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Abstract—The complexity of today’s software systems makes 
collaborative development necessary to accomplish tasks.  
Frameworks are necessary to allow developers perform their tasks 
independently yet collaboratively. Similarity detection is one of the 
major issues to consider when developing such frameworks. It allows 
developers to mine existing repositories when developing their own 
views of a software artifact, and it is necessary for identifying the 
correspondences between the views to allow merging them and 
checking their consistency. Due to the importance of the 
requirements specification stage in software development, this paper 
proposes a framework for collaborative development of Object-
Oriented formal specifications along with a similarity detection 
approach to support the creation, merging and consistency checking 
of specifications. The paper also explores the impact of using 
additional concepts on improving the matching results. Finally, the 
proposed approach is empirically evaluated.  

Keywords—Collaborative Development, Formal methods, 
Object-Oriented, Similarity detection

I. INTRODUCTION

IMILARITY detection is an important issue in several 
computer-related fields. They include (among others) 

information/software retrieval [11], software reuse and 
evolution [2], model management [12], collaborative 
design/development [8], and plagiarism detection [15]. A 
similarity detection approach should identify the mappings 
that exist between the elements of some objects of interest 
(views) or between a query and a repository of objects. These 
mappings are generally calculated based on syntactic 
similarity as well as on some other aspects, such as behavioral 
or structural similarity. Similarity results are useful when they 
can identify precisely most of mapping that exist between the 
views.   

Syntactic similarity is computed by comparing strings. 
Algorithms such as Longest Common Substring (LCS) [3] and 
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N-gram [7] could be used for this purpose. Syntactic similarity 
helps determining the early correspondences based on which 
matching is performed and cannot alone be the basis of 
similarity detection. Behavioral or structural similarity is 
computed based on the hierarchical relationships or 
associations that exist among the objects of the views of 
interest as well as the structures of these objects and the 
elements they contain. Here data structure such as trees are 
used to represent these links, and the computation is based on 
ancestor, descendent, neighbors, and content similarities.  

An overall similarity comprising both syntactic and 
structural (or behavioral) similarities could be used to 
determine the mappings that exist between the views of 
interest based on a chosen threshold. The threshold, which is a 
number between zero and one, represents the strictness of the 
mapping approach. High threshold may lead to low number of 
false positives (good precision), however, it may lead to many 
missed matches (poor recall). Low threshold may lead to low 
number of false negatives (good recall); however, it may lead 
to many false matches (poor precision). A good matching 
approach must be efficient (in time and space) and should 
provide good precision combined with good recall. However, 
this is a very challenging problem in practice. Yet, a matching 
approach that provides balanced results (precision vs. recall) 
is possible to achieve provided it adopts the right concepts, 
and uses the right techniques. 

The complexity of today’s software systems makes 
collaborative development necessary to accomplish tasks. 
During requirements engineering, several developers 
participate to create a software specification. Each developer 
creates a partial specification of the software under 
development based on a particular perspective (view), the 
different specifications (views) have areas of overlap, and 
their combination (merging) results in a complete software 
specification. Similarly, during coding, several developers’ 
code different aspects (packages or modules) of a software 
system and the latter is obtained by integrating these 
programs. Frameworks are necessary to allow developers 
perform their tasks independently yet collaboratively. 
Similarity detection is one of the major issues to consider 
when developing such frameworks. It allows developers to 
mine existing repositories when developing their own views 
of a software artifact, which facilitates reuse. Moreover, it 
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allows identifying the correspondences between the views to 
allow merging [10] them and checking their consistency [14]. 
Based on a good matching approach, merging the partial 
views helps obtaining the intended result from a particular 
development activity. Merging could even be used solely as a 
consistency checking technique [16]. When used at an early 
stage, such as during the development of software 
requirements, merging could help in identifying and resolving 
conflicts that cost higher to identify (and resolve) during later 
stages of software development, which improves software 
quality and reduces development cost.  

