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Abstract—The purpose of planned islanding is to construct a 

power island during system disturbances which are commonly 
formed for maintenance purpose. However, in most of the cases 
island mode operation is not allowed. Therefore distributed 
generators (DGs) must sense the unplanned disconnection from the 
main grid. Passive technique is the most commonly used method for 
this purpose. However, it needs improvement in order to identify the 
islanding condition. In this paper an effective method for 
identification of islanding condition based on phase space and neural 
network techniques has been developed. The captured voltage 
waveforms at the coupling points of DGs are processed to extract the 
required features. For this purposed a method known as the phase 
space techniques is used. Based on extracted features, two neural 
network configuration namely radial basis function and probabilistic 
neural networks are trained to recognize the waveform class. 
According to the test result, the investigated technique can provide 
satisfactory identification of the islanding condition in the 
distribution system. 
 

Keywords—Classification, Islanding detection, Neural network, 
Phase space. 

I. INTRODUCTION 
ISTRIBUTED generation (DG) is typically an additional 
resource located close to the load. These DGs are 

generally below a couple of MWs and it can be wind farms, 
micro hydro turbines, photovoltaics (PV) system and other 
small generators which are supplied with biomass or 
geothermal fuel. With the integration of DG resources, the use 
of multiple DGs in the distribution system becomes a common 
practice. DG integration has some advantages such as 
environmental benefits, improved reliability, increased 
efficiency, avoid transmission and distribution (T&D) capacity 
upgrades, improved power quality, and reduced T&D line 
losses [1]-[7]. However, one of the major drawbacks of the 
DG is unintentional islanding.  

The unintentional islanding occurs when the DG is 
continued to power a part of the grid system even though 
powers from the utility do not exist, due to the fault at 
upstream or any other disturbance. Failure to trip unintentional 
islanded DG may lead to several problems in terms of power 
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quality, safety and operational problems [3], [8]-[9]. 
Furthermore, according to IEEE STD 1547-2001 and IEC 
61727, unintentional islanding had to be cleared within two 
second from DG and utility connection with the formation of 
island [8], [10]-[11]. Therefore, various methods to detect the 
unintentional islanding conditions have been receiving great 
interest among many researchers. 

Conventionally, these islanding techniques can be classified 
into two main groups, which are remote (communication) 
techniques and local (residence) techniques. Remote islanding 
detection techniques are based on communication between the 
utility and the DGs. These techniques have better reliability, 
and they are easy to implement. However, large investments 
are needed especially for small systems. Therefore, engineers 
utilized the local techniques to detect islanding condition. The 
local techniques are further categorized into two: passive 
techniques and active techniques. The passive detection 
method utilizes measured electrical quantities such as voltage, 
current and frequency. Meanwhile, in the active detection 
method, disturbances are injected into the network and the 
island is detected based on system responses to the injected 
disturbances. In passive islanding detection methods, 
computational intelligence is commonly used. This is 
preferred because more accurate online detection is needed to 
monitor the system condition. Besides, this technique usually 
has less complexity and high computational efficiency with 
good accuracy and reliability. Some existing techniques which 
combine signal processing and neural network are highlighted 
below. 

Signal processing and neural network are widely used in 
power quality event classification and detection. These 
methods are also finding their application in islanding 
condition detection for DG protection in distribution networks. 
For instance, in [12] used discrete wavelet transform (DWT) 
integrated probabilistic neural network (PNN) to classify the 
power disturbances. It used multiresolution-analysis of DWT 
and Parseval’s theorem to extract energy distribution features 
at different resolution levels. It then classifies the features 
using PNN. Other than that, PNN is incorporated with wavelet 
transform to find the location of the fault and its type [13]. 
Realizing the potential of these intelligent methods, Yin 
presented a combined method using Fast Fourier transforms 
(FFT) with artificial neural network (ANN) classifier for 
detecting islanding detection [14]. In this method, the output 
voltages of the inverter are sampled and the signal frequency 
domain is obtained by using FFT. However, the algorithm 
suitable for stationary waveforms and it can be implemented 
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using advanced digital signal processor. To avoid the 
problems of FFT, a robust approach for islanding detection is 
introduced based on the theory of wavelet and ANN [15]. In 
this method, the feature vector is extracted by utilizing DWT 
from the modal current signal seen at the DG terminal. These 
features are then trained using back propagation method.  

