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Bifurcations of a delayed prototype model
Changjin Xu

Abstract—In this paper, a delayed prototype model is studied.
Regarding the delay as a bifurcation parameter, we prove that a
sequence of Hopf bifurcations will occur at the positive equilibrium
when the delay increases. Using the normal form method and
center manifold theory, some explicit formulae are worked out for
determining the stability and the direction of the bifurcated periodic
solutions. Finally, Computer simulations are carried out to explain
some mathematical conclusions.
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I. INTRODUCTION

IN 2002, Uçar[1] investigated the following simple nonlin-
ear system with delay element

dx(t)
dt

= δx(t − τ) − ε[x(t− τ)]3, (t ≥ t0), (1)

where δ and ε are positive parameters; t0 is the initial interval
and τ > 0 corresponds to the delay time in which represents
the time interval between the start of an event at one point
and its resulting action at another point in the system. Uçar[1]
presented the rich dynamical behaviors of system (1) by
means of fifth-order Runge-Kutta ordinary differential solver,
embedded in Matlab toolboxes. It has been shown that the
simple system (1) with a time delay can exhibit very complex
behavior include chaos and it can be used as a prototype model
for investigating chaotic behaviors in engineering science. In
2003, Uçar[2] further studied the model (1). The effect of time
delay on the global behaviors of system (1) had been analyzed
with the bifurcation diagram for a range of the time delay.
By use of the Euler method and Runge-Kutta discretization,
Peng[3] proposed a discrete version of system (1) as follows

u(k+1) = u(k)+α(δ, τ, n)u(k−n)−β(ε, τ, n)u(k−n)3, (2)

where α(δ, τ, n) = δτ/n, β(ε, τ, n) = ετ/n and u(k) is
an approximate value to x(kh), h = 1/n is a step-size. In
[3], efficient computation of Hopf bifurcation, stable limit
cycle(periodic solutions), symmetrical breaking bifurcations
and chaotic behavior of system (2) was proposed. In order to
investigate the effect of parameters of system, Li et al.[4] made
an discussion on the Hopf bifurcation of following system

dx(t)
dt

= ax(t− τ) − b[x(t− τ)]3, (3)

which is in fact equivalent to system (1). By choosing the
coefficient a as a bifurcation parameter, the local stability and
the existence of Hopf bifurcation were considered. Moreover,
the stability of bifurcating periodic solutions and the direction
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of Hopf bifurcation were determined by applying the normal
form theory and center manifold theorem.

Based on former work[1-4], we further devote to explore
the dynamical behaviors of system (1), i.e., by regarding the
delay as bifurcation parameter, we will investigate the natures
of Hopf bifurcation of system (1). In recent years, there are a
number of papers which deal with this topic(see[5-19]).

This paper is organized as follows. In Section 2, the stability
of the equilibrium and the existence of Hopf bifurcation at
the equilibrium are studied. In Section 3, the direction of
Hopf bifurcation and the stability and periodic of bifurcating
periodic solutions on the center manifold are determined. In
Section 4, numerical simulations are carried out to illustrate
the validity of the main results. Some main conclusions are
drawn in Section 5.

II. STABILITY OF THE EQUILIBRIUM AND LOCAL HOPF

BIFURCATIONS

Considering the biological interpretations of population, in
this paper, we only investigated the positive equilibrium point
of system (1). It is obvious that system (1) has a unique

positive equilibrium point x∗ =
√

δ
ε
.