Merging requirements specified informally (by textual or 
graphical means) is tremendously difficult and error prone due 
to the ambiguous nature of natural languages and the notations 
used. Formal methods offer a better alternative because of 
their precise and accurate nature.

In this paper, a framework for collaborative development of 
Object-Oriented (OO) formal specifications is proposed along 
with a similarity detection approach to support the creation as 
well as the merging of the specifications. The proposed 
approach incorporates heuristics for both syntactic and 
structural similarity.  

In the following sections, the proposed framework and its 
components are discussed first. This is followed by discussing 
similarity detection and proposing a new matching approach 
for the proposed framework. After that, the impact of using 
additional concepts on improving the matching results is 
exploited. The matching approach is then empirically 
evaluated. This is followed by discussing related work, and 
the final section concludes the paper and discusses future 
work.

II. COLLABORATIVE DEVELOPMENT OF OBJECT-ORIENTED
FORMAL SPECIFICATIONS

Specifying software requirements requires the collaboration 
of several developers. The requirements themselves are 
derived through several stakeholders with different views (or 
perspectives) about the software under development. Because 
of the ambiguous (and sometimes misleading) nature of 
informal requirements, it is tremendously difficult to process 
them to perform critical tasks such as merging them and 
checking their consistency. Formal methods offer a better 
alternative in specifying software requirements because of 
their precise and accurate nature, which makes it possible for 
automatic verification through model checking. OO formal 
specifications have a double advantage as they combine the 
strengths of formal and OO methods. Thus, reuse is possible 
because of the OO nature of the developed specifications. The 
formal specification language Object-Z [17] is an OO 
extension of the well-established formal specification 
language Z [18]. Thus, making it a good candidate to be used 
during the collaborative development of software 
specifications.

Frameworks need to be developed to support collaborative 
work not only at the requirement stage, but also at all stages of 
software development. Because of the importance of the 
requirements stage, and the lack of focus (from the intended 
scope of this work) by current research on it, a complete 
framework to support the collaborative development of OO 
formal specifications is proposed. The framework’s 
architecture is shown in figure 1. 

Fig. 1 Architecture of the proposed framework 

The framework is based around three main approaches: 
matching, merging, and consistency checking. The matching 
approach, referred to as Matcher module in the framework, is 
the focus of this paper. It is responsible of detecting the 
similarities between different specification views. In addition, 
it helps mining a Specification Repository to support reuse, 
and the creation of landmarks between specification views. 
The merging and consistency checking approaches, referred to 

as Merger and Consistency Checker modules, are beyond the 
scope of this paper. They are responsible of combining 
specification views and ensuring that the merging result is 
consistent from an OO perspective. 

In the framework, the use of the following operations is 
proposed:  
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1) Each developer creates an OO formal specification 
representing a particular view of the developed software. 
Object-Z could be used as specification language. 

2) While creating their specifications, developers could mine 
a repository containing other specification views of the 
software system under development. They could edit, 
modify, and make the necessary additions based on their 
respective perspectives. 

3) Based on mining results, developers could create 
landmarks between the classes (and the elements) of their 
views and those in the Specification Repository.

4) Individual views could be model checked before being 
saved into the Specification Repository to ensure the self-
consistency of each view. For Object-Z specification, 
model checkers such as FDR [5] could be used to 
accomplish this task. Specification views of the same 
software system are stored together under the same 
package.

5) The Matcher module is responsible for identifying 
similarities between specifications. It could be used to 
mine the Specification Repository (as in 2). In addition, it 
provides a complete list of correspondences between the 
specification views that is used by the Merger and 
Consistency Checker modules. The matching results may 
be adjusted by a domain expert. 

6) The Merger module is responsible for combining the 
specification views using the results of the Matcher
module. It also ensures that the resulting specification is 
consistent by calling a Consistency Checker module. The 
merging result could be saved back in the Specification 
Repository. Merging is triggered by a domain expert by 
selecting the specification views involved. 