Similar to the aforementioned signal processing methods 
like DWT, a new technique called phase space method is 
gaining its popularity in signal processing specially in the field 
of electrical engineering. Phase space method reconstructs a 
time series in a higher-dimensional space. The aim of this 
construction is to show its features more clearly [16]. As a 
result of its unique feature characteristics, starting in 2000, the 
phase space is utilized in power quality disturbance 
classification based on geometrical properties [17]. 
Afterwards, [18] utilized phase space to detect, locate and 
classify the disturbances of power system signals. It has been 
evaluated with numbers of test, which involve eight different 
types of disturbances under various conditions. This method is 
able to locate the occurrence of disturbance and accurately 
classifies all eight disturbances. Meanwhile, in [19] phase 
space is used in fault detection of distance relay. It is claimed 
that the speed of the phase space fault detection technique is 
only 4 ms and it is suitable for real-time implementation. 
However, this technique is not being applied in islanding 
condition yet.  

Due to the clarity of features, high reliability, efficiency and 
speed, the phase space technique is proposed in this paper as 
the feature extraction method for detecting the islanding and 
non-islanding condition. Afterwards, the paper investigates the 
feasibility of using radial basis function (RBF) and 
probabilistic neural network (PNN) based classifier for 
differentiating the islanding event from others system 
disturbance events. The feature vectors, which are inputs to 
the classifier, were generated by processing the voltage signals 
containing the transients using the phase space method. The 
rest of the paper is organized as follows: section II includes 
the phase space theory. Meanwhile, in section III has 
classification methods that briefly explain two of the classifier 
method that being used, which is RBF and PNN, and section 
IV gave a system description. Section VI explains the feature 
extraction using phase space and section VII deal with the 
structure of the proposed neural network. The test result is 
presented in Section VII. Finally, the conclusion is given in 
section VIII. 

II. PHASE SPACE THEORY 
The aim of phase space is to analyze the time series in a 

higher-dimensional space called phase space. Mathematically, 
a phase space is a space, which all possible states of the 
system are presented. This phase state would respond to a 
unique point. It is convenient to use phase space to describe 
dynamic system. Each orthogonal coordinates of phase space 
would represent one of the instantaneous states of the system 
[16], [20]. Nonetheless, it is impractically to measure the 
entire variability of a dynamic system. Coincidentally, Taken 

has proved in [21] that it can be reconstructed from a time 
series of a single component using the embedding theorem.  

For this studied, as for a sinusoidal signal, the embedding of 
phase space can be defined by the general equation given as 
[18], [22]: 
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where, x1k can represent as x; x2k can represent as y; and  x3k 
can represent as z. Equation (1) shows the embedding signals 
to a phase space of dE=3 with a delay of a quarter of its period 
that is =Ns/4.  

Actually, x2
1k +x2

2k =A2, x2
2k +x2

3k =A2 and x1k+ x3k=0, 
which shows that embedded signal is an ellipse. Using x, y 
and z to represent the coordinates of the phase space x1, x2, x3, 
respectively the embedded signal in the phase space can be 
defined by the following equations 

 

⎩
⎨
⎧

=+

=+
222

0
Ayx

yx
      

⎩
⎨
⎧

=+

=+
222

0
Azy

zx
 (2) 

 
The projection of embedded signal on the xy-plane and yz-

plane is same, where the circle radius is the amplitude (A) and 
center is the origin of the plane.  

By using (2), Euclidean norm Ex can be obtained as,  
 

22 yxEx +=  (3) 
 

In this paper, the Ex would be utilized to extract special 
features for characterizing islanding and non-islanding events. 
The corresponding features are then used as inputs for the 
neural network.  

