Fuzzy T-Neighborhood Groups Acting on Sets

Hazem. A. Khorshed, Mostafa A. El Gendy, and Amer. Abd El-Razik

Abstract—In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular Tneighborhood topology.

Keywords—Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.

I. INTRODUCTION

A T-neighborhood topology on a set can be defined by several method e.g., via closures, interiors, filters, etc. Sometimes a T-neighborhood topology constructed out of given T-neighborhood topologies may be useful. In the classical theory of topological groups, when a topological group G acts on a set X, it confers a topology on X, called the G-action topology on X. In this paper we develop a fuzzy extension of that notion, in the case G is a T-neighborhood group. Varity of useful characterizations of this Tneighborhood topology are considered. We show that the T-Gaction topology τ_X^{T-G} coincides with the final Tneighborhood topology τ_f introduced on X by a set of

functions
$$\left\{ \begin{array}{c} \hat{g} \\ g \end{array} \right\}$$
;
 $\hat{g}: G \to X$.

II. DEFINITION AND PRELIMINARIES

Definition 2.1. [8] A topological group *G* acts on a nonempty set *X*, if to each $g \in G$ and each $x \in X$ there corresponds a unique element gx such that

 $g_2(g_l x) = (g_2 g_l) x \quad \forall \ x \in X \text{ and } g_l, g_2 \in G$ ex = x.

When G acts on a set X, two families of functions can be defined as follows:

To each
$$g \in G$$
, we define $\begin{array}{c} g : X \to X, \\ & \stackrel{\circ}{g}(x) = gx. \end{array}$
To each $x \in X$, we define $\begin{array}{c} & \\ & \stackrel{\circ}{x} : G \to X, \\ & \stackrel{\circ}{x}(g) = gx. \end{array}$

Authors are with Physics and Mathematics Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.

We will use two important theorems which introduced in [7]. The first gives necessary and sufficient conditions for a group structure and T-neighborhood system to be compatible, and the second gives necessary and sufficient conditions for a filter to be the T-neighborhood filter of e in a T-neighborhood group.

Theorem 2.1 [7] Let (G, .) be a group and β a Tneighborhood base on G. Then $(G, ., t(\beta))$ is a Tneighborhood group if and only if the following are fulfilled: (a) For every $a \in G$ we have

$$\beta \quad (a) = \{ \zeta_a(\mu) \mid \mu \in \beta(e) \}$$

res.
$$\beta \quad (a) = \{ R_a(\mu) \mid \mu \in \beta(e) \} and$$

 β (*a*)= { $\zeta_a(\mu) / \mu \in \beta$ (*e*)} is a T-neighborhood base at *a*. (b) For all $\mu \in \beta$ (*e*) and for all $\varepsilon \in I_0$ there exists

 $v \in \beta$ (e) such that $v - \varepsilon \le \mu^{-1}$, i.e., r is continuous at e.

(c) For all $\mu \in \beta$ (e) and for all $\varepsilon \in I_0$ there exists $v \in \beta$ (e) such that $v. v - \varepsilon \le \mu$, i.e., m is continuous at (e, e).

(d) For all $\mu \in \beta$ (e), for all $\varepsilon \in I_0$ and for all $x \in G$ there exist $v \in \beta$ (e) such that I_x . $v \cdot I_x^{-1} - \varepsilon \leq \mu$, i.e., int_x is continuous at e.

Where $\zeta_x : G \to G : z \mapsto x z$ (resp. $R_x : G \to G : z \mapsto z x$) is the left (resp. right) translation.

Theorem 2.2 [7] Let (G, .) be a group and \mathfrak{I} a family of fuzzy subset of *G* such that the following hold:

(a) \mathfrak{I} is a filterbasis, such that $\mu(e) = 1$ for all $\mu \in \mathfrak{I}$.

(b) For all $\mu \in \mathfrak{I}$ and for all $\varepsilon \in I_0$ there exists $v \in \mathfrak{I}$ such that $v - \varepsilon \leq \mu^{-1}$.

(c) For all $\mu \in \mathfrak{I}$ and for all $\varepsilon \in I_0$ there exists $\nu \in \mathfrak{I}$ such that ν . $\nu - \varepsilon \leq \mu$.