7) The Consistency Checker module enforces structural 
consistency rules for OO specifications since each 
specification view is verified using a model checker (as in 
4)

8) The Editor/Parser module provides an interface for 
specification creation, editing, and syntax checking. It 
also handles the interaction with the Model Checker, the 
Matcher, the Merger, and the Specification Repository.

Similarity detection in such frameworks is the focus of this 
work and the rest of the paper solely discusses the proposed 
matching approach. As a motivation example, consider the 
following Object-Z classes that are taken from two views 
(comprising 9 classes) of a specification of an online purchase 
system.  

Fig. 2 Two views of an Object-Z class 

In the class ShoppingCart, only the Init schema and the 
operations (Add, Remove, and PlaceOrder) are visible outside 
the class. ShoppingCart composes two other classes 
(PurchasedItem and CreditCard) by using them in defining its 

attributes. The class’ invariant states that the total amount of 
purchased items of the shopping cart should be less or equal 
than the withdrawal amount available from the credit card 
used in the transaction. Initially, the shopping cart is empty 
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and its amount is null. The operation Add adds an item to the 
shopping cart. The operation Remove removes an item from 
the shopping cart. Finally, the operation PlaceOrder computes 
the total amount of all items included in the shopping cart and 
processes payment by calling withdraw operation of the class 
CreditCard. The class SCart represents another view of the 

class ShoppingCart taken from another specification created 
by a different developer. For esthetic reasons, the two full 
specifications (around 5 pages) cannot be included here; 
however, the following figure gives a preview of the classes 
involved and their relationships. 

Fig. 3 The classes and their relationships of two views of the same system 

The class Customer in both views is an obvious match. It is 
not the case of the other classes. From a syntactic similarity 
perspective, ShoppingCart could weakly be matched to either 
CCard or SCart. Same thing applies to the other classes, i.e. 
CreditCard, PurchasedItem, Product and PItem. Precisely 
matching the classes and relationships of the above views is a 
challenging problem. However, the following sections will 
show how this could be done with a relatively good precision. 

III. A PROPOSED MATCHING APPROACH

Given two OO formal specifications S1 and S2, the 
matching approach computes an overall similarity metric 
between all the classes of S1 and those of S2. The matches are 
identified based on a chosen threshold. Figure 4 shows the 
matching algorithm. 

Fig. 4 The matching algorithm 

Match makes a call to an overall similarity function 
(overallSimilarity) that return a value between 0 and 1 that 
combines both syntactic and structural similarities. The call is 
made between all the classes of the two specifications (line 4). 
The classes whose overall similarity is bigger or equal to a 
chosen threshold (line 5) are added to the correspondence 
relation (line 6). The latter will be an input to the merging 
process. The higher the threshold is, the stricter the similarity 
requirement is. The overall similarity between two classes 
could be used back to enhance the similarities between their 

elements. This concept is further discussed in section 4. 
After a match is identified and added to the correspondence 

relation R, the class Bj is not discarded from the next round of 
comparison. Non-removal of a class Bj with a confirmed 
match in S1 is motivated by the fact that it is up to the merging 
process (or a domain expert) to normalize the correspondence 
relation by choosing the correct match among the 
correspondences available in case of multiple matches for a 
given class (or element). 

In addition to the matched classes, the correspondence 
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relation R stores the correspondences between the elements 
(such as attributes, operations and relationships) of the 
matched classes processed during the computation of the 
overallSimilarity. In case the overall similarity between two 
classes is below the threshold, all the elements added to R 
during the computation of the overallSimilarity (i.e. associated 
with the current classes (Ai, Bj)) are removed from it (line 7).  

The overallSimilarity between two classes is a normalized 
value (between 0 and 1) of their structural similarity by their 
syntactic similarity; it is computed using the following 
formula: 

                                                             (1) 

Where SSyntactic and SStructural represent the syntactic and 
structural similarities respectively. 

