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Abstract—In this paper, The T-G-action topology on a set acted 

on by a fuzzy T-neighborhood (T-neighborhood, for short) group is 
defined as a final T-neighborhood topology with respect to a set of 
maps. We mainly prove that this topology is a T-regular T-
neighborhood topology. 
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I.  INTRODUCTION 
T-neighborhood topology on a set can be defined by 
several method e.g., via closures, interiors, filters, etc. 

Sometimes a T-neighborhood topology constructed out of 
given T-neighborhood topologies may be useful. In the 
classical theory of topological groups, when a topological 
group G acts on a set X, it confers a topology on X, called the 
G-action topology on X. In this paper we develop a fuzzy 
extension of that notion, in the case G is a T-neighborhood 
group. Varity of useful characterizations of this T-
neighborhood topology are considered. We show that the T-G-
action topology GT

X
−τ  coincides with the final T-

neighborhood topology fτ introduced on X by a set of 

functions
⎭
⎬
⎫

⎩
⎨
⎧ ∧

g ;          

                                XGg →
∧

: . 
 

II.  DEFINITION AND PRELIMINARIES 
Definition 2.1. [8] A topological group G acts on a non-
empty set X, if to each g∈G and each x∈X there 
corresponds a unique element gx such that 
g2(g1x) = (g2g1)x    ∀  x ∈ X and g1, g2 ∈ G 
        ex = x. 

When G acts on a set X, two families of functions can 
be defined as follows: 

To each g∈G, we define  
∧

g  : X → X, 
∧

g  (x) = gx. 

To each x∈X, we define  
∧

x  : G → X, 
∧

x  (g) = gx. 
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We will use two important theorems which 

introduced in [7]. The first gives necessary and 
sufficient conditions for a group structure and T-
neighborhood system to be compatible, and the second 
gives necessary and sufficient conditions for a filter to 
be the T-neighborhood filter of e in a T-neighbourhood 
group. 

 
Theorem 2.1 [7]   Let (G, .) be a group and  β a T-
neighborhood  base on G. Then     (G, .,t(β)) is a T-
neighborhood group if and only if the following are fulfilled: 
(a) For every a∈   G we have 

β  (a)= {ζa (µ) |  µ ∈  β (e)} 

                    (res . β  (a)= {Ra (µ) | µ ∈  β (e)} and 
β (a)= {ζa (µ) |  µ ∈  β (e)} is a T-neighborhood base at a. 

(b) For all µ ∈  β (e) and for all ε ∈  I0  there    exists 
 ν ∈  β (e) such that ν - ε ≤ 1−μ , i.e., r is continuous at e. 
(c) For all µ ∈  β (e) and for all ε ∈  I0 there exists ν ∈  β (e) 
such that ν. ν - ε ≤ µ, i.e.,  m is continuous at (e, e). 
(d) For all µ ∈  β (e), for all ε ∈  I0 and for all x∈  G there 
exist ν ∈  β (e) such that 1x. ν.1x 

-1  -  ε ≤ µ,  i.e., intx  is 
continuous at e. 

Where ζx  : G → G : z a  x z  ( resp. Rx : G → G : z 
a  z x ) is the left ( resp. right )   translation. 

 
Theorem 2.2 [7] Let (G, .) be a group and ℑ a family of 
fuzzy subset of  G such that the following hold: 
(a) ℑ  is a filterbasis, such that µ(e) = 1  for all  µ ∈ ℑ. 
(b) For all µ ∈   ℑ and for all  ε ∈  I0 there exists ν ∈ℑ  such 
that ν -ε  ≤ 1−μ . 
(c) For all µ ∈  ℑ and for all ε ∈  I0 there exists ν ∈ ℑ such 
that ν. ν - ε ≤ µ. 
(d) For all µ ∈  ℑ, for all ε  ∈I0   and for all   x ∈  G   there 
exists ν ∈ ℑ  such that 1x. ν.1x-1-ε  ≤ µ. 