Let x̄(t) = x(t) − x∗, Substituting this into (1) and still
denote x̄(t) by x(t), then (1) takes the form

dx(t)
dt

= −2δx(t− τ) − 3
√
δεx2(t− τ) − εx3(t− τ), (4)

Then the linearization of system (4) at the equilibrium (0,0)
is given by

dx(t)
dt

= −2δx(t− τ), (5)

whose associated characteristic equation of (5) takes the form

λ+ 2δe−λτ = 0, (6)

Let λ = iω0, τ = τ0, and substituting this into (5). Separating
the real and imaginary parts, we get

2δ cosω0τ = 0, 2δ sinω0τ = ω0. (7)

Since a1 < 0, then it is easy to obtain

ω0 = 2δ, τ = τk =
1
2δ

[
kπ +

π

2

]
, k = 0, 1, 2, · · · . (8)

Note that when τ = 0, (6) becomes

λ = −2δ < 0. (9)

The above analysis leads to

Lemma 2.1. System (1) admits a pair of purely imaginary
roots ±iω0 when τ = τk, k = 0, 1, 2, · · · .

Let λ(τ) = α(τ) + iω(τ) be the root of Eq.(6) near
τ = τk satisfying α(τk) = 0, ω(τk) = ω0. Due to functional
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differential equation theory, for every τk, k = 0, 1, 2, · · · , there
exists a ε > 0 such that λ(τ) is continuously differentiable in
τ for |τ − τk| < ε. Substituting λ(τ) into the left hand side
of (6) and taking the derivative of λ with respect to τ , we get

[
dλ

dτ

]−1

=
1

2δλe−λτ
−
τ

λ
.

It follows together with (7) that

Re

[
dλ

dτ

] ∣
∣∣
−1

τ=τk

= Re

{
1

2δλe−λτ

}

τ=τk

=
sinω0τk

2δω0
=

1
4δ2

> 0

Thus

sign

{

Re

[
dλ

dτ

] ∣
∣∣
τ=τk

}

= sign

{

Re

[
dλ

dτ

] ∣
∣∣
−1

τ=τk

}

> 0.

According to the results of Kuang[20] and Hale[21], we have

Theorem 2.1. The positive equilibrium x∗ of system (1) is
asymptotically stable for τ ∈ [0, τ0) and unstable for τ ≥
τ0. System (1) underdoes a Hopf bifurcation at the positive
equilibrium x∗ when τ = τk, k = 0, 1, 2, · · · .

III. DIRECTION AND STABILITY OF THE HOPF

BIFURCATION

In the previous section, we have obtained conditions for
Hopf bifurcation to occur when τ = τk. In this section, we
shall derive the explicit formulae for determining the direction,
stability, and period of these periodic solutions bifurcating
from the equilibrium x∗ at these critical value of τ , by using
techniques from normal form and center manifold theory [22],
Throughout this section, we always assume that system (4)
undergoes Hopf bifurcation at the equilibrium x∗ for τ = τk,
and then ±iω0 are corresponding purely imaginary roots of
the characteristic equation at the equilibrium x∗.

For convenience, let x̄(t) = x(τt), τ = τk + μ and still
denote x̄(t) by x(t), then system (4) can be written as an
FDE in C = C[−1, 0], R) as

ẋ(t) = Lμ(xt) + F (μ, xt), (10)

where xt(θ) = x(t+ θ) ∈ C, and Lμ : C → R,F : R×C →
R are given by

Lμ(φ) = −(τk + μ)2δφ(−1), (11)

and

f(μ, φ) = (τk + μ)[−3
√
δεφ2(−1) − εφ3(−1)]. (12)

From the discussions in Section 2, we know that if μ = 0, then
system (10) undergoes a Hopf bifurcation at the zero equilib-
rium and the associated characteristic equation of system (10)
has a pair of simple imaginary roots ±iω0τk .

