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Abstract—Recent progress in calculation of the one-loop self-
energy of the electron bound in the Coulomb field is summarized.
The relativistic multipole expansion is introduced. This expansion
is based on a single assumption: except for the part of the time
component of the electron four-momentum corresponding to the
electron rest mass, the exchange of four-momentum between the
virtual electron and photon can be treated perturbatively. For non S-
states and normalized difference n

3
∆En −∆E1 of the S-states this

itself yields very accurate results after taking the method to the third
order. For the ground state the perturbation treatment of the electron
virtual states with very high three-momentum is to be avoided. For
these states one can always rearrange the pertinent expression in such
a way that free-particle approximation is allowed. Combination of
the relativistic multipole expansion and free-particle approximation
yields very accurate result after taking the method to the ninth order.
These results are in very good agreement with the previous results
obtained by the partial wave expansion and definitely exclude the
possibility that the uncertainity in determination of the proton radius
comes from the uncertainity in the calculation of the one-loop self-
energy.
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I. INTRODUCTION

A
Recently found disagreement between the radius of pro-

ton deduced from a comparison of the theory [1], [2]

and experiment [3], [4] of Lamb shifts in the ordinary and

muonic hydrogen calls for a verification of correctness of both

the theory and experiment [5]. Only when this is done, more

interesting possibilities can be examined [5].

Among various contributions to the Lamb shift in ordinary

hydrogen, the most important is the self-energy of the bound

electron in the one-loop approximation. This effect causes the

shift of 2S-1S transition of about 7.32 GHz. The difference

between the proton radii found in [1] and [4] leads [6] to the

difference of about 82.22 kHz for 2S-1S transition. Thus the

self-energy effect should be known with accuracy significantly

better than 1 part in 105.

For years the self-energy for the atoms with low nuclear

charges has been calculated via the series in powers of Zα

∆E =
mα(Zα)4

πn3s3
F (Zα, n, lj), (1)

where [7], [8], [9], [10]

F (Zα, n, lj) = A41 ln s(Zα)
−2 +A40 +A50(Zα)+ (2)

+(Zα)2
[

A62 ln
2 s(Zα)−2 +A61 ln s(Zα)

−2 +A60

]

+

+(Zα)3
[

ln s(Zα)−2A71 +A70

]

+ . . . ,
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where s = 1 in the non-recoil limit. The dominant part of

the recoil effect is taken into account by replacing s = 1
in Eqs. (1) and (2) by s = 1 + me/mn. Here me/mn is a

ratio of the electron and nuclear masses [13]. The coefficients

A, A = A(n, lj), are summarized e.g. in [1], [11]. n, l and

j denote the principal, orbital and total momentum quantum

numbers of the state under consideration.

Recently, another approach based on the partial wave expan-

sion [12] was developed. For atoms with low nuclear charges

this expansion converges very slowly. Nontheless, the most

accurate results obtained so far for the hydrogen atom were

obtained in [11] by means of this expansion. In that paper

several millions of partial waves were considered. For each

partial wave there is a three-dimensional integration to be

performed numerically, for details see [11], [12].

It is convenient to write the self-energy effect on general

S-state as

∆En =
n3∆En −∆E1

n3
+

∆E1

n3
, (3)

where the first and the second terms on the right member will

be referred to as the state-dependent and the state-independent

parts, respectively. In comparison with calculation of the state-

independent part of the S-states, calculation of the state-

dependent part of the S-states and non S-states is substantially

simpler: the coefficients A41, A50 and A62 in Eq. (2) vanish

and the estaimate obtained by means of series (2) truncated

after A60 term is quite good, see below. However, the dominant

part of the efect is state independent part of the S-states.

The relative difference between the series (2) truncated after

α(Zα)6 term and the numerical result in [11] for the ground

states of the hydrogen is 3 parts in 106. In view of the

complexity of the calculation of the A60 coefficient [8], there

is no hope of achieving significantly better accuracy within

purely perturbation approach. Clearly, such an approach is not

sufficient any more.

II. THE METHOD

The renormalized expression for the self-energy in the non-

recoil limit reads (see [14] for notation used)

∆E = 〈O −∆m〉 =< ψ|γ0(O −∆m)|ψ >, (4)

where ∆m stands for the electromagnetic mass of the electron

and the regularized mass operator O reads

O =
α

π

∫ Λ2

0

dλ

∫

d4kF
(k2 − λ)2

γµ
1

γ.(Π− k)−m
γµ. (5)

The elf- nergy of an lectron ound in a Coulomb

eld
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The wave function ψ is a solution of the stationary Dirac

equation with the energy E

(γ.Π−m)ψ = 0. (6)

The components of physical momentum Π of the particle in

the case of the Coulomb field read

Π =

(

E +
Zα

R
, ~P

)

(7)

where ~P is the canonical momentum.