Then there exists a unique T-neighborhood system β such 
that ℑ is T-neighborhood basis for the T-neighbourhood 
system at e, β(e) and β is compatible with the group structure. 
This T-neighbourhood system is given by 
β(x) = {1x.µ | µ∈  ℑ }-1= {µ .1x | µ∈  ℑ}-1, x∈  G. 

 
III.  T-NEIGHBORHOOD TOPOLOGIES INDUCED BY T-

NEIGHBORHOOD GROUP ACTIONS ON SET 
 
Definition 3.1. Let (G, .) be a group acting on a set X, 
then for all Γ∈ IG, μ∈ IX, g∈ G and x∈ X we define for 
all y∈ X 
Γμ(y) = sup {Γ (g)T μ(x): (g, x) ∈ G×X and gx = y}          (1)                   

A 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

67

Proposition 3.1. Let (G, .) be a group acting on a set X 
and Ψ, Γ∈  GI , μ∈  XI . Then 
 
(a) Ψ (Γμ) ≤ (Ψ.Γ) μ       In particular                                     
      Ψ (Γμ)(y) ≤ (Ψ.Γ) μ(y) 
(b)    Γ1M  =

Mx∈
∨ Γ1x 

(c) Γ1M(y) = sup {Γ(g): g∈ G and g-¹y ∈ M}                                      
(d) Γ1x(y) = sup {Γ(g): g∈ G and gx = y}                                           
(e) 1g μ(y) = sup {μ(x): x∈ X and gx = y} 
                 = μ(g-1y) 
                             

Proof: (b)-(e) follow immediately from Definition 
3.1. 
(a) For any y∈ X: 
Ψ (Γμ)(y)  = sup {Ψ(g) T Γμ(x): (g, x) ∈ G×X, gx = y} 
     = sup {Ψ (g) T sup {Γ(h) T μ(z): hz = x}: gx = y} 
    = sup {Ψ (g ) T Γ(h) T μ(z): ghz = y} 
 (Ψ⊙T Γ)μ(y)= sup {(Ψ⊙TΓ(k) T μ(z): kz = y} 
        = sup {sup {Ψ (g) T Γ(h): gh = k} T  μ(z): 
                                 kz = y} 
        = sup {Ψ (g) T Γ(h) T μ(z): (g, h, z) 
                                 ∈  G×G×X and ghz = y} 
 
Hence Ψ(Γμ)(y) = (Ψ ⊙T Γ)μ(y) ≤ (Ψ.Γ)μ(y). 
    If both Γ, μ are crisp, then Γμ is also crisp and is given by 
 Γμ= {gx: g ∈ Γ and x∈ μ}. 
    Note that Γμ, Γ1x, 1g μ∈ IX and Γ1x (y) = 0 if y∉  orbit of x. 
 
Theorem 3.1. Let G be a T-neighborhood group acting 
on a set X, and let ℜ  be a fundamental system of G at 
e. For each x ∈ X, let βx= {Γ1x: Γ∈ ℜ }∈ XI . Then 
{βx}x∈X is a T-neighborhood basis on X. The resulting T-
neighborhood space is denoted by GT

X
−τ . Its fuzzy 

closure operator - : XI → XI  is given by: For all η 
∈ XI , x ∈ X: 

( ) ( ) ( )gxTgx
Gg

ηη Γ=
∈ℜ∈Γ

−

supinf                    (2)  

                                                               
Proof. First, we verify that {βx}x∈X is a T-

neighborhood basis in X. Let x ∈ X, Γ,  
Ψ ∈ ℜ , μ = Γ1x ∈ βx, λ = Ψ1x ∈ βx 

(i) μ(x) = Γ1x(x) = sup {Γ(g): g ∈ G and gx    = x}  
              ≥ Γ(e) = 1  (Because ex = x). 
(ii) There exists Λ ∈ ℜ : Γ∧Ψ ≥ Λ. Hence 