Given two strings X and Y, the syntactic similarity SSyntactic

between them is obtained by taking the maximum value from 
the LCS and 2-gram algorithms respectively. This is motivated 
by three reasons. The first is that LCS does not provide 
accurate results in case of a change in word order. For 
example, itemsPurchased and purchasedItems are 0.643 
similar based on LCS while 2-gram provide better results 
(0.923 in this case). The second is that 2-gram algorithm does 
not provide accurate results in case of short strings, e.g. cr and 
crd are 0.66 similar based on 2-gram while LCS provides 
better results (0.8 in this case). The third is that the 2-gram
algorithm does not provide accurate results in case of long 
strings where a substring has been replaced by a different 
word. For example, the similarity between PurchasedItems
and ShoppingCartItems is 0.276 based on 2-gram while LCS
provides better a result (0.323 in this case). Consequently, 
taking the maximum value derived from both algorithms 
could give good early mappings provided the computation is 
case-insensitive and all the non-relevant characters such as 
space are not taken into account. For both algorithms, the 
similarity metric is defined as: 

 (2)

For LCS, LengthSame is the cardinality of the set comprising 
all similar characters between X and Y. LengthSame is the 
cardinality of the set comprising all similar substrings of size 
2 obtained from X and Y respectively. LengthAll is the 
cardinality of the set comprising the disjoint union of the 
characters of both strings for LCS. Whereas, for 2-gram,
LengthAll is the cardinality of the set comprising the disjoint 
union of the substrings of size 2 obtained from both strings. 
For example, the syntactic similarity between the strings 
ShoppingCart and SCart is 0.471, which is the maximum 
value returned from LCS and 2-gram algorithms (0.471 and 
0.4) respectively. 

Given two classes or two class’ elements such as operations 
and relationships, SStructural is calculated using the following 
formula: 

                                         (3)

Where sum is obtained by cumulating the syntactic 
similarities between all the compatible elements of the two 
classes of interest (or the items of the two elements of 
interest), and count is the number of elements (or items) used 
in the calculation of sum. The following is a list of basic 
elements/items taken into account when computing SStructural.

The class’ name – applies to classes, attributes, 
operations, and all kind of relationships. 
The class’ visibility list (public members) – applies to 
classes, attributes and operations. 
The class’ ancestor(s) / descendent (s) – applies to 
classes.
The class(es) aggregating (or composing) the class – 
applies to classes. 
The class’ neighbor(s) (sibling(s)) – applies to classes and 
may also be applied to operations. 
The class’ attributes – applies to classes. 
The type of an attribute – applies to class’ attributes. 
The class’ Invariant (predicate) – applies to classes. 
The class’ Init (predicate) – applies to classes. 
The name of an operation – applies to operations. 
The list of Inputs / Outputs of an operation– applies to 
operations. 
The pre/post conditions (predicate) of an operation – 
applies to operations. 

During the computation of SStructural for classes and 
operations, attribute names, inputs and outputs are replayed by 
their respective type. In addition, the same technique is 
applied to predicates (Inits, invariants, preconditions, and 
postconditions). The reason behind this is that for all the latter 
elements; type is the most important factor; names as well as 
their order of appearance could be ignored. Thus, the impact 
of SSyntactic on SStructural is reduced for behaviorally similar 
classes and operations. For example to compute the structural 
similarity between two operations, the names of the two 
classes containing the operations, the names of the two 
operations, the lists of the operations’ inputs/outputs (replaced 
by their respective type), and their pre/post conditions (where 
names are replaced by their respective type) could be used. 
Even if the operations names, inputs and outputs are poorly 
syntactically similar, SStructural is capable of providing a more 
accurate value showing how much they are structurally 
(behaviorally) similar. SStructural for the operations Add and 
New (Figure 2) is 0.604 even if the syntactic similarity 
between their names is null.