(d) For all $\mu \in \mathfrak{I}$, for all $\varepsilon \in I_0$ and for all $x \in G$ there exists $v \in \mathfrak{I}$ such that I_x , $v.I_{x-l}-\varepsilon \leq \mu$.

Then there exists a unique T-neighborhood system β such that \Im is T-neighborhood basis for the T-neighbourhood system at e, $\beta(e)$ and β is compatible with the group structure. This T-neighbourhood system is given by

$$\beta(x) = \{I_x, \mu \mid \mu \in \mathfrak{I}\}^{-l} = \{\mu : I_x \mid \mu \in \mathfrak{I}\}^{-l}, x \in G.$$

III. T-NEIGHBORHOOD TOPOLOGIES INDUCED BY T-NEIGHBORHOOD GROUP ACTIONS ON SET

Definition 3.1. Let (G, .) be a group acting on a set X, then for all $\Gamma \in I^G$, $\mu \in I^X$, $g \in G$ and $x \in X$ we define for all $y \in X$

$$\Gamma\mu(y) = \sup \{ \Gamma(g) T \mu(x) \colon (g, x) \in G \times X \text{ and } gx = y \}$$
(1)

Proposition 3.1. Let (G, .) be a group acting on a set X and $\Psi, \Gamma \in I^G, \mu \in I^X$. Then

(a) $\Psi(\Gamma\mu) \leq (\Psi,\Gamma) \mu$ In particular $\Psi(\Gamma\mu)(y) \le (\Psi.\Gamma) \mu(y)$ (b) $\Gamma 1_M = \bigvee_{x \in M} \Gamma 1_x$ (c) $\Gamma I_M(y) = \sup \{ \Gamma(g) : g \in G \text{ and } g^{-1}y \in M \}$ (d) $\Gamma I_x(y) = \sup \{ \Gamma(g) : g \in G \text{ and } gx = y \}$

(e) $I_g \mu(y) = \sup \{ \mu(x) : x \in X \text{ and } gx = y \}$ $=\mu(g^{-l}y)$

Proof: (b)-(e) follow immediately from Definition 3.1.

(a) For any $v \in X$:

 $\Psi(\Gamma\mu)(y) = \sup \{\Psi(g) \ T \ \Gamma\mu(x) \colon (g, x) \in G \times X, \ gx = y\}$ $= \sup \{ \Psi(g) \ T \sup \{ \Gamma(h) \ T \mu(z) : hz = x \} : gx = y \}$ $= \sup \{ \Psi(g) \ T \Gamma(h) \ T \mu(z) : ghz = y \}$ $(\Psi \bigcirc_T \Gamma)\mu(y) = \sup \{(\Psi \bigcirc_T \Gamma(k) T \mu(z): kz = y\}$ = sup {sup { $\Psi(g) T \Gamma(h)$: $gh = k_f^3 T \mu(z)$: kz = y $= \sup \{ \Psi(g) \ T \Gamma(h) \ T \mu(z) \colon (g, h, z) \}$ $\in G \times G \times X$ and ghz = y

Hence $\Psi(\Gamma\mu)(y) = (\Psi \odot_T \Gamma)\mu(y) \le (\Psi, \Gamma)\mu(y)$. If both Γ , μ are crisp, then $\Gamma\mu$ is also crisp and is given by $\Gamma \mu = \{gx: g \in \Gamma \text{ and } x \in \mu\}.$ Note that $\Gamma \mu$, ΓI_x , $I_g \mu \in I^X$ and $\Gamma I_x(y) = 0$ if $y \notin$ orbit of x.

Theorem 3.1. Let G be a T-neighborhood group acting on a set X, and let \mathfrak{R} be a fundamental system of G at e. For each $x \in X$, let $\beta_x = \{\Gamma I_x: \Gamma \in \Re\} \in I^X$. Then $\{\beta_x\}_{x \in X}$ is a T-neighborhood basis on X. The resulting Tneighborhood space is denoted by τ_{x}^{T-G} . Its fuzzy closure operator $: I^X \to I^X$ is given by: For all η $\in I^X$, $x \in X$:

$$\eta(x) = \inf_{\Gamma \in \Re} \sup_{g \in G} \Gamma(g) T \eta(gx)$$
(2)