Following [7] we multiply 1/(γ.(Π − k) − m) in Eq. (5)

by (γ.(Π − k) +m)/(γ.(Π − k) +m) from the right. Using

Dirac equation and properties of γ matricies [14] we get

〈O〉 = −
α

2π

〈

γµ

(

G4Πµ −
m

2
G.γγµ

)〉

, (8)

where

G4,ν = (−4)

∫ Λ2

0

dλ

∫

d4kF
(k2 − λ)2

(1, kν/m)

k2 − 2k.Π+H
. (9)

Here the second-order Hamilton operator H [7] reads

H = (γ.Π+m)(γ.Π−m) = Π.Π−m2+
1

4
[Πµ,Πν ][γµ, γν ].

(10)

Recently an expansion of the electron propagator has been

suggested [15], [16], [17], [18]. This expansion is referred to

as relativistic generalization of multipole expansion (RME).

This expansion is based on a single assumption, namely that

the four-momentum Π of the bound electron in the virtual

states is dominated by the four-momentum ε of the electron

at rest:

1

k2 − 2k.ε+H − 2k.(Π− ε)
=

1

z − H̃0 − λH̃1

. (11)

Here the propagator is written in a generic form (z − H̃)−1,

where H̃ = H̃0 + λH̃1 is a generic Hamilton operator.

Furthermore, λ is a formal perturbation parameter that is

eventually set to one,

ε = (m, 0, 0, 0) (12)

and

z = k2 − 2k.ε, H̃0 = −H, λH̃1 = 2k.(Π− ε). (13)

We form the series

∆E = m
α

π
(Zα)4

∞
∑

v=1

Fv, (14)

where

−2(Zα)4Fv =

v
∑

t=0

〈

γ0G
2(v−t),t
4 + γµG

2(v−t−1),t
4

(Π− ε)µ
m

+

(15)

+γ0G
2(v−t),t
0 −

1

2
γµ[G

2(v−t−3),t
0 , γ0γµ] +

1

2
γµG

2(v−t)−1,t
i γiγµ

〉

.

The superscripts v and t in Gv,t
4,ν stand for the number of

expanded space and time components of (Π−ε), respectively.

The method for generating the individual terms of the expan-

sion is described in [15], [18] for the ground state and in [16]

for non S-states and state-dependent part of the S-states.

RME has a number of advantages. Once the renormalization

of the electron mass is made all the integrals over either

photon or electron variables are finite both at the infrared and

ultraviolet. Thus, no separation of any of the integration is

necessary. The terms of RME are generated very easily. In fact,

by means of computer languages for symbolic calculation like

Maple or Mathematica they can be generated automatically.

The only integrals to be performed numerically are one-

dimensional integrals over the electron wave numbers of the

continuous part of the spectrum. These integrals converge very

fast. For non S-states and state-dependent part of the S-states

it is sufficient to consider the sum in Eq. (14) only up to

v = 3. Further, for the atoms with low nuclear charges the

pertinent expressions can be further simplified and part of the

calculation can be carried out analytically, for details see [16].

Question then arises of the relation of the series (14) to

(2). As argued in [15], [17], [16] the coefficients A41, A40

and A62 are contained in F1 + F2. For non S-states and

state-dependent part of the S-states the coefficient A61 is

contained in F1 + F2 and the coefficient A60 is contained

in F1+F2+F3. For state-independent part of the S-states the

coefficient A61 and sufficiently great part of the coefficient

A60 is contained in F1+F2+F3, see Tables 2 and 3 of [17].

The coefficient A50 is contained in complete sum (14). This

coefficient is entirely determined by the virtual states with

very high wave numbers. For these states one can always

rearrange the pertinent expression in such a way that free-

particle approximation is appropriate, see [18]. The coefficient

A50 can then be written as

A50 =

∞
∑

v=1

A
(v)
50 , (16)

where A
(v)
50 is the part of A50 coefficient contained in Fv [17],

[18]

A
(v)
50 = −23

Γ
(

1
2

)

Γ
(

v − 5
2

) (

16v4 − 32v3 + 296v2 + 8v − 267
)

πΓ(v)(2v + 5)(2v + 3)(2v + 1)2(2v − 3)
.

