
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2173

Abstract—Transmission control protocol (TCP) Vegas detects

network congestion in the early stage and successfully prevents
periodic packet loss that usually occurs in TCP Reno. It has been
demonstrated that TCP Vegas outperforms TCP Reno in many
aspects. However, TCP Vegas suffers several problems that affect its
congestion avoidance mechanism. One of the most important
weaknesses in TCP Vegas is that alpha and beta depend on a good
expected throughput estimate, which as we have seen, depends on a
good minimum RTT estimate. In order to make the system more
robust alpha and beta must be made responsive to network conditions
(they are currently chosen statically). This paper proposes a modified
Vegas algorithm, which can be adjusted to present good performance
compared to other transmission control protocols (TCPs). In order to
do this, we use PSO algorithm to tune alpha and beta. The simulation
results validate the advantages of the proposed algorithm in term of
performance.

Keywords—Self-managing, Congestion control, TCP.

I. INTRODUCTION
considerable amount of research has been carried out on
the transmission control protocol (TCP) congestion

avoidance mechanism in order to enhance the performance of
networks in view of the fact that a slow start, fast
retransmission and congestion control mechanism was
proposed to effectively regulate the transmission [1]. The
Vegas algorithm, introduced by Brakmo et al. as an alternative
to TCP Reno [2], has higher performance in compare with
other congestion control algorithms [3, 4 and 5]. The Vegas
algorithm tries to adjust number of queued packets in an
acceptable level i.e. between alpha and beta. Alpha and beta
are the lower bound and upper bound of the desired queue
length, that have been set statically in the Vegas algorithm
(alpha=1 and beta=3). Unfortunately, these static values in the
Vegas algorithm cannot lead to desired performance level. We
propose a modified Vegas, namely SMCC, in which alpha and
beta are tuned dynamically with respect to the network
conditions. In this way we use PSO algorithm to find optimum
points of alpha and beta for any network conditions. SMCC is
a source algorithm that estimates network conditions by using
measured RTTs and then adjusts alpha and beta to direct
network to a high-performance state.

Sh. Jamali is with the University of Mohaghegh Ardabili, Ardabili, Ardabil
(corresponding author to provide phone: +98451553917; e-mail: jamali@
iust.ac.ir).

A.Eftekhari is now MSc. Student at the Department of Computer, Islamic
Azad University of Arak, Arak, Iran (e-mail:eftekhari@gmail.com).

The rest of the paper is organized as follows. In Section II,
the Vegas algorithm is reviewed. In section III we present an
introduction to PSO method. Section IV presents a
methodology to apply PSO technique to design a congestion
control algorithm and brings simulation results of the
algorithm in ns-2 environment. Finally concluding remarks are
reported in Section VI.

II. TCP VEGAS
TCP-Vegas [6] is a delay-based transport protocol, which

adjusts its congestion window according to the phases it
performs and the gap between the real and estimated
sending rates. Three thresholds α, β and γ are defined in
Vegas. TCP senders compare with γ in slow start phase and
with α and β in congestion avoidance phase to determine
window adjustments. The estimation of the gap is done once
per RTT period. Vegas sets BaseRTT to the minimum of all
measured round trip times (RTTs) and computes the expected
rate as Expected =w/BaseRTT, where w denotes window size.
Let RTTa denote the average measured RTT, then Vegas
calculates the Actual rate as Actual=w/RTTa. Then the gap
between real and estimated sending rates is =(Expected -
Actual)*BaseRTT.

In slow start phase, the congestion window is smaller than
the slow start threshold Wth. When receiving a new ACK and

 is less than γ, TCP senders increase w by one. If not, Vegas
decreases the window size by a specific percentage p, sets Wth
to be the reset value Wr

th, and switches to the congestion
avoidance phase. Slow start is initiated at the very beginning
or after a timeout event and ends when the window is larger
than Wth. Vegas implements timeout mechanism by a coarse
grain timer, which is checked once per 500 ms. The window
update in slow start phase can be described as in (1).

⎩
⎨
⎧

≥−×
+

=
γΔ
γΔ

if)p1(w
if1w

w
p (1)

When TCP sender is in congestion avoidance phase and
receives a new ACK, Vegas increases the window by 1/w if
is less than α and decrements it by 1/w if is larger than β,
and keeps it unchanged when falls between α and β. Detail
is shown in (2).