III. ARTIFICIAL NEURAL NETWORK THEORY 

A. Radial Basis Function  
Radial basis functions (RBF) emerged as a variant of 

artificial neural network in late 80’s. RBF is embedded into a 
two layer neural network, where each hidden unit implements 
a radial activation function. The network is characterized by 
set of input and set out output, where the middle of both input 
and output is a layer processing unit called hidden layer. Each 
input neuron corresponds to a component of an input vector x. 
The middle layer consists of n neurons and one bias neuron. 
Each input neuron is fully connected to middle layer neuron 
except the bias one. Each middle layer neuron computes a 
kernel function (activation function) which is usually the 
following Gaussian function [23]. More details on RBF can be 
found on [23]  
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where Ci and i the center and the width of the ith neuron in 
the middle layer, respectively. ||.|| denotes the Euclidean 
distance. The weight vector between the input layer and the ith 
middle layer neuron corresponds to the center Ci in (4). 

B. Probabilistic Neural Networks  
A probabilistic neural network (PNN) is a neural network 

that is usually utilized in classification techniques. It is based 
on Bayesian classifier technique that is commonly used in 
classical pattern-recognition application [24]. PNNs contain 
four layers such as the input layer, the pattern layer, the 
summation layer and the output layer, where each layer has 
their own function in classifying the features [25]. 

The learning speed of PNN model is very fast, making it 
suitable for fault diagnosis and signal classification problem in 
real time. In addition, online adaptation to new patters can be 
easily implemented by way of modifying its training database 
with new patterns and will able to categorize correctly.  

IV. TEST SYSTEM DESCRIPTION 
The system model is based on real system data from [26]-

[27]. In this study, the power system simulation tool 
DigSilent® is used to simulate the system model. The test 
system model consists of a radial distribution system with two 
identical DG units, which is fed by 120 kV, 1000MVA source 
at 50 Hz frequency illustrated in Fig. 1. The DG units are 
placed within a distance of 30-km with a distribution line of π-
sections. This DG unit is designed with 1200Vdc and 
controlled by a decoupled power control. The details of the 
studied system are given in Table I. 

 

 
Fig. 1 Power distribution system with multiple DG interface 

 
The voltage signals are retrieved at the target DG location 

for islanding and non-islanding conditions (others 
disturbances). The possible simulation scenarios studied are 
given as follows: 

 
 

1. Normal Condition 
2. Switching Capacitor at PCC point, near DG1 and near 

DG2. 
3. Switching Load at PCC, near DG1 and near DG2 
4. Single Line to ground fault at PCC, near DG1 and near 

DG2 (A-G, B-G, C-G) 
5. Double Line to ground fault at PCC, near DG1 and  near 

DG2 (AB-G, BC-G, CA-G) 
6. Three phase fault at PCC, near DG1 and near DG2. 
7. Single Line to ground fault at Line 1, Line 2 and Line 3 

(A-G, B-G, C-G) 
8. Double Line to ground fault at Line 1, Line 2 and Line 3 

(AB-G, BC-G, CA-G) 
9. Three phase fault at Line 1, Line 2 and Line 3. 
10. Malfunction of circuit breaker at DG terminal (islanding) 
11. Tripping of main circuit breaker and tripping of other DG 

apart from the target one (islanding) 
 

TABLE I  
SYSTEM MODEL DESCRIPTION 

Parameter Description 
External Grid Grid represented by 120KV source and 

1000MVA 
L1 Load with 15MW and 3MVar 

L2 & L3 Load with 8MW and 3MVar 
DG1 & DG2 1200Vdc 

T1 Transformer 120/25 kV 
T2&T3 Transformer 25/0.6 kV 
Line 1 25kV with 10km length 

Line 2 & Line 3 25kV with 20km length 
PCC Point Common Coupling 

A & B Point near by the respective DG (A is point 
near DG1; B is point near DG2) 

V. FEATURE EXTRACTION 
It is important to select suitable input features before 

implementing and trained in the neural network. The input of 
features of RBF and PNN is selected by extracting the three 
phase voltage signal using the phase space method. The 
purposed of feature extraction is to identify the specific 
signature of the voltage signal, which could differentiate 
between the islanding and any other event condition. 
Seventeen features are extracted from the data collected for 
training. This section described the input features accordingly 
as shown in Table II. 