Proof. First, we verify that $\{\beta_x\}_{x \in X}$ is a Tneighborhood basis in X. Let $x \in X, \Gamma$,

 $\Psi \in \mathfrak{R}$, $\mu = \Gamma I_x \in \beta_x$, $\lambda = \Psi I_x \in \beta_x$

- (i) $\mu(x) = \Gamma I_x(x) = \sup \{ \Gamma(g) : g \in G \text{ and } gx = x \}$ $\geq \Gamma(e) = 1$ (Because ex = x).
- (ii) There exists $\Lambda \in \Re$: $\Gamma \land \Psi \ge \Lambda$. Hence

 $\mu \wedge \lambda = \Gamma I_x \wedge \Psi I_x \ge \Lambda I_x,$

which is in β_x .

(iii) T-kernel condition:

Recall that $\{\Re 1_g\}_{g \in G}$ is a T-neighborhood basis of the T-neighborhood group G Theorem 2.2 . Let, as before, $\mu = \Gamma I_x \in \beta_x$. By the T-kernel condition for

 $\Gamma \in \Re$, for all $\varepsilon \in I_0$ there exists a family $\{\Gamma_g I_g \in \mathfrak{R}_g\}_{g \in G}$ such that for all $g, k \in G$ Ι

$$\Gamma_e(k) T(\Gamma_k I_k)(g) \le \Gamma(g) + \varepsilon$$
 (3)

We take $v_x = \Gamma_{elx}$. For each $y \in X$, if $y \notin$ orbit of x, take for v_v any element of $\beta_v = \Re_v$.

If
$$y \in \text{orbit of } x$$
, choose some $h \in G$ such that $y = hx$, and
 $\delta + \Gamma_e(h) \ge \sup \{\Gamma_e(k): kx = y\}$ (4)
where $\delta \in I_0$ is a real number that satisfies
 $(b + \delta) T (c + \delta) \le (b T c) + \varepsilon$
for all $b, c \in I$. Such δ exists by the uniform continuity

fo of T. Take $v_y = \Gamma_h I_y \in \beta_y$. Then, if $y \notin$ orbit of x, we find for all $z \in X$ that

 $2\varepsilon + \mu(z) \ge v_x(y) T v_y(z)$ because then $v_x(y) = (T_e I_x)(y) = 0$. And when $y \in \text{orbit of}$ *x*, we find for all $z \in X$:

 $2\varepsilon + \mu(z) = 2\varepsilon + (\Gamma I_x)(z)$ $= \varepsilon + \sup \{\varepsilon + \Gamma(g) \colon gx = z\}$ $\geq \varepsilon + \sup \{ \Gamma_e(h) T (\Gamma_h I_h)(g) : gx = z \}$ by (3) $\geq (\Gamma_e(h) + \delta) T \sup \{ (\Gamma_h I_h)(g) : gx = z \}$ $\geq \sup \{\Gamma_e(k): kx = y\} T \sup \{(\Gamma_h)(gh^{-1}): (gh^{-1})(hx) = z\}$ by (4) Since hx = y, then $2\varepsilon + \mu(z) \ge (\Gamma_e I_x)(y) T \sup \{ (\Gamma_h)(t) : ty = z \}$ $= (\Gamma_e I_x)(y) T (\Gamma_h I_y)(z)$ $= v_x(y) T v_y(z)$.

Thus, the kernel condition holds for $\mu \in \beta_x$ in both cases of *y*. Finally, for all $\eta \in I^X$

$$\begin{aligned} &(x) = \inf_{\mu \in \beta} \sup_{y \in X} \mu(y) \ T \ \eta(y) \\ &= \inf_{\Gamma \in \Re} \sup_{y \in X} \eta(y) \ T \ (\Gamma l x)(y) \\ &= \inf_{\Gamma \in \Re} \sup_{y \in orbitex} \eta(y) \ T \ sup \ \{\Gamma(g) \colon g \in G \ and \ gx = y\}. \end{aligned}$$

Because if $y \notin \text{orbit } x$, then $(\Gamma I_x)(y) = 0$. Thus,

$$\bar{\eta}(x) = \inf_{\Gamma \in \Re} \sup_{g \in G} \eta(gx) T \Gamma(g),$$

Rendering (2).

