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Solution of The KdV Equation With Asymptotic
Degeneracy

Tapas Kumar Sinha, Joseph Mathew

[2] have given the solution of the KdV equation [1] to the
boundary condition u → b as x → ±∞ , where b is a constant.
We have further extended the method of [2] to find the solution
of the KdV equation with asymptotic degeneracy. Via simulations

phases).

I. INTRODUCTION

C .S GARDNER, J.M Greene, M. D. Kruskal and R. M.
Muira [1] have obtained the solution of the KdV equation

ut + uux + uxxx = 0 (1)

with the boundary conditions u → 0 asx → ±∞. Using
Lax operator formalism [6] and inverse scattering [19], [20],
T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have extended
the solution of the KdV equation to the boundary condition
u → b as x → ±∞, where b is a constant. The question
naturally arises whether a solution to the KdV equation exists
for asymptotically degenerate states u→ ±f(x− vt) as x→
±∞, where f(x − vt) is a soliton. state. Note that the ±
sign implies asymptotic degeneracy. W. P. Su, J. R. Schrieffer
and A Heeger (SSH) in their classic paper [3] showed that
the asymptotic states ± tanh(x − vt) of the phi4 equation
correspond to the two degenerate of Polyacetylene. Further
Polyacetylene polymer has been approximated by a random
field ising model (RFIM) [16-18] which in the continuum limit
gives the KdV equation [19]. Thus motivated by the work
of [3] we look for the solutions to the KdV equation with
asymptotic degeneracy.
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Define the operators i∂L(t)
∂t = [B(t), L(t)]

L(t) = − ∂2

∂x2
+ V (x, t) = − ∂2

∂x2
+ sech2(kx) (2)

B(t) = −4i
∂3

∂x3
− 6i

[
u(x, t)

∂

∂x
+

∂

∂x
u(x, t)

]
(3)

Here L(t) and B(t) constitute the Lax pair [6] for the
KdV equation. Note that for the potential in (2) we have
used sech2(kx) which is a solution of the KdV equation [4].
Further one defines the evolution equations

i
∂U(t)

∂t
= B(t)U(t), U(0) = I (4)

which leads to

i
∂L(t)

∂t
= [B(t), L(t)] (5)

We now look for asymptotic solutions of (2).

III. ASYMPTOTIC SOLUTIONS

Non Linear equations such as KdV, Sine-Gordon, Phi4,
and Navier Stokes can be put in the form of a conservation
equation

Tt + Ux = 0 (6)

For KdV equation the spatial component of the conservation
law (i.e. U) is the Schrodinger equation. For the other equa-
tions some variable transformations are required to obtain the
conservation law. The solution of this Schrodinger equation
determines the time evolution of both the continuum and
bound states in the asymptotic limit.

To fix our ideas we consider a stationary soliton located at
x = x0. For x� x0 we have

φ(k, t) ≈

⎧⎪⎪⎨
⎪⎪⎩

a+(k, t)e
ikx +

+ a−(k, t)e−ikx as x→ +∞
b+(k, t)e

ikx +
+ b−(k, t)e−ikx as x→ −∞

⎫⎪⎪⎬
⎪⎪⎭

(7)

The time evolution of φ(k, t) is given by

i
∂φ(k, t)

∂t
= B(t)φ(k, t) (8)

The asymptotic form of B(t), defined in (3), is

we find both bright and dark Solitons (i.e. Solitons with opposite
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B(t) = −4i
∂3

∂x3
− 6i sech2(kx)

∂

∂x
(9)

Using (7) and (9) in (8) we obtain

a+(k, t) = a+(k, 0)e
i(4k3−6k sech2(kx))t

a−(k, t) = a−(k, 0)e−i(4k3−6k sech2(kx))t

b+(k, t) = b+(k, 0)e
i(4k3−6k sech2(kx))t

b−(k, t) = b−(k, 0)e−i(4k3−6k sech2(kx))t

(10)

IV. BOUND STATES OF THE SCHRODINGER EQUATION

We wish to find bound states of the operator L(t), defined
in equation (2). Consider the equation

[
− ∂2

∂x
+ sech2(kx)

]
ψ(k, x) = −k2ψ(k, x) (11)

As x → ±∞, the potential sech2(kx). In the limit x →
±∞, the solution must satisfy

ψ(k, x) → e±ikx as x→ ±∞ (12)

The wave vector Kn of the bound states satisfy [3]

k = −Kn (13)

