’s recall have slightly
affected its precision. Precision was acceptable (59%-62) for
thresholds ranging from 0.5 up to 0.7. High threshold (0.75 up
to 0.9) resulted in good/perfect precision (71%-100%).

To assess the overall improvement made, a reference
threshold of 0.7 (that is not too low or too high) was chosen
and the results obtained were compared. The recall was
enhanced from 69% to 100%; however, the precision has
decreased from 100% down to 62%. As the proposed
framework is interactive, a domain expert could be
responsible for normalizing the matching results obtained
knowing that no matches have been missed (because of the
additional concepts used) and that 38% of the results are not
accurate. It is much easier for a domain expert to remove
incorrect matches compared to identify missed ones.
Furthermore, only the best match result for attributes and
operations could be considered; in this case, the precision
improves from 62% to 90%, thus, only 10% of false positive
need to be removed from the match results. Consequently, a
matching approach with good recall and (at least) an
acceptable precision provides the best similarity detection
means for the proposed framework.

VI. RELATED WORK

In [20], class diagrams obtained by reverse engineering
from a java software system are used to detect structural
changes between the designs of subsequent versions of an OO

software. The proposed algorithm reports the differences
between the models in terms of additions, removals, changes,
and renamings. The similarity detection used combines name
and structural similarity metrics where only the 2-gram
algorithm was used for the first and the semantics of OO
design domain for the latter. [1] presents another differencing
algorithm for OO programs. It identifies matching classes and
methods of two given programs. The similarity is performed
starting from the class (interface) level then down to the
method level and finally at the node level.

In [12], two operators (match and merge) for hierarchical
Statecharts models management were proposed. The match
operator makes use of static and behavioral properties, and the
use of sanity checks for the match results obtained is proposed
before merging the models. Indeed, it is reasonable to make
the matching process interactive where user seeds are used to
confirm the most obvious relations as well as to rectify
incorrect ones.

In [9], an algorithm is proposed for matching data schemas.
The algorithm takes two directed labeled graphs as input and
produces as output a mapping between the corresponding
nodes of the graphs. The computation of similarity is iterative
and follows the idea that models are similar when their
adjacent elements are similar. Thus, the similarity of two
elements propagates to their respective neighbors. The
mapping results could be humanly adjusted, and the number
of adjustments made was used to evaluate the algorithm’s
accuracy.

In [19], a design pattern detection methodology is
proposed. It is based on similarity scoring between graph
vertices. The graph similarity algorithm used takes as input

TABLE I
CHARACTERISTICS OF THE STUDIED SPECIFICATIONS

 #Classes #Attributes #Operations #Relationships Total #Matches

View 1 5 10 12 4 31

View 2 4 7 8 3 22

Classes - 4
Attributes - 5
Relationships - 2
Operations - 7
Total = 18

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2919

both the system and the pattern graphs and computes
similarity scores between their vertices. The concept of
mutually reinforcing relationship was used in the computation.
The method was evaluated on three open source projects, and
the results have shown good precision mainly because the
pattern descriptions focused only on essential information.

In [6], an algorithm is proposed to discover mapping
between schema elements using a broad set of techniques. It
argued the necessity of a generic match component that
should be studied independently. The proposed approach
incorporates linguistic and structure matching. The approach
was evaluated on XML schema and compared to other
approaches from the literature. The approach has showed an
improvement in mapping (similar) schema elements with low
linguistic similarity.

Finally, [11] proposed a method for retrieving segments of
source code from large repository. Conceptual graphs were
used to model source code. Given a source code snippet and a
repository of (source code) files, all documents of the
repository are ranked according to their similarity to the code
snippet. The similarity measure proposed exploits both
structure and content, and is based on notion of contextual
similarity. According to the latter, concepts should be
compared not only by taking into account the information
contained in them, but also by making use of the information
contained in the concepts related to them (i.e. context).