 μ∧ λ = Γ1x∧Ψ1x ≥ Λ1x, 
 which is in βx. 
(iii) T-kernel condition: 
Recall that {ℜ 1g}g∈G is a T-neighborhood basis of the 
T-neighborhood group G Theorem 2.2  . Let, as before, 
μ = Γ1x ∈ βx. By the T-kernel condition for  
Γ ∈ ℜ , for all ε ∈ I0 there exists a family 
{Γg1g∈ℜ g}g∈G such that for all g, k ∈ G 

Γe(k) T (Γk1k)(g) ≤ Γ(g) + ε .                      (3)                                                 

We take νx = Γe1x. For each y ∈ X, if y ∉  orbit of x, take for 
νy any element of βy=ℜ y. 

If y ∈ orbit of x, choose some h ∈ G such that y = hx, and 
δ + Γe(h) ≥ sup {Γe(k): kx = y}                   (4)                  

where δ ∈ I0  is a real number that satisfies 
 (b + δ) T (c + δ) ≤ (b T c) + ε 
for all b, c∈ I. Such δ exists by the uniform continuity 
of T. Take νy = Γh1y ∈ βy. Then, if y∉  orbit of x, we find 
for all z ∈ X that 

2ε + μ(z) ≥ υx(y) T υy(z) 
because then νx(y) = (Γe1x )(y) = 0. And when y∈orbit of 
x, we find for all z∈X: 
2ε + μ(z) = 2ε + (Γ1x)(z) 
               = ε + sup {ε + Γ(g): gx = z} 
               ≥ ε + sup {Γe(h) T (Γh1h)(g): gx = z}  by (3)  
               ≥ (Γe(h) + δ) T sup {(Γh1h)(g): gx = z} 
               ≥ sup {Γe(k): kx = y} T sup {(Γh)(gh-¹): (gh-¹)(hx) = z}   
by (4) Since hx = y, then 
 2ε + μ(z) ≥ (Γe1x)(y) T sup {(Γh)(t):ty = z} 
   = (Γe1x)(y) T (Γh1y)(z) 
   = νx(y) T νy(z). 

Thus, the kernel condition holds for μ ∈ βx in both cases of 
y. Finally, for all η ∈ XI  
η (x)= 

Xy∈∈
supinf

βμ
μ(y) T η(y) 

        = 
Xy∈ℜ∈Γ

supinf η(y) T (Γ1x)(y) 

        = 
orbitexy∈ℜ∈Γ
supinf η(y) T sup {Γ(g): g ∈ G and gx = y}. 

Because if y∉orbit x, then (Γ1x)(y) = 0. Thus, 

 
_
η  (x) = 

Gg∈ℜ∈Γ
supinf η(gx) T Γ(g), 

Rendering (2). 
 
Proposition 3.2. Let Γ∈ GI , ℘ ⊂

GI , g ∈ G, x ∈ X  
then 
(Γ.1g)1x = (Γ1gx) ∈

XI , and hence 
(℘.1g})1x = ℘1gx ⊂

XI . 
 

Proof:  
((Γ.1g)1x)(y) = sup {(Γ.1g)(k): k ∈ G and kx = y} 
       = sup {Γ(kg-¹): k ∈ G and kg-¹gx = y} 
     = sup {Γ(t): t ∈ G and tgx = y} 
     = (Γ1gx)(y). 

This completes the proof. 
 

Proposition 3.3. For each filterbasis F   in GI and for 
x∈X. 

{Γ1x: Γ ∈ ~F } ⊂  { }~F:1 ∈ΨΨ x  ⊂  XI      (5)   
                                            

Proof: Let Γ ∈. ~F  Then for all ε > 0 there exists Γε 
∈ F  such that Γ + ε ≥ Γε. Then for all y ∈ X we have 
ε + (Γ1x)(y) = ε + sup {Γ(g): gx = y} 
                    = sup { ε +Γ(g): gx = y} 
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       ≥ sup {Γε(g): gx = y} 
       = (Γε1x)(y). 
Thus, ε + Γ1x  ≥  Γε1x ∈ {Ψ1x:Ψ∈F }. Hence Γ1x ∈ {Ψ1x: 
Ψ ∈ F }~. This proves (5). 
 