The features with mean value of Ex during the period of 
fault or after first transient period to the next transient period 
of disturbance is obtained from the following equation:  

 

n

E

EMean

n

x
x

x

∑
== 1,     (5) 

 
where n is number of the sample points.  Meanwhile, features 
with standard deviation (SD) of Ex can be calculated as: 
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where xE is the mean of Ex and ixE  is the number of 
elements in the individual value of Ex for i=1,2,3….n 
 

TABLE II 
SELECTED FEATURES  

Features Description Features Description 
F1 Duration of 

Disturbance 
F10 Min Ex during 

Disturbance 
DG1 

F2 Mean Ex during 
Disturbance DG1 

F11 Min Ex during 
Disturbance 
DG2 

F3 Mean Ex during 
Disturbance DG2 

F12 Min Steady State 
during 
Disturbance 
DG1 

F4 Mean Steady 
State during 
Disturbance DG1 

F13 Min Steady State 
during 
Disturbance 
DG2 

F5 Mean Steady 
State during 
Disturbance DG2 

F14 SD Ex during 
Disturbance 
DG1 

F6 Max Ex during 
Disturbance DG1 

F15 SD Ex during 
Disturbance 
DG2 

F7 Max Ex during 
Disturbance DG2 

F16 SD Steady State 
during 
Disturbance 
DG1 

F8 Max Steady State 
during 
Disturbance DG1 

F17 SD Steady State 
during 
Disturbance 
DG2 

F9 Max Steady State 
during 
Disturbance DG2 

  

 
Fig. 2 shows an example of a single phase fault at phase A 

measured at DG1 terminal and corresponding phase space 
representation. The data in Fig. 2 (b), are grouped into two. 
Group one data is used to extract the features of total event 
such as the duration of event, while group two data represents 
steady state period during disturbance where transients are 
minimal. Fig. 2 also exhibit some of the features such as 
mean, maximum, minimum and SD of Ex values that are 
extracted.  
 

 

 
Fig. 2 Phase space feature extraction 

VI. STRUCTURE OF PURPOSED NEURAL NETWORK 
In this study, three networks are used in which each of the 

networks represent phase A, B and C respectively as shown in 
Fig. 3. The extracted seventeen features are the inputs to each 
neural network model which is developed in MATLAB® 
software.  
 

 

Fig. 3 Structure of classification technique 
 

Fig. 4 summarizes the description of input and outputs of 
neural network used for training and testing islanding 
detection scheme.  
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Fig. 4 Description of inputs and outputs of the training and simulation 

data for neural network for one phase 
 

A data set consisting of 268 samples are used for each of 
the phases, which divided into training, validation and testing.  
In these cases, 134 samples (60%) of data are used for the 
training and 67 samples (20%) of data are applied for 
validation and testing. Table III shows the number of samples 
for training, validation and testing data. 
 

TABLE III 
NUMBER OF SAMPLES FOR TRAINING, VALIDATION AND TESTING 

Data types Number of sample data, h 

Training 134 
Validation 67 
Testing 67 

 
For the RBF and PNN implementation, the same 134 

training data sets consisting of seven particular events are 
generated, while data sets with 67 different samples have been 
used for testing purposes. TABLE IV shows the target value 
based on the type of event class. The output of both RBF and 
PNN are then compared with the actual target data.  

The overall procedure of islanding and non-islanding 
detection is shown in Fig. 5.  
 