η

Proposition 3.2. Let $\Gamma \in I^G$, $\wp \subset I^G$, $g \in G$, $x \in X$ then

 $(\Gamma. I_g)I_x = (\Gamma I_{gx}) \in I^X$, and hence $(\varnothing.1_g\})1_x = \wp 1_{gx} \subset I^X$.

Proof:

 $((\Gamma . I_g)I_x)(y) = \sup \{ (\Gamma . I_g)(k) \colon k \in G \text{ and } kx = y \}$ = sup { $\Gamma(kg^{-1})$: $k \in G$ and $kg^{-1}gx = y$ } = sup { $\Gamma(t)$: $t \in G$ and tgx = y} $= (\Gamma I_{gx})(y).$ This completes the proof.

Proposition 3.3. For each filterbasis F in I^{G} and for $x \in X$.

$$\{\Gamma I_{x}: \Gamma \in \mathbf{F}^{\sim}\} \subset \{\Psi \mathbf{1}_{x}: \Psi \in \mathbf{F}\}^{\sim} \subset I^{X} \quad (5)$$

Proof: Let $\Gamma \in F^{\sim}$ Then for all $\varepsilon > 0$ there exists Γ_{ε} \in F such that $\Gamma + \varepsilon \ge \Gamma_{\varepsilon}$. Then for all $y \in X$ we have $\varepsilon + (\Gamma I_x)(v) = \varepsilon + \sup \{\Gamma(g): gx = v\}$

$$= \sup \{ \varepsilon + \Gamma(g) : gx = y \}$$

 $\geq \sup \{ \Gamma_{\varepsilon}(g) \colon gx = y \}$ = $(\Gamma_{\varepsilon}I_x)(y)$. Thus, $\varepsilon + \Gamma I_x \geq \Gamma_{\varepsilon}I_x \in \{\Psi I_x \colon \Psi \in \mathbf{F}\}$. Hence $\Gamma I_x \in \{\Psi I_x \colon \Psi \in \mathbf{F}\}$. $\Psi \in \mathbf{F}\}^{\sim}$. This proves (5).

Proposition 3.4. The fuzzy closure operator on X defined in (2) does not depend on the particular choice of a fundamental system \Re of *e*.

Proof: All fundamental systems \mathfrak{R} of *G* at *e* have the same saturation \mathfrak{R}^{\sim} . Also, for each $x \in X$

$$\beta_{x} = \{ \Gamma I_{x} \colon \Gamma \in \mathfrak{R} \}$$

$$\subset \{ \Gamma I_{x} \colon \Gamma \in \mathfrak{R}^{\sim} \}$$

$$\subset \{ \Gamma I_{x} \colon \Gamma \in \mathfrak{R} \}^{\sim} = \beta_{x}^{\sim} .$$

As $\{\beta_x\}$, $\{\beta_x\}$ induce the same fuzzy closure operator on X, then the fuzzy closure operator defined in (2) is also given by

$$\bar{\eta}(x) = \inf_{\Gamma \in \mathfrak{R}} \sup_{g \in G} \Gamma(g) T \eta(gx)$$
(6)

Which is independent of the particular choice of a fundamental system \Re of *e*.

The following definition is well phrased by virtue of Theorem 3.1, and Proposition 3.4;

Definition 3.2. Let G be a T-neighborhood group acting on a set X. A T-G-action-topology on X denoted by τ_X^{T-G} is introduced through its closure operator , defined in (2).

Proposition 3.5. Let \mathfrak{R} be a fundamental system at e of $G, \mu \in \mathfrak{R}$. Then

$$I_g \cdot \mathfrak{R} \cdot I_{g^{-1}} \subset \mathfrak{R}^{\sim} \tag{7}$$

Proof: From condition (d) in Theorem 2.1, for all ε > 0 there exists $v_{\varepsilon} \in \Re$ such that

 $v_{\varepsilon} - \varepsilon \leq I_g \cdot \mu \cdot I_{g^{-1}}$

This proves that I_g . μ . $I_{g^{-1}} \in \mathfrak{R}^{\sim}$

Notion: In T-G-action topology

(1) We denote the T-neighborhood system at $x \in X$ by $\mathcal{N}(x)$.