The proposed approach is inspired from both [20] and [12];
however, the use of additional concepts that have shown to
enhance similarity detection such as the use of landmarks,
indexes, mutual-enforcing relationships, and neighbors’
similarity was exploited. In addition, using information from
the classes related to the class being compared is an integral
part of the proposed approach; this has an identical impact as
contextual similarity. The approach focused on requirements
specification rather than design artifacts or source code
because it allows the detection of conflicts at an early stage,
which improves the quality of the developed software. The
combination of both LCS and 2-gram algorithms to compute
syntactic similarity provides a solid foundation, when
combined with structural similarity; it produces an accurate
overall similarity. Finally, because of the generic aspects of
OO software artifacts used, the proposed approach could have
a wide range of applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, a framework for collaborative development of
OO formal specifications is proposed along with a similarity
detection approach. The approach is intended to be used for
merging specification views and checking their consistency.
The approach combines syntactic, structural similarities to
perform the matching, and a set of additional concept were
proposed and their impact on improving the approach’s
performance was investigated. The empirical results obtained
incorporated good precision/recall combined with an
acceptable complexity. The precision could be further

improved if only the best match for attributes and operations
is considered; however, this concept need to be further studied
and evaluated.

Since developers could specify classes differently, a
challenging problem is to cater for subset-hood, i.e. how to
match an operation A that has been implemented as two
operations B and C in another similar class. Moreover, how to
match a class X that has been implemented as two classes Y
and Z in another view. Finally, assigning weights to classes’
elements based on their importance could play a vital role in
similarity detection, but the basis on which weights are
assigned needs to be investigated.

REFERENCES

[1] T. Apiwattanapong et al, “A Differencing Algorithm for Object-Oriented
Programs”, in 2004 Proc. 19th International Conference on Automated
Software Engineering, pp. 2-13.

[2] M. Godfrey et al., “Using Origin Analysis to Detect Merging and
Splitting of Source Code Entities”, IEEE Transactions on Software
Engineering, Vol. 31, No. 2, pp. 166-181, 2005.

[3] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology, Cambridge University Press, 1999.

[4] G. Jeh et al., “SimRank: A Measure of Structure-Context Similarity”, in
2002 Proc. International Conference on Knowledge Discovery and Data
Mining, pp. 538-543.

[5] G. Kassel et al., “Model Checking Object-Z classes: Some Experiments
with FDR”, in Proc. APSEC conference, pp. 445-452.

[6] J. Madhavan et al., “Generic Schema Matching with Cupid”, in 2001
Proc. 27th VLDB conference.

[7] C. Manning et al., Foundations of Statistical Natural Language
Processing, MIT Press, 1999.

[8] A. Mehra et al., “A Generic Approach to Supporting Diagram
Differencing and Merging for Collaborative Design”, in 2005 Proc.
International Conference on Automated Software Engineering, pp. 204-
213.

[9] S. Melnik et al., “Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching”, in 2002 Proc.
International Conference on Data Engineering, pp. 117-128.

[10] T. Mens, “A State-of-the-Art Survey on Software Merging”, IEEE
Transactions on Software Engineering, Vol. 28, No. 5, pp. 449-462,
2002.

[11] G. Mishne et al., “Source Code Retrieval using Conceptual Similarity”,
in 2004 Proc. RIAO 2004 Conference, pp. 539-554.

[12] S. Nejati et al., “Matching and Merging of Statecharts Specifications”, in
2007 Proc. 29th International Conference on Software Engineering
(ICSE'07).

[13] A. Boronat et al., “Formal Model Merging Applied to Class Diagram
Integration”, Electronic Notes in Theoretical Computer Science, Vol.
166, pp. 5–26, 2007.

[14] B. Nuseibeh et al., “Making Consistency Respectable in Software
Development”, Journal of Systems and Software, Vol. 58, pp. 171-180,
2001.

[15] L. Prechelt et al., “JPlag: Finding Plagiarisms Among a Set of
Programs”, Department of Informatics, University of Karlsruhe, Tech.
Rep. No. 1, March 2000.

[16] M. Sabetzadeh et al., “Consistency Checking of Conceptual Models via
Model Merging”, in 2007 Proc. 15th IEEE RE conference.

[17] G. Smith, The Object-Z Specification Language, Kluwer Academic
Publishers, 2000.

[18] J. Spivey, The Z notation – A Reference Manual, Prentice Hall, 2nd
Edition, 1992

[19] N. Tsantalis et al., “Design Pattern Detection Using Similarity Scoring”,
IEEE Transactions on Software Engineering, Vol. 32, No. 11, pp. 896-
909, 2006.

[20] Z. Xing et al., “UMLDiff: An Algorithm for Object-Oriented Design
Differencing”, in 2005 Proc. 20th IEEE/ACM international Conference
on Automated software engineering, pp. 54-65.