Substituting (13) in (11) one obtains the equation for the
bound state

[
− ∂2

∂x
+ sech2(kx)

]
ψn = −K2

nψn (14)

where ψn satisfies the following boundary conditions

ψn ≈
{
Rn(0)e

−Knx as x→ ∞
Tn(0)e

Knx as x→ −∞
}

(15)

Here both Rn(0), Tn(0) are normalization constants. Since
we know the time evolution (10) we can write

ψn(x, t) = ψn(x, 0)e
−(4Kn

3+6Kn sech2(x))t (16)

Note the replacement of k by iKn in (10) to obtain (16).
It now remains to normalize (16). One can show that the
normalization constant is

Mn(t) = e(8K
3
n+12Kn sech2(x))tMn(0) (17)

V. GELFAND-LEVITAN EQUATION

In the inverse scattering method the Gelfand-Levitan equa-
tion [5] is used to determine the scattering potential V (x, t)
in (2) for all x and t. The scattering potential V (x, t) satisfies

V (x, t) = −2
dg(x, x)

dx
(18)

where g(x, y) for x < y is the solution of the Gelfand-
Levitan equation [5]

g(x, y) +K(x+ y) +

∞∫
x

K(y + y′)g(x, y′)dy′ = 0 (19)

with

K(y) =
1

2π

∞∫
−∞

R(k, t)eikydk +
N∑

n=1

Mne
−Kny (20)

where Mn are the normalization constants for the bound
states of the of the operator defined in (2). −K2

n, n = 1, 2
are the bound state energies of the operator (2). R(k, t) is the
reflection coefficient. Note that the very definition of g(x, y)
includes causality into the equation (19). In (19) x represents
the source coordinates and y′ the “effect” coordinates. To solve
(19) we consider a single bound state of energy −K2 and
R(k, 0) = 0. The latter condition implies that the potential is
reflection-less. Using (17) in (19) we obtain

g(x, y, t) + e(8K
3
n+12Kn sech2(x))tM(0)e−K(x+y) +

+

∞∫
x

e(8K
3
n+12Kn sech2(x))tM(0) ·

· e−K(x+y)g(x, y′, t)dy′ = 0

(21)

Since we know that the bound state function has an expo-
nential decay we can write

g(x, y, t) = e−Kyh(x, t) (22)

we obtain

g(x, y, t) =−M(0) ·

· e(8K
3+12K sech2(x))te−K(x+y)

1 + M(0)
2K e(8K3+12K sech2(x))te−2Kx

(23)

Now in the inverse scattering framework the scattering
potential V (x, t) is the solution of the equation (i.e. KdV
equation). Accordingly, taking the derivative of (23) we obtain
the solution

u(x, t) = K2 sech2 ·
·
[
K

(
x− (4K2 + 6 sech2(x))t− δ

K

)]
(24)

where δ =
1

2
ln
M(0)

2K
(25)

VI. RESULTS

Our simulation results are summarized in figs 1-3. Figure
1 shows the general soliton profile. Figure 2 shows the
Soliton profile for a fixed K (Bound state energy) and varying
delta (phase). There appears to be a sudden increase in both
amplitude and asymptotic value at certain value of delta. This
is indicative of a phase transition and will be investigated
later. For a fixed delta, change in K has a profound effect
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Plot of Soliton Amplitude vs Distance

K=0.5,delta=0.0001
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Fig. 2. Plot of Soliton Profile for Fixed K Varying Delta

on Soliton profile (Fig. 3). Note the inverted amplitude of the
Soliton as well as its increased width. Thus depending on the
relative values of K and delta both bright and dark Solitons are
possible. These will correspond to the different conformations
of Polyacetylene (trans, cis).
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Fig. 3. Plot of Soliton Profile for Fixed Delta Varying K

VII. CONCLUSION

Systems with asymptotic degeneracy form an important
class of problems which have diverse applications e.g. Poly-
acetylene polymers, Persistence problems [7]–[12] in the case
of ising spins, effect of past DNA interactions on present and
future DNA expression [13]–[15], astrophysics (influence of
past Galactic events on present and future). We have used
the inverse scattering framework to solve this problem. Via
simulation we find that while the phase factor (defined in
(25)) has very little effect on the Soliton shape, the bound
state energy parameter K has a profound effect on the Soliton
profile. For fixed K, change in phase, after a certain value,
results in a sudden increase in amplitude and asymptotic value.
On the other hand, for a fixed phase change in K, results in
inversion of the Soliton amplitude.
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