SMCC: Self-Managing Congestion Control
Algorithm

Sh. Jamali, and A. Eftekhari

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2174

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥−

≤+

=

βΔ

βΔα

αΔ

if
w
1w

ifw

if
w
1w

w pp (2)

Another two effective congestion avoidance mechanisms
are fast retransmit and fast recovery, which retransmit lost
data packets when receiving three duplicate ACKs without
waiting for timeout. Besides coarse grain timeout mechanism,
Vegas performs retransmission with another fine grain timer
via time stamp included in packets, which allows Vegas to
retransmit faster than other TCP variations with only coarse
grain timer. More details about Vegas are refer to [6,7].

III. PARTICLE SWARM OPTIMIZATION ALGORITHM
Particle swarm optimization (PSO) algorithm was

developed in 1995 by James Kennedy and Russell Eberhart,
which is a robust stochastic optimization technique based on
the movement and intelligence of swarms. It uses a number of
particles that constitute a swarm moving around in the search
space looking for the best solution [8, 9 and 10].

In PSO algorithm, a swarm consists of m particles, in which
each particle is treated as a point in a N-dimensional space
which adjusts its “flying” according to its own flying
experience as well as the flying experience of other particles.
Each particle uses velocity to determine the direction and
value of its “flying”, which follows the current optimum in a
N-dimension space. The position and velocity of particle i at
iteration k can be respectively expressed as Xi(k)=[Xi1(k),
Xi2(k),…, XiN(k)] and Vi(k)=[Vi1(k), Vi2(k),…, ViN(k)]. Each
particle keeps track of its coordinates in the solution space
which are associated with the best solution that has achieved
so far by that particle. This value is called personal best Pi,best,
which can be expressed as Pi,best=[Pi,1(k), Pi,2(k),…, Pi,N(k)].
Another best value that is tracked by the PSO is the best value
obtained so far by any particle in the neighborhood of that
particle. This value is called global best Pg,best, which can be
expressed as P g,best =[Pg,1(k), Pg,2(k),…, Pg,N(k)]. The basic
concept of PSO lies in accelerating each particle toward its
personal best and the global best locations. The velocity and
position of particle i at iteration k+1 can be calculated
according the following equations:

Vi (k+1) = wVi(k) +c1r1(Pi,best (k) - Xi(k)) + c2r2(Pg,best (k) - Xi(k))

Xi (k+1) = Xi (k) + Vi (k)

Where Xi(k) and Vi(k) are the position and velocity of the
particle respectively, ω is the inertia weight, c1 and c2 are
constants which determine the influence of the particle’s best
previous position Pi,best (k) and the population’s best previous
position Pg , best(k). Parameters r1 and r2 are random numbers
uniformly distributed within[0,1].

IV. PROPOSED MODEL: THEORIES, DESIGN AND SIMULATION
RESULTS

A. Design Principles
As we saw in section II, in the Vegas algorithm, α and β

play important roles in the system performance. The Vegas
algorithm tries to adjust number of queued packets between α
and β. In original Vegas alpha and beta have been set
statically (α=1 and β=3). It can be found that these static
values in the Vegas algorithm cannot leads to desired level of
performance. Therefore, we propose a modified Vegas, called
SMCC algorithm in which α and β are tuned dynamically with
respect to the network conditions such as RTT, bottleneck
bandwidth, etc. In this way we use PSO algorithm to find
optimum points of α and β for any network conditions. SMCC
is a source algorithm that estimates network conditions by
using measured RTTs and then determines values of alpha and
beta which direct the network to its high-performance state.

B. Packet-level Simulation
To implement this protocol, we use the packet-level

simulator ns-2 [11], and modify the TCP Vegas module to
implement SMCC algorithm. We present the simulation
results to demonstrate the validity of our design. We
demonstrate through simulations that SMCC outperforms TCP
Vegas/RED in a typical network. Our simulations also show
that SMCC drops fewer packets in compare with TCP Vegas.
It dampens oscillations and smoothly converges to high
utilization and small queue size.

Our simulation uses the topology in Fig. 1 and considers a
ten-connection network that has a single bottleneck link. We
suppose that all flows are long-lived, have the same end-to-
end propagation delay and always are active. As follows we
consider two simulation scenarios.

Fig. 1 Network Topology

1) Scenario 1
In this scenario bottleneck capacity is 20 Mbps and flows

RTT has been considered 40 ms. All flows start at t=0 and
continue till t=200 second. The simulation results of this
congestion control system are shown in figures (2-4). In order
to reference to the results of these figures, we note that:

1. Packet Drop: Fig. 2 and Table I show that SMCC
behaves better than Vegas in term of dropped packets count.
This comes from fine tuning of α and β that is performed by
SMCC.