(2) Let \mathfrak{R} be the T-neighborhood system of G at $e, x \in X$. We denote $\mathfrak{R} 1_x$ by $\zeta(x)$. Recall that $\zeta^- = \mathfrak{N}$; i.e $\zeta(x)$ is a T-neighborhood basis at x for this space.

Definition 3.3. Let $(X, ..., t(\beta))$ be a T-neighborhood space, *M* be a non-empty set in *X*. Then $\mu \in I^X$ is said to be a T-neighborhood of *M* if μ is a T-neighborhood of all points *x* in *M*. It follows that the set of all T-neighborhoods of *M* (called the T-neighborhood system of *M*) is the set $\bigwedge_{x \in M} \aleph(x)$.

Proposition 3.6. Let $\Gamma \in I^G$, $g \in G$, $z \in X$ then $I_g^{-1}(\Gamma I_z) = (I_g^{-1}, \Gamma)I_z$

Proof:

 $I_{g^{-l}}(\Gamma I_{z})(y) = (\Gamma I_{z})(gy)$ = $\sup \{\Gamma(h): h \in G, hz = gy\}$ = $\sup \{\Gamma(gk): k \in G, kz = y\}$ $(I_{g^{-l}}, \Gamma)I_{z}(y) = \sup \{(I_{g^{-l}},\Gamma)(k): kz = y\}$ = $\sup \{\Gamma(gk): k \in G, kz = y\}$ Then

 $I_{g_{-}I}(\Gamma I_z) = (I_{g_{-}I}, \Gamma)I_z$

Theorem 3.2. Under this T-neighborhood topology the functions $\{g\}$ are homeomorphisms on X.

Proof: Without loss of generality, we take \Re the whole T-neighborhood system at e. Then from Proposition 3.5, I_g . \Re . $I_{g-1} \subset \Re$. Given $x \in X$,

 $g \in G$, $\Re I_{gx}$ is a T-neighborhood basis at gx. Let $\mu \in \Re I_{gx}$ we have $\overset{\circ}{g}{}^{-1}(\mu)(y) = \mu(gy) = I_{g-1} \mu(y)$, then $\overset{\circ}{g}{}^{-1}(\mu) = I_{g-1} \mu \in I_{g}{}^{-1} \Re I_{gy}$ and from Proposition 3.6

$$I_g^{-1}(\mathfrak{R} I_{gx}) = (I_g^{-1}, \mathfrak{R})I_{gx},$$

= $(I_g^{-1}, \mathfrak{R}, I_g)I_x$ by Proposition 3.2
 $\subset \mathfrak{R}^{\sim} I_x$ by Proposition 3.5
 $\subset \mathfrak{K}(x).$

i.e., $g^{-1}(\mu)$ is a T- neighborhood of x. So by Theorem 5.1 in [5] $\overset{\circ}{g}$ is continuous at x for all x, and hence it is continuous. Since $(g^{-1})^{\wedge} = (\overset{\circ}{g})^{-1}$. Then $(\overset{\circ}{g})^{-1}$ is also continuous. Thus $\overset{\circ}{g}$ is a homeomorphism.

Proposition 3.7. For any symmetric T-neighborhood Δ of *e*, and any $M \subset X$; x, $z \in X$

$$(\Delta 1_x)(z) = (\Delta 1_z)(x)$$

$$(\Delta 1_M)(x) = \sup_{y \in X} 1_M(y) T (\Delta 1_x)(y).$$

Proposition 3.8. For any subset M of X and any Tneighborhood Γ of e, ΓI_M is a T-neighborhood of M, and

$$\left(\mathbf{1}_{M}\right)^{-} \leq \Gamma \mathbf{1}_{M} \in \mathbf{I}^{X}.$$
(8)

Proof: Since $\Gamma I_M = \bigvee_{x \in M} \Gamma I_x$, then ΓI_M is a T-neighborhood of all points of M, hence ΓI_M is a T-neighborhood of M.

Next, let Γ be a T-neighborhood of e. Then Γ contains a symmetric T-neighborhood Δ of e. For any $x \in X$

$$(1_M)^- (x) = \inf_{\lambda \in \mathcal{C}} \sup_{y \in X} I_M(y) T\lambda(y)$$

$$\leq \sup_{y \in X} I_M(y) T \Delta I_x(y)$$

$$= \sup_{y \in M} \Delta I_x(y)$$

$$= \sup_{y \in M} \Delta I_y(x)$$
 by Proposition 3.7

$$= (\Delta I_M)(x)$$

$$\leq (\Gamma I_M)(x).$$
 This proves (8).