Proposition 3.4. The fuzzy closure operator on X 
defined in (2) does not depend on the particular choice 
of a fundamental system ℜ  of e. 
 

Proof: All fundamental systems ℜ  of G at e have 
the same saturation ~ℜ . Also, for each x ∈ X 

βx = {Γ1x: Γ ∈ ℜ } 
      ⊂ {Γ1x: Γ ∈ ~ℜ } 

                ⊂ {Γ1x: Γ ∈ ℜ }~= ~
xβ . 

As {βx}, { }~
xβ  induce the same fuzzy closure 

operator on X, then the fuzzy closure operator defined in 
(2) is also given by 

( ) ( ) ( )gxTgx
Gg

ηη Γ=
∈ℜ∈Γ

−

supinf
~

                 (6)                                                            

Which is independent of the particular choice of a 
fundamental system ℜ  of e. 

The following definition is well phrased by virtue of 
Theorem 3.1, and Proposition 3.4; 
 
Definition 3.2. Let G be a T-neighborhood group acting 
on a set X. A T-G-action-topology on X denoted by 

GT
X
−τ  is introduced through its closure operator -, 

defined in (2). 
 
Proposition 3.5. Let ℜ  be a fundamental system at e 
of G, μ ∈ ℜ . Then 

1g .ℜ . 1g-¹ ⊂  ~ℜ                                    (7) 
                                                         

Proof: From condition (d) in Theorem 2.1, for all      ε 
> 0 there exists νε ∈ ℜ such that 
 νε  –  ε  ≤  1g . μ . 1g-¹. 
This proves that 1g . μ . 1g-¹ ∈ ~ℜ  
 
Notion: In T-G-action topology 
(1) We denote the T-neighborhood system at x ∈ X by 
ℵ(x). 
(2) Letℜ  be the T-neighborhood system of G at e, x ∈ 
X. We denote ℜ 1x by Ç(x). Recall that Ç~ = ℵ; i.e Ç(x) 
is a T-neighborhood basis at x for this space. 
 
Definition 3.3. Let (X, ., t(β)) be a T-neighborhood 
space, M be a non-empty set in X. Then μ ∈ XI is said 
to be a T-neighborhood of M if μ is a T-neighborhood 
of all points x in M. It follows that the set of all T-
neighborhoods of M (called the T-neighborhood system 
of M) is the set 

Mx∈
∧ ℵ(x). 

Proposition 3.6. Let Γ∈ GI , g ∈  G, z ∈  X then 
 1g

-1 (Γ1z) = (1 g
-1. Γ)1z 

 
Proof: 

   1g-¹(Γ1z)(y)  = (Γ1z)(gy) 
         = sup {Γ(h): h ∈ G, hz = gy} 
         = sup {Γ(gk): k ∈ G, kz = y} 
 (1g-¹ . Γ)1z(y) = sup {(1g-¹.Γ)(k): kz = y} 
         = sup {Γ(gk): k ∈ G, kz = y} 
Then 
        1g-¹(Γ1z) = ( 1g-¹ . Γ)1z 
 
Theorem 3.2. Under this T-neighborhood topology the 

functions {
∧

g } are homeomorphisms on X. 
 

Proof: Without loss of generality, we take ℜ  the 
whole T-neighborhood system at e. Then from 
Proposition 3.5, 1g .ℜ .1g-1 ⊂ ℜ . Given x∈ X,  

g ∈ G, ℜ 1gx is a T-neighborhood basis at
∧

g x. Let μ 

∈ ℜ 1gx  we have 
∧

g -1(μ)(y) = μ(gy) = 1g-1 μ(y), then 
∧

g -1(μ ) = 1g-1 μ ∈ 1g
-1 ℜ 1gx,and from Proposition 3.6                                 

                        
1g

-1 (ℜ 1gx ) = ( 1g
-1 . ℜ )1gx,   

      = (1g
-1 . ℜ . 1g)1x  by Proposition 3.2  

     ⊂ ~ℜ 1x                by Proposition 3.5 
     ⊂  ℵ(x). 