 Bottleneck
PUBLIC

INTERNET

S1

S2

Sk

R1 R2

D1

S3 D3

Dk

D2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2175

2. Queue evolution: As can be found in Fig. 3, while
Vergas's queue is fluctuating between full and empty states,
the SMCC's queue is converging to equilibrium size of 2
packets. This means that queuing delay and jitter are
negligible for SMCC.

3. Utilization: According to the Fig. 4, and Table I after the
startup transient of the sources, utilization of bottleneck link
for SMCC remains always over the 98% that is good enough.

TABLE I

COMPARSION OF SMCC AND VEGAS IN A TYPICAL NETWORK
 Dropped

Packets Count
Queue

Size
Utilization

TCP Vegas 14329 1.58 91.94
SMCC 817 1.8 98.02

4. Stability and speed of convergence: As we can see in

Fig. 2, Fig. 3, and Fig. 4, drop count, queue size and the
utilization of SMCC have decreasing oscillation level and
track stable behavior in compare with Vegas. Note that
convergence is an important feature for any congestion control
scheme.

2) Scenario 2
As we know, high-speed networks with high bandwidth-

delay (HBD) product present a unique environment where
currently TCP may have a major challenge to its performance.
In this scenario we consider a high bandwidth-delay product
network, in which, bottleneck capacity is 100 Mbps and flows
RTT is 40 ms. Figs. (5-7) and Table II show the simulation
results for this scenario.

TABLE II

COMPARSION OF SMCC AND VEGAS IN A HBD NETWORK
 Dropped

Packets Count
Queue

Size
Utilization

TCP Vegas 822 0.14 70
SMCC 93 0.34 75.64

Simulation results demonstrate that as capacity increases,

bottleneck utilization decreases significantly for both Vegas
and SMCC, but SMCC presents better performance than TCP
Vegas in term of bottleneck utilization, queue size and number
of dropped packets. Note that this feature makes SMCC
suitable for HBD environments.

Fig. 2 SMCC drops fewer packets than Vegas

Fig. 3 SMCC’s queue is shorter and more stable than Vergas queue

Fig. 4 Utilization of Vegas and SMCC

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2176

Fig. 5 SMCC drops fewer packets than Vegas in HBD environments

Fig. 6 SMCC’s queue is shorter and more stable than Vergas

Fig. 7 Utilization of Vegas and SMCC

V. CONCLUSION
In this paper we have designed a bio-inspired congestion

control algorithm. Toward this design, the following steps
were considered: (1) formulating the congestion control
problem as an optimization problem. (2) Choosing PSO
technique as solver of the optimization problem. (3)
Implementing of the model in ns-2 environment.

Simulation results show that the proposed algorithm is
globally converging to its equilibrium and is high-performance
in this equilibrium.

REFERENCES
[1] V. Jacobson, Congestion avoidance and control, in: ACM

SIGCOMM_88, Stanford, CA, 1988, pp. 314–329.
[2] L.S. Brakmo, L.L. Peterson, TCP Vegas: end to end congestion

avoidance on a global Internet, IEEE J. Select. Areas Commun. 13 (8)
(1995) 1465–1480.

[3] T. Bonald,Comparison of TCP Reno and TCP Vegas via fluid
approximation, Tech. Rep. RR, 3563, 1998.

[4] J. Mo, R.J. La, V. Anantharam, J.C. Walrand, Analysis and comparison
of TCP Reno and Vegas, in: INFOCOM, vol. 3, 1999, pp. 1556–1563.

[5] S.H. Low, L.L. Peterson, L. Wang, Understanding Vegas: a duality
model, J. ACM 49 (2002) 207–235.

[6] E. H. Miller, “A note on reflector arrays (Periodical style—Accepted for
publication),” IEEE Trans. Antennas Propagat., to be published.

[7] J. Wang, “Fundamentals of erbium-doped fiber amplifiers arrays
(Periodical style—Submitted for publication),” IEEE J. Quantum
Electron., submitted for publication.

[8] R. Eberhart, and J. Kennedy, “A New Optimizer Using Particles Swarm
Theory, Proc. Sixth International Symposium on Micro Machine and
Human Science , IEEE Service Center, Piscataway, NJ, 39-43, 1995.

[9] J. Kennedy and R. Eberhart, Particle Swarm Optimization, IEEE
International Conference on Neural Networks NJ, IV: 1942-1948, 1995.

[10] Y. Shi, R. Eberhart, Parameter Selection in Particle Swarm
Optimization, The 7th Annual Conference on Evolutionary
Programming, San Diego, USA, 1998.

[11] Ns-2.Network Simulator. http://www.isi.edu/nsnam/ns.