The structural similarity of class’ elements could be re-
enforced once the class’ overall similarity is computed. This 
concept is called mutual enforcing relationship and it is 
discussed in the following section along with other concepts 
intended to improve similarity detection. 

IV. IMPROVING SIMILARITY DETECTION

A similarity detection approach that provides good 
balanced results (precision vs. recall) should integrate the 
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benefits of several methods because no particular method is 
better than others are. Thus, four additional concepts that 
could be used to strengthen the proposed similarity approach 
have been identified.  

The first concept is the use of early landmarks. Assuming 
that the first view in figure 3 is created before the second 
view, after mining the specification repository, the developer 
of the second view could decide to create landmarks for 
classes/relationships that should be compared between the 
first view and the one he/she is about to create. These 
landmarks represent the classes/relationships that are most 
likely to match. This could greatly help improving the 
approach’s efficiency. For example, if the developer of the 
second view decides to create landmarks between the classes 
{ShoppingCart, CreditCard} and {SCart, CCard}
respectively, this reduces the number of class’ comparisons 
from 20 down to 8 (i.e. 60% improvement in the time 
efficiency). In addition, the created landmarks improve the 
precision of the matching approach by reducing the number of 
false positives; i.e. less comparisons reduces the probability of 
additional false positives. 

The second concept is automatically indexing the classes of 
the specifications created. An index could be the most 
frequent attribute(s) used in a class, and if used in the 
computation of structural similarity, it could improve the 
matching results. The other option is to use classes’ 
descriptions (in natural language) that could be used when 
computing structural similarity. However, this option requires 
extra storage space as well as extra processing resources. 
Thus, automatic indexing seems to be a better option. For 
example, items could be used as an index for the 
ShoppingCart and SCart classes respectively. Thus, the 
similarity of their indexes is 1, which enhances their similarity 
scoring.  

The third concept is the use Mutual-Enforcing-Relationship
concept, i.e. after computing the overall similarity between 
classes, the results is used back to re-compute the similarity of 
the classes’ elements. In other word, classes are similar if they 
have similar elements and elements are similar if they are 
contained in similar classes. This could improve the matching 
results of attributes, operations and relationships. 

The final concept is the use of neighbors (siblings) 
similarity when computing structural similarity. For example 
when computing the structural similarity between the classes 
CreditCard and CCard, their neighbors (i.e. PurchasedItem
and SCard) could be taken into account in the computation. 
The same concept could be applied to operations. However, 
the challenge is that the classes (and operations) order is not 
important, which makes choosing a suitable neighbor 
problematic. To solve this problem, the class (or operation) 
with the best possible match could be used as a sibling to all 
the classes (or operations) whose structural similarities have 
yet to be computed. For example, in figure 2, when computing 
the structural similarity between Remove and Cancel, the 
operations Add and New could be used as their neighbors 
respectively. The next section empirically evaluates the 

proposed approach and the impact of the introduced similarity 
improvement concepts on its performance. 

V. EMPIRICAL EVALUATION

It has been argued that in case of small models developers 
may find it easy to identify the similarities manually. 
However, the proposed approach is intended to provide a 
quick and accurate way to identify matches when manual 
matching is not possible (or hard to achieve), which is the case 
of OO specifications intended for medium or large-scale 
software. Moreover, even for small models, experience has 
shown that identifying similarities manually is very difficult 
and error prone, especially for formal specifications. 