TABLE IV 
SETTING OF EVENT TYPE 

Event Type Target 

Normal Condition 1 
Line to Ground Fault  2 
Line to Line to Ground Fault 3 

Three phase to Ground Fault 4 

Load Switching 5 
Capacitor Switching 6 
Islanding 7 

 
 

Fig. 5 Proposed islanding and non-islanding (other disturbance) 
scheme 

VII. TEST RESULT 

A. RBF Performance 
The performance of islanding classification and detection 

using the phase space and RBF classifier was evaluated using 
testing data after being trained by the RBF model. This test 
data contains non-islanding and islanding events. Here, some 
of the sample of RBF testing results is shown as in Table V in 
which the yellow cells in the table denote the misclassification 
of events. As shown in the table, the RBF results are compared 
with actual or target value. The RBF outputs are not in crisp 
value in the range of 1 to 7. Hence, the RBF numbers have to 
round first before it is compared with the actual target value. 
From the Table V, note that the SL denotes as load switching, 
SC is capacitor switching, LG denotes as line to ground fault, 
LLG is line to line to ground fault, LLLG is three phase to 
ground fault and I is islanding condition. From the 
observation, it shows that most of the misclassifications are 
recorded as fault of types and also the islanding events.  

B.  PNN Performance 
Table VI shows several samples of PNN testing result in 

which the yellow cells in the table denote the misclassification 
of events. However, the PNN was testing the 67 sets of test 
data. From the Table VI, note that the SL denotes as load 
switching, SC is capacitor switching, LG denotes as line to 
ground fault, LLG is line to line to ground fault, LLLG is 
three phase to ground fault and I is islanding condition. Table 
VI shows that most of the misclassification is recorded in load 
and capacitor switching cases. Comparing the testing result of 
PNN and RBF, it can be concluded that the performance of 
PNN is better than RBF in detecting and classifying islanding 
condition. 

The comparison of neural network classification accuracy 
for islanding and non-islanding events of the phase 
respectively is depicted in Table VII. It is observed that the 
overall accuracies of non-islanding condition in the case of 
RBF are 88.718%, while 94.872% for the PNN cases. 
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However, from the observation, the RBF cannot detect the 
islanding condition at all. Meanwhile, the average accuracies 
of islanding in PNN are most perfect, which is 100%. The 
performance comparison for computation time is represented 

in TABLE VIII. It is shown that learning epochs, training time 
and testing time of PNN is much lower than RBF. Thus, the 
PNN-based technique is more accurate and faster compared to 
other existing techniques for islanding detection. 