i.e., 
∧

g -¹(μ) is a T- neighborhood of x.  So by Theorem 

5.1 in [5] 
∧

g is continuous at x for all x, and hence it is 

continuous. Since  (g-¹)^ = (
∧

g )-¹. Then (
∧

g )-¹ is also 

continuous. Thus 
∧

g  is a homeomorphism. 
 
Proposition 3.7. For any symmetric T-neighborhood Δ 
of e, and any M⊂X; x, z∈ X 
  (Δ1x)(z) = (Δ1z)(x) 
 (Δ1M)(x) = 

Xy∈
sup  1M(y) T (Δ1x)(y). 

 
Proposition 3.8. For any subset M of X and any T-
neighborhood Γ of e, Γ1M is a T-neighborhood of M, 
and 

( )−M1 ≤  Γ1M ∈ IX.                                     (8) 
   

Proof: Since Γ1M  =
Mx∈
∨ Γ1x, then Γ1M  is                  

a T-neighborhood of all points of M, hence Γ1M is a T-
neighborhood of M. 
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Next, let Γ  be a T-neighborhood of e. Then Γ 
contains a symmetric T-neighborhood Δ of e. For any 
x∈X 
 ( )−M1 (x) = 

Xy∈∈
supinf

Çλ
1M(y)Tλ(y) 

     ≤ 
Xy∈

sup 1M(y) T Δ 1x(y) 

     =
My∈

sup  Δ 1x(y) 

      = 
My∈

sup  Δ 1y(x)     by Proposition 3.7 

      = ( Δ 1M )(x) 
      ≤ ( Γ 1M )(x). This proves (8). 
 
Proposition 3.9. Let ℜ  be a fundamental system of T-
neighborhoods of e. For any subset M of X 

(1M)- =
ℜ∈Γ
∧  Γ1M 

 
Proof:  From Proposition 3.8, (1M)-  ≤  Γ1M for every 

Γ∈ℜ .Then                
(1M)-  ≤ 

O∈Γ
∧ Γ1M. 

Next we prove that 

ℜ∈Γ
∧ Γ1M  = ~ℜ∈Γ

∧ Γ1M. 

Since ℜ ⊂ ~ℜ , then 

ℜ∈Γ
∧ Γ1M  ≥ 

~ℜ∈Γ
∧ Γ1M 

Also, let Γ∈ ~ℜ , for all ε > 0 there exists Γε∈ℜ such 
that ε + Γ  ≥  Γε, 
ε  + Γ1M ≥ (ε + Γ)1M  ≥  Γε1M  ≥ 

ℜ∈Γ
∧ Γ1M 

Since this holds for all ε > 0, then 
Γ1M  ≥ 

ℜ∈Γ
∧  Γ1M. 

This inequality holds for all Γ ∈ ~ℜ . 
Consequently, 

~ℜ∈Γ
∧ Γ1M  ≥ 

ℜ∈Γ
∧ Γ1M 

Hence, equality holds. 
It is clear that if O is the set of symmetric elements in 

~ℜ  then. 

MOMM 111
~

Δ∧≤Γ∧=Γ∧
∈Δℜ∈Γℜ∈Γ

 

Conversely, let O is the set of symmetric elements 
in ~ℜ . Then O is a fundamental system at e: 
(

O∈Δ
∧ Δ1M)(x) = 

O∈Δ
inf  (Δ1M)(x) 

                     = 
XyO ∈∈Δ

supinf 1M(y) T (Δ1x)(y) by Proposition 3.7 

        = (1M)-(x) 
because the set {Δ1x : Δ ∈ O} is a T-neighborhood basis 
at x. 
 

Theorem 3.3. A T-G-action topology on X is a T-
regular T-neighborhood topology.  
 