A matching approach is useful if it produces accurate 
results with cheap processing means (i.e. time & space). The 
complexity of the proposed matching approach is O(mn)
where m and n represent the number of classes in the two 
specifications respectively. This complexity could be reduced 
if the matched class of the second specification (or the 
matched classes of both specifications) is discarded from the 
next rounds of comparisons. However, leaving both matched 
classes was chosen, as it is possible to find better matches 
during the next rounds. In addition, normalizing 
(automatically or by a domain expert) the correspondence 
relation R is proposed before the start of the merging process. 
Finally, the use of landmarks reduces of the complexity from 
O(mn) to O(k+(m-k)*(n-k)) where k is the number of 
landmarks created. The matching approach is effective if it 
does not produce too many incorrect matches (false positives) 
and does not produce too many missed matches (false 
negatives). Precision and recall metrics were used in the 
evaluation. Precision measures quality and is the ratio of 
correct matches found to the total number of matches found. 
Recall measures coverage and is the ratio of the correct 
matches found to the total number of all correct matches.  

The proposed approach has been intensively evaluated 
based on several small/medium sized case studies. One of 
them includes the views of figure 3 and the following table 
summarizes their characteristics. Precision and recall were 
computed for a threshold ranging from 0.5 up to 0.9. The 
following figure shows the results obtained using Match
algorithm without/with the similarity improvement concepts. 

The results obtained (figure 5(a)) are in line with the 
theoretical assumption that elements with strong syntactic 
similarity are more likely to match. The elements with low 
syntactic similarity such as ShoppingCart and SCart (0.471)
where confirmed as match through structural similarity (for 
the latter case it was 0.7). The overall similarity between 
ShoppingCart and SCart was 0.799. Low threshold (0.5 up to 
0.6) has resulted in good recall (77%-92%) and 
acceptable/good precision (67%-83%). Medium threshold 
(0.65 up to 0.75) has resulted in low/acceptable recall (38%-
69%) and good precision (90%-100%). Finally, high threshold 
(0.8 up to 0.9) has resulted in low recall (8%-31%) and perfect 
precision (100%). 
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Fig. 5 Matching results for the two views of the online purchase system

Using the similarity improvement concepts of the previous 
section, the results (figure 5(b)) have showed a significant 
improvement in recall. Perfect recall (100%) was obtained for 
thresholds ranging from 0.5 up to 0.7. However, the 
improvements made on the method’s recall have slightly 
affected its precision. Precision was acceptable (59%-62) for 
thresholds ranging from 0.5 up to 0.7. High threshold (0.75 up 
to 0.9) resulted in good/perfect precision (71%-100%). 

To assess the overall improvement made, a reference 
threshold of 0.7 (that is not too low or too high) was chosen 
and the results obtained were compared. The recall was 
enhanced from 69% to 100%; however, the precision has 
decreased from 100% down to 62%. As the proposed 
framework is interactive, a domain expert could be 
responsible for normalizing the matching results obtained 
knowing that no matches have been missed (because of the 
additional concepts used) and that 38% of the results are not 
accurate. It is much easier for a domain expert to remove 
incorrect matches compared to identify missed ones. 
Furthermore, only the best match result for attributes and 
operations could be considered; in this case, the precision 
improves from 62% to 90%, thus, only 10% of false positive 
need to be removed from the match results. Consequently, a 
matching approach with good recall and (at least) an 
acceptable precision provides the best similarity detection 
means for the proposed framework. 

VI. RELATED WORK

In [20], class diagrams obtained by reverse engineering 
from a java software system are used to detect structural 
changes between the designs of subsequent versions of an OO 

software. The proposed algorithm reports the differences 
between the models in terms of additions, removals, changes, 
and renamings. The similarity detection used combines name 
and structural similarity metrics where only the 2-gram 
algorithm was used for the first and the semantics of OO 
design domain for the latter. [1] presents another differencing 
algorithm for OO programs. It identifies matching classes and 
methods of two given programs. The similarity is performed 
starting from the class (interface) level then down to the 
method level and finally at the node level. 

In [12], two operators (match and merge) for hierarchical 
Statecharts models management were proposed. The match 
operator makes use of static and behavioral properties, and the 
use of sanity checks for the match results obtained is proposed 
before merging the models. Indeed, it is reasonable to make 
the matching process interactive where user seeds are used to 
confirm the most obvious relations as well as to rectify 
incorrect ones.