(17)

For large v this behaves as

A
(v)
50 ≃ −

4

π1/2
v−7/2. (18)

The complete coefficient A50 is [7], [8]

A50 = 4π

(

139

128
−

ln 2

2

)

. (19)

For the self-energy function F (Zα, 1, 0), Eq. (1), we write

F (Zα, 1, 0) = (Zα)A50 +

∞
∑

v=1

Sv, (20)

where

Sv = Fv − (Zα)A
(v)
50 . (21)

The point is that if the RME is truncated after finite number

of terms, one can exactly determine how much of the free-

particle result is contained in it. When considering the self-

energy effect of the light hydrogen-like ions this is the greatest

advantage of the RME over the method used in [11], [12]

based on partial wave expansion.
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III. RESULTS

The results obtained for the low lying states of the hydrogen

atom are displayed in Tables I and II taken from [16] and [18],

respectively.

TABLE I
THE RESULT FOR THE SCALED ENERGY FUNCTION F (α, n, lj) FOR LOW

LYING S- AND P-STATES OF HYDROGEN-LIKE ATOMS OBTAINED BY

VARIOUS METHODS. FOR THE S-STATES THE RESULTS FOR THE

DIFFERENCE F (α, n, 0)− F (α, 1, 0) ARE GIVEN. THE RESULTS

PRESENTED AS ‘RME‘ WERE OBTAINED FROM THE SERIES (14),
TRUNCATED AFTER THE THIRD TERM, FOR DETAILS SEE [16]. THE

RESULTS OBTAINED BY MEANS OF PARTIAL WAVE EXPANSION ARE TAKEN

FROM [11]. THE RESULTS OBTAINED BY MEANS OF EQ. (2) ARE TAKEN

FROM [10].

State RME Partial waves Eq. (2)

2s− 1s 0.23002947 0.23003154 0.23003040
2p1/2 -0.1263965908 -0.12639637 -0.12639773

2p3/2 0.1234982498 0.12349856 0.12349766

3s− 1s 0.28881828 0.28882057 0.28881946
4s− 1s 0.31259262 0.31259475 0.31259391

TABLE II
THE CONVERGENCE OF RME FOR THE GROUND STATE OF THE

HYDROGEN. ’LEAD’ STANDS FOR THE

SUM S1+S2+A50 . INSTEAD OF EQ. (15) WE CONSIDERED −2(Zα)4Fv ≃
〈

γ0
∑T

t=0

(

G
2(v−t),t
4 +G

2(v−t),t
0

)

+
∑T−1

t=0

(

γµG
2(v−t−1),t
4

(Π−ε)µ
m

+

1
2
γµ

∑T−1

t=0
G

2(v−t)−1,t
i γiγµ

)〉

, WHERE T = 3. THE CONTRIBUTION

OF THE TERMS < γ0G
2v,t
4,0 > FOR t > 3 THE TERMS

< γµG
2(v−t−1),t
4 (Π− ε)µ > AND < γµG

2(v−t)−1,t
i γiγµ > FOR t > 2

AND

(

− 1
2

) 〈

γµ[G
2v,t
0 , γ0γµ]

〉

ARE VERY SMALL AND ARE ESTIMATED

UNDER HEADING ’SMALL’. WE HAVE FOUND THAT FOR LARGE v THE

RATIO Sv/Sv−1 APPROACHES THE RATIO A
(v)
50 /A

(v−1)
50 . THIS ENABLED

US TO ESTIMATE THE REMAINDER OF THE SERIES, ’REM’. FOR DETAILS

SEE [18]. ’OTHER’ IS THE RESULT OF THE PARTIAL WAVE EXPANSION

TAKEN FROM [11].

term F (α, 1, 0)
lead 10.315870916

S3 0.891183 10−3

S4 0.23509 10−4

S5 0.4484 10−5

S6 0.1554 10−5

S7 0.719 10−6

S8 0.388 10−6

S9 0.237 10−6

sum 10.3167929917

small 0.36 10−7

rem 0.648 10−6

total 10.316793675(50)

other 10.316793650(1)

These results agree with the results obtained by partial wave

expansion to high degree of accuracy. The difference between

the result for the state dependent and state independent part

of the S-states obtained by these two completely independent

methods amounts to the difference of 210.5 and 18 Hz for

2S − 1S transitions in hydrogen, respectively. This definitely

excludes the possibility that uncertainity in determination of

the proton radius comes from the uncertainity in determination

the one-loop self-energy correction to the energy levels.
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