Proof: Let M ⊂  X and x ∈ X. We establish condition 
(N4-T-regularity) of Theorem 3.2 in [6], which is 
equivalent to the T-regularity of X. For all  

M ⊂  X, x ∈ X such that 
 Inf  hgt (ρ T ν: ρ ∈ Ç(M), ν ∈ O1x)  
                             ≤ 

O∈Δ
inf  hgt (Δ1MT Δ1x) 

                             ≤ 
O∈Δ

inf  sup {((Δ1M)∧  Δ1x)(y): y ∈ X} 

                             = 
O∈Δ

inf  sup {((Δ1M)(y) ∧  (Δ1x)(y)): y ∈ X} 

= 
O∈Δ

inf  sup {sup {Δ(h): h ∈ G, hy ∈  M }                     

∧  sup{Δ(k): k ∈ G, y = kx}: y ∈ X} 
              = 

O∈Δ
inf sup {sup {Δ(h): h ∈ G, hy ∈ M}   ∧  

sup{Δ(k): k ∈ G, y = kx}: y ∈ orbit  x} 
So. (call y ∈ kx) 
Inf  hgt (ρ T ν:  ρ ∈ Ç(M), ν ∈ O1x)  
                  ≤

O∈Δ
inf sup {sup {Δ(h): hkx ∈ M}∧  Δ(k): k ∈ G} 

                 = 
O∈Δ

inf  sup {Δ(h) ∧  Δ(k): h, k ∈ G  and hkx ∈ M} 

                 = 
O∈Δ

inf  sup {(ΔΔ)(g): g ∈ G and gx ∈ M} 

                 = 
O∈Δ

inf sup ((ΔΔ)(1M))(x) 

But by Theorem 2.2 in [7], for every Δ ∈ O, ε ≥ 0 there 
exists Δ1 ∈ O such that Δ1 Δ1 ≤ Δ + ε. Hence, 
 Inf  hgt (ρ T ν:  ρ ∈ Ç(M), ν ∈ O1x)     
                      ≤ 

0,
inf

>∈Δ εO
 ((Δ + ε) 1M)(x) 

        = 
O∈Δ

inf (Γ1M)(x) 

         = ∧
∈Γ O

(Γ1M)(x) = (1M)-(x)   by Proposition 3.9.  

The opposite inequality is always valid. 
 
Theorem 3.4. A T-G-action-topology GT

X
−τ coincides 

with the final T-neighborhood topology τf on X defined 
by the set of functions  

{
∧

x : G  → X: x∈ X}, gxgx =
∧

)(  
 

Proof: For any x∈X, the function  
x̂ : G →(X, GT

X
−τ ) is continuous, because for all  

g ∈ G and for each neighborhood Γ(1gx) in the 
fundamental system ℜ 1gx of x̂ (g) = gx, where Γ∈ℜ , 
we have 
x̂  (Γ . 1g)(y) = sup {(Γ. 1g)(h): h ∈ G, x̂ (h) = y} 
        = sup {(Γ.1g)(h): h ∈ G, hx = y} 
        = (Γ . 1g)1x(y) 
then x̂  (Γ.1g) = (Γ.1g )1x = Γ1gx and Γ.1g is a T-
neighborhood of g by Theorem 2.3 in [7]. Therefore 
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GT
X
−τ ⊂  τf since τf is the finest T-neighborhood 

topology making all 
∧

x  continuous. 
Next, let x ∈ X, μ a T-neighborhood of x in τf. Then 
1ˆ−x (μ) a T-neighborhood of e in G; i.e. ( 1ˆ−x  (μ))1x is a 

T-neighborhood of x in GT
X
−τ .  

But ( 1ˆ−x  (μ))1x = x̂ ( 1ˆ−x  (μ)) = μ ∧  xrangeˆ1  ≤  μ. 

This proves that μ is a T-neighborhood of x in GT
X
−τ . 

Then τf  ⊂  GT
X
−τ . Hence, equality holds. 
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