In [9], an algorithm is proposed for matching data schemas. 
The algorithm takes two directed labeled graphs as input and 
produces as output a mapping between the corresponding 
nodes of the graphs. The computation of similarity is iterative 
and follows the idea that models are similar when their 
adjacent elements are similar. Thus, the similarity of two 
elements propagates to their respective neighbors. The 
mapping results could be humanly adjusted, and the number 
of adjustments made was used to evaluate the algorithm’s 
accuracy.

In [19], a design pattern detection methodology is 
proposed. It is based on similarity scoring between graph 
vertices. The graph similarity algorithm used takes as input 

TABLE I
CHARACTERISTICS OF THE STUDIED SPECIFICATIONS

 #Classes #Attributes #Operations #Relationships Total #Matches 

View 1 5 10 12 4 31

View 2 4 7 8 3 22

Classes - 4 
Attributes - 5 
Relationships - 2 
Operations - 7 
Total = 18
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both the system and the pattern graphs and computes 
similarity scores between their vertices. The concept of 
mutually reinforcing relationship was used in the computation. 
The method was evaluated on three open source projects, and 
the results have shown good precision mainly because the 
pattern descriptions focused only on essential information. 

In [6], an algorithm is proposed to discover mapping 
between schema elements using a broad set of techniques. It 
argued the necessity of a generic match component that 
should be studied independently.  The proposed approach 
incorporates linguistic and structure matching. The approach 
was evaluated on XML schema and compared to other 
approaches from the literature. The approach has showed an 
improvement in mapping (similar) schema elements with low 
linguistic similarity. 

Finally, [11] proposed a method for retrieving segments of 
source code from large repository. Conceptual graphs were 
used to model source code. Given a source code snippet and a 
repository of (source code) files, all documents of the 
repository are ranked according to their similarity to the code 
snippet. The similarity measure proposed exploits both 
structure and content, and is based on notion of contextual 
similarity. According to the latter, concepts should be 
compared not only by taking into account the information 
contained in them, but also by making use of the information 
contained in the concepts related to them (i.e. context).  

The proposed approach is inspired from both [20] and [12]; 
however, the use of additional concepts that have shown to 
enhance similarity detection such as the use of landmarks, 
indexes, mutual-enforcing relationships, and neighbors’ 
similarity was exploited. In addition, using information from 
the classes related to the class being compared is an integral 
part of the proposed approach; this has an identical impact as 
contextual similarity. The approach focused on requirements 
specification rather than design artifacts or source code 
because it allows the detection of conflicts at an early stage, 
which improves the quality of the developed software. The 
combination of both LCS and 2-gram algorithms to compute 
syntactic similarity provides a solid foundation, when 
combined with structural similarity; it produces an accurate 
overall similarity. Finally, because of the generic aspects of 
OO software artifacts used, the proposed approach could have 
a wide range of applications. 

VII. CONCLUSION AND FUTURE WORK

In this paper, a framework for collaborative development of 
OO formal specifications is proposed along with a similarity 
detection approach. The approach is intended to be used for 
merging specification views and checking their consistency. 
The approach combines syntactic, structural similarities to 
perform the matching, and a set of additional concept were 
proposed and their impact on improving the approach’s 
performance was investigated. The empirical results obtained 
incorporated good precision/recall combined with an 
acceptable complexity. The precision could be further 

improved if only the best match for attributes and operations 
is considered; however, this concept need to be further studied 
and evaluated. 

Since developers could specify classes differently, a 
challenging problem is to cater for subset-hood, i.e. how to 
match an operation A that has been implemented as two 
operations B and C in another similar class. Moreover, how to 
match a class X that has been implemented as two classes Y
and Z in another view. Finally, assigning weights to classes’ 
elements based on their importance could play a vital role in 
similarity detection, but the basis on which weights are 
assigned needs to be investigated.  
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