By the Riesz representation theorem, there exists a matrix
whose components are bounded variation functions η(θ, μ) in
[−1, 0] → R, such that

Lμφ =
∫ 0

−1

dη(θ, μ)φ(θ). (13)

In fact, choosing

η(θ, μ) = 2δδ1(θ + 1), (14)

where δ1(θ) is Dirac delta function, then (14) is satisfied. For
ϕ ∈ (C[−1, 0], R), define

A(μ)φ =

{
dφ(θ)
dθ

, −1 ≤ θ < 0,∫ 0

−1
dη(s, μ)φ(s), θ = 0

(15)

and

Rφ =
{

0, −1 ≤ θ < 0,
f(μ, φ), θ = 0. (16)

Then (1) is equivalent to the abstract differential equation

ẋt = A(μ)xt +R(μ)xt, (17)

where ut(θ) = u(t+ θ), θ ∈ [−1, 0].
For ψ ∈ C([0, 1], R∗), define

A∗ψ(s) =

{
− dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1 dη
T (t, 0)ψ(−t), s = 0.

(18)

For φ ∈ C([−1, 0], R) and ψ ∈ C([0, 1], R∗), define the
bilinear form

< ψ, φ >= ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0

ψT (ξ − θ)dη(θ)φ(ξ)dξ,

(19)
where η(θ) = η(θ, 0). We have the following result on the
relation between the operators A = A(0) and A∗.

Lemma 3.1. A = A(0) and A∗ are adjoint operators.

The proof follows from (19). Here we omit it.
By the discussions in Section 2, we know that ±iω0τk are
eigenvalues of A(0), and they are also eigenvalues of A∗

corresponding to iω0τk and −iω0τk, respectively. By direct
computation, we have the following result.

Lemma 3.2. The vector q(θ) = eiω0τkθ, θ ∈ [−1, 0],
is the eigenvector of A(0) corresponding to the eigenvalue
iωk, and q∗(s) = Deiω0τks, s ∈ [0, 1], is the eigenvector
of A∗ corresponding to the eigenvalue −iω0τk, moreover,
< q∗(s), q(θ) >= 1, where D = 1

1−2δeiω0τ
k
.

Next, we use the same notations as those in Hassard,
Kazarinoff and Wan[22], and we first compute the coordinates
to describe the center manifold C0 at μ = 0. Let xt be the
solution of Eq.(1) when μ = 0.

Define

z(t) =< q∗, xt >, W (t, θ) = xt(θ) − 2Re{z(t)q(θ)} (20)

on the center manifold C0, and we have

W (t, θ) = W (z(t), z̄(t), θ), (21)

where

W (z(t), z̄(t), θ) = W (z, z̄) = W20
z2

2
+W11zz̄+W02

z̄2

2
+· · ·

(22)
and z and z̄ are local coordinates for center manifold C0 in
the direction of q∗ and q̄∗. Noting that W is also real if xt is
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real, we consider only real solutions. For solutions xt ∈ C0

of (1),

ż(t) = < q∗(s), ẋt >=< q∗(s), A(0)ut +R(0)ut >
= < q∗(s), A(0)xt > + < q∗(s), R(0)xt >
= < A∗q∗(s), xt > +q̄∗(0)R(0)xt

−

∫ 0

−1

∫ θ

ξ=0

q̄∗(ξ − θ)dη(θ)A(0)R(0)xt(ξ)dξ

= < iω0τkq
∗(s), xt > +q̄∗(0)f(0, xt(θ)

def= iω0τkz(t) + q̄∗(0)f0(z(t), z̄(t)). (23)

That is
ż(t) = iω0τkz + g(z, z̄), (24)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (25)

Hence, we have

g(z, z̄) = q̄∗(0)f0(z, z̄) = q̄∗(0)f0(0, xt) = D̄f0(0, xt),
(26)

where

f0(0, xt) = τk

[
−3

√
δεx2

t (−1) − εx3
t (−1)

]
.

Noticing that xt(θ) = W (t, θ)+zq(θ)+z̄q̄ and q(θ) = eiω0τkθ,

we have

xt(0) = z + z̄ +W20(0)
z2

2
+W11(0)zz̄

+W02(0)
z̄2

2
+ · · · ,

xt(−1) = e−iω0τkz + eiω0τk z̄ +W20(−1)
z2

2

+W11(−1)zz̄ +W02(−1)
z̄2

2
+ · · · .