 
TABLE V 

RBF TESTING RESULT 

Case Actual RBF-A Round Case Actual RBF-B Round Case Actual RBF-C Round 

SL 5 4.9081 5 SL 5 5.1344 5 SL 5 4.9521 5 

SC 6 6.0533 6 SC 6 6.1178 6 SC 6 6.2794 6 

SC 6 5.9072 6 SC 6 5.3348 5 SC 6 6.1878 6 

LG 2 2.0462 2 LG 2 2.2024 2 LG 2 2.5955 3 

LLG 3 3.0384 3 LLG 3 2.846 3 LLG 3 2.7022 3 

LG 2 2.1744 2 LG 2 3.1022 3 LG 2 0.541 1 

LLG 3 4.0237 4 LLG 3 2.8829 3 LLG 3 -20.221 -20 

LG 2 1.9905 2 LG 2 2.1702 2 LG 2 1.8132 2 

LLLG 4 2.5498 3 LLLG 4 4.2646 4 LLLG 4 3.129 3 

LG 2 1.9543 2 LG 2 1.9916 2 LG 2 1.8237 2 

LLG 3 2.0169 2 LLG 3 3.2049 3 LLG 3 -31.127 -31 

LLG 3 3.2548 3 LLG 3 3.0152 3 LLG 3 2.3049 2 

LLG 3 2.7168 3 LLG 3 3.0336 3 LLG 3 3.867 4 

LLLG 4 4.0821 4 LLLG 4 3.9572 4 LLLG 4 4.0517 4 

LLLG 4 4.0354 4 LLLG 4 3.9791 4 LLLG 4 3.0662 3 

LG 2 1.9656 2 LG 2 2.3403 2 LG 2 2.4988 2 

LG 2 1.7735 2 LG 2 2.5248 3 LG 2 1.712 2 

LG 2 1.9192 2 LG 2 1.8725 2 LG 2 2.0795 2 

LG 2 1.8088 2 LG 2 1.8466 2 LG 2 2.0808 2 

LG 2 2.4213 2 LG 2 2.6713 3 LG 2 2.1685 2 

LG 2 2.0238 2 LG 2 2.1249 2 LG 2 2.044 2 

LLG 3 2.721 3 LLG 3 2.9909 3 LLG 3 4.2374 4 

LLG 3 2.9528 3 LLG 3 2.9967 3 LLG 3 3.1164 3 

LLLG 4 3.9019 4 LLLG 4 3.2527 3 LLLG 4 3.1592 3 

LLLG 4 3.878 4 LLLG 4 4.2321 4 LLLG 4 3.882 4 

LG 2 1.9165 2 LG 2 2.0909 2 LG 2 1.2157 1 

LG 2 2.5805 3 LG 2 2.1808 2 LG 2 1.6186 2 

LG 2 2.1589 2 LG 2 2.0236 2 LG 2 2.2894 2 

LG 2 2.2079 2 LG 2 1.8411 2 LG 2 0.9667 1 

LLG 3 2.8944 3 LLG 3 2.6315 3 LLG 3 2.9744 3 

LLLG 4 4.0597 4 LLLG 4 3.4842 3 LLLG 4 4.0495 4 

LLLG 4 3.8481 4 LLLG 4 3.8853 4 LLLG 4 3.8639 4 

I 7 12.3201 12 I 7 12.323 12 I 7 10.616 11 

I 7 -0.2188 0 I 7 2.4451 2 I 7 4.8138 5 
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TABLE VI 
PNN TESTING RESULT 

Case Actual PNN-A Case Actual PNN-B Case Actual PNN-C 

SL 5 5 SL 5 5 SL 5 5 

SL 5 6 SL 5 6 SL 5 6 

SL 5 6 SL 5 6 SL 5 6 

SL 5 5 SL 5 5 SL 5 5 

SC 6 6 SC 6 6 SC 6 6 

SC 6 6 SC 6 5 SC 6 6 

SC 6 6 SC 6 5 SC 6 5 

LG 2 2 LG 2 2 LG 2 2 

LLG 3 3 LLG 3 3 LLG 3 3 

LG 2 2 LG 2 2 LG 2 2 

LLG 3 3 LLG 3 3 LLG 3 6 

LG 2 2 LG 2 2 LG 2 2 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LG 2 2 LG 2 2 LG 2 2 

LG 2 2 LG 2 2 LG 2 2 

LG 2 2 LG 2 2 LG 2 2 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LG 2 2 LG 2 2 LG 2 2 

LG 2 2 LG 2 2 LG 2 2 

LG 2 2 LG 2 2 LG 2 2 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

I 7 7 I 7 7 I 7 7 

I 7 7 I 7 7 I 7 7 
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TABLE VII 
COMPARISON OF NEURAL NETWORK CLASSIFICATION ACCURACY 

 Classification accuracy (%) 
Events RBF PNN 

Phase A 
Islanding 0 100 
Non-Islanding 96.923 96.923 

Phase B 
Islanding 0 100 
Non-Islanding 90.769 93.846 

Phase C 
Islanding 0 100 
Non-Islanding 78.461 93.846 

Total Accuracy 
Islanding 0 100 
Non-Islanding 88.718 94.872 

 
 

TABLE VIII 
PERFORMANCE COMPARISON BETWEEN NEURAL NETWORKS  

Parameter RBF PNN 
Learning Epochs 125 1 

Training CPU Time (Sec) 0.123759 0.115925 
Testing CPU Time (Sec) 0.722817 0.203702 

VIII. CONCLUSION 
An effective method for the islanding and non-islanding 

detection using neuro-phase space technique is presented in 
this paper. The method uses three classifiers for each phase 
and takes a measurement of voltage signals as the inputs. The 
phase space techniques were utilized for extracting all the 
special features for classifying the transients. The features 
extracted from phase space technique are very simple and 
effective. Two types of classifiers namely RBF and PNN were 
investigated. The results show that the PNN classifier 
performs better than RBF classifier. The PNN algorithm takes 
less computation and it efficiently classified the islanding and 
non-islanding events. 
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