It follows from (26) that

g(z, z̄) = q̄∗(0)F0(z, z̄) = D̄f0(0, xt)

= −D̄τk

[
3
√
δεe−iω0τkz2 + 6Re{eiω0τk}zz̄

+3
√
δεeiω0τk z̄2

]
− D̄τk

{

3
√
δε [W11(−1)

+
1
2
W20(−1) +W11(0)e−iω0τk

]

+
1
2
W20(0)eiω0τk + 3εe−iω0τk

}

z2z̄ + · · · .

Then we obtain

g20 = −6D̄τk
√
δεe−iω0τk , g11 = −6D̄τkRe{eiω0τk},

g02 = 6
√
δεeiω0τk ,

g21 = −2D̄τk

{

3
√
δε

[
W11(−1) +

1
2
W20(−1)

+W11(0)e−iω0τk +
1
2
W20(0)eiω0τk

]
+ 3εe−iω0τk

}

.

For unknown W11(0),W11(−1),W20(0),W20(−1) in g21, we
still need to compute them. From (17) and (20), we have

W
′

=
{
AW − 2Re{q̄∗(0)f0q(θ)}, −1 ≤ θ < 0,
AW − 2Re{q̄∗(0)f0q(θ)} + f0, θ = 0

def= AW +H(z, z̄, θ), (27)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+ · · · . (28)

It follows from (27) and (28) that

(A− 2iω0τk)W20(θ) = −H20(θ), (29)

AW11(θ) = −H11(θ). (30)

We know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ) − q∗(0)f̄0q̄(θ)
= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ). (31)

Comparing the coefficients of (31) with (28) gives that

H20(θ) = −g20q(θ) − ḡ02q̄(θ), (32)

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (33)

From (29),(32) and the definition of A , we get

Ẇ20(θ) = 2iω0τkW20(θ) + g20q(θ) + ¯g02q̄(θ). (34)

Noting that q(θ) = q(0)eiω0τkθ , we have

W20(θ) =
ig20

ω0τk
q(0)eiω0τkθ+

iḡ02

3ω0τk
q̄(0)e−iω0τkθ+E1e

2iωkθ,

(35)
where E1 is a constant vector. Similarly, from (30), (33) and
the definition of A, we have

Ẇ11(θ) = g11q(θ) + ¯g11q̄(θ), (36)

W11(θ) = −
ig11

ω0τk
q(0)eiω0τkθ +

iḡ11

ω0τk
q̄(0)e−iω0τkθ + E2.

(37)
where E2 is a constant vector.

In what follows, we shall seek appropriate E1, E2 in (35),
(37), respectively. It follows from the definition of A, (29) and
(30) that

∫ 0

−1

dη(θ)W20(θ) = 2iω0τkW20(0) −H20(0) (38)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(0), (39)

where η(θ) = η(0, θ).
In view of (27) and (28), we have

H20(0) = −g20q(0)− ¯g02q̄(0) + 2τk
(
−3

√
δεe−iω0τk

)
(40)

and

H11(0) = −g11q(0) − ¯g11(0)q̄(0) + 2τk
(
−3Re{eiω0τk}

)
.

(41)
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From (38), (39) and the definition of A, we have
{

−2δW20(−1) = 2iω0τkW20(0) −H20(0),
−2δW11(−1) = −H11(0). (42)

Noting that

(
iω0τkI −

∫ 0

−1

eiω0τkθdη(θ)
)
q(0) = 0, (43)

(
−iω0τkI −

∫ 0

−1

e−iω0τkθdη(θ)
)
q̄(0) = 0 (44)

and substituting (35) and (40) into the first equation of (42),
we have
(

2iω0τkI −

∫ 0

−1

e2iω0τkθdη(θ)
)
E1 = −2

(
3τk

√
δεe−iω0τk

)
.

(45)
That is

(
2iω0 + 2δe−2iω0τk

)
E1 = −2

(
3
√
δεe−iω0τk

)
.

Thus

E1 = −
3
√
δεe−iω0τk

iω0 + δe−2iω0τk

. (46)

Similarly, substituting (37) and (41) into the second equation
of (42), we have

(∫ 0

−1

dη(θ)
)
E2 = −2

(
3τkRe{eiω0τk}

)
. (47)

That is

2δE2 = 2
(
3Re{eiω0τk}

)
,

which leads to

E2 =
3Re{eiω0τk}

δ
. (48)

In view of (35), (37), (46) and (48), we can calculate g21 and
derive the following values:

c1(0) =
i

2ω0τk

(
g20g11 − 2|g11|2 −

|g02|
2

3

)
+
g21

2
,

μ2 = −
Re{c1(0)}
Re{λ′(τk)}

, β2 = 2Re(c1(0)),

T2 = −
Im{c1(0)} + μ2Im{λ

′

(τk)}
ω0τk

,

which give a description of the Hopf bifurcation periodic
solutions of (1) at τ = τk on the center manifold. From the
discussion above, we have the following result.

Theorem 3.3. For system (1), if (H) holds, the periodic
solution is supercritical (subcritical) if μ2 > 0 (μ2 < 0);
The bifurcating periodic solutions are orbitally asymptotically
stable with asymptotical phase (unstable) if β2 < 0 (β2 > 0);
The periods of the bifurcating periodic solutions increase
(decrease) if T2 > 0 (T2 < 0).

IV. NUMERICAL EXAMPLES

In this section, to illustrate the analytical results found, let
us consider the following special case of system (1)

dx(t)
dt

= 0.6x(t− τ) − 2[x(t− τ)]3, (49)

which has a unique positive equilibrium x∗ ≈ 0.5477. It
follows from Theorem 2.1 that ω0 ≈ 1.2083, τ0 ≈ 1.3002.
By means of Matlab 7.0, we get λ

′

(τ0) ≈ 1.2055 −
0.3847i, c1(0) ≈ −1.4535 − 7.0342i, μ2 ≈ 1.2057, β2 ≈
−2.9070, T2 ≈ 0.5401. Then it follows that μ2 > 0 and
β2 < 0. By Theorem 2.1, we know that the positive equi-
librium is stable when τ < τ0. Figs.1-2 show that the positive
equilibrium x∗ ≈ 0.5477 is asymptotically stable when τ =
1.2 < τ0 ≈ 1.3. A Hopf bifurcation occurs when τ = τ0, the
positive equilibrium loses its stability and a periodic solution
bifurcating from the positive equilibrium occurs for τ > τ0.
The bifurcation is supercritical and the bifurcating periodic
solution is orbitally asymptotically stable. Figs.3-4 show that
a family of periodic solutions bifurcate from the positive
equilibrium x∗ ≈ 0.5477 when τ = 1.4 > τ0 ≈ 1.3002.
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Figs.1-2 The trajectories graphs of system (49) with τ = 1.2 <
τ0 ≈ 1.3002 and the initial value 0.8.
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Figs.3-4 The trajectories graphs of system (49) with τ = 1.4 >
τ0 ≈ 1.3002 and the initial value 0.8.

V. CONCLUSIONS

In this paper, we have investigated the properties of Hopf
bifurcation in a nonlinear delay population model. By using
the delay as bifurcation parameter, it has been shown that
Hopf bifurcation occurs when the delay τ passes through
some critical values τ = τk, k = 0, 1, 2, · · · . This means that
a class of periodic orbits bifurcates from the corresponding
equilibrium. Moreover, the direction of Hopf bifurcation and
the stability of the bifurcating periodic orbits are derived by
applying the normal form theory and center manifold theorem.
To verify some of the mathematical results, we have taken an
example for the model. Computer simulations are carried out
for some artificial chosen data.
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