Proposition 3.9. Let \Re be a fundamental system of T-neighborhoods of *e*. For any subset *M* of *X*

$$(I_M)^- = \bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M$$

Proof: From Proposition 3.8, $(I_M)^- \leq \Gamma I_M$ for every $\Gamma \in \mathfrak{R}$. Then

$$(I_M)^{-} \leq \bigwedge_{\Gamma \in O} \Gamma I_M.$$

$$\bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M = \bigwedge_{\Gamma \in \mathfrak{R}^{\sim}} \Gamma I_M.$$

Since $\mathfrak{R} \subset \mathfrak{R}^{\sim}$, then

$$\bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M \ge \bigwedge_{\Gamma \in \mathfrak{R}^{\sim}} \Gamma I_M$$

Also, let $\Gamma \in \mathfrak{R}^{\sim}$, for all $\varepsilon > 0$ there exists $\Gamma_{\varepsilon} \in \mathfrak{R}$ such that $\varepsilon + \Gamma \ge \Gamma_{\omega}$

$$\mathcal{E} + \Gamma I_M \ge (\mathcal{E} + \Gamma) I_M \ge \Gamma_{\varepsilon} I_M \ge \bigwedge_{\Gamma \in \mathfrak{N}} \Gamma I_M$$

Since this holds for all $\varepsilon > 0$, then

$$\Gamma I_M \geq \bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M.$$

This inequality holds for all $\Gamma \in \mathfrak{R}^{\sim}$.

Consequently,

 $\bigwedge_{\Gamma\in\mathfrak{R}^{\sim}}\Gamma I_M\geq \bigwedge_{\Gamma\in\mathfrak{R}}\Gamma I_M$

Hence, equality holds.

It is clear that if O is the set of symmetric elements in \mathfrak{R}^{\sim} then.

$$\underset{\Gamma \in \mathfrak{R}}{\wedge} \Gamma \mathbf{1}_{M} = \underset{\Gamma \in \mathfrak{R}^{\sim}}{\wedge} \Gamma \mathbf{1}_{M} \leq \underset{\Delta \in O}{\wedge} \Delta \mathbf{1}_{M}$$

Conversely, let *O* is the set of symmetric elements in \mathfrak{R}^{\sim} . Then *O* is a fundamental system at *e*:

$$(\bigwedge_{\Delta \in O} \Delta I_{M})(x) = \inf_{\Delta \in O} (\Delta I_{M})(x)$$

= $\inf_{\Delta \in O} \sup_{y \in X} I_{M}(y) T (\Delta I_{X})(y)$ by Proposition 3.7
= $(I_{M})^{-}(x)$

because the set $\{\Delta I_x : \Delta \in O\}$ is a T-neighborhood basis at x.

Theorem 3.3. A T-G-action topology on X is a T-regular T-neighborhood topology.

Proof: Let $M \subset X$ and $x \in X$. We establish condition (N⁴-T-regularity) of Theorem 3.2 in [6], which is equivalent to the T-regularity of *X*. For all $M \subset X$, $x \in X$ such that

Inf hgt (
$$\rho T v: \rho \in C(M), v \in OI_x$$
)

$$\leq \inf_{\Delta \in O} hgt (\Delta I_M T \Delta I_x)$$

$$\leq \inf_{\Delta \in O} sup \{((\Delta I_M) \land \Delta I_x)(y): y \in X\}$$

$$= \inf_{\Delta \in O} sup \{((\Delta I_M)(y) \land (\Delta I_x)(y)): y \in X\}$$

$$= \inf_{\Delta \in O} sup \{sup \{\Delta(h): h \in G, hy \in M\}$$

$$\land sup\{\Delta(k): k \in G, y = kx\}: y \in X\}$$

$$= \inf_{\Delta \in O} sup \{sup \{\Delta(h): h \in G, hy \in M\} \land$$

 $sup{\Delta(k): k \in G, y = kx}: y \in orbit x}$

So. (call
$$y \in kx$$
)
Inf hgt ($\rho \ T v$: $\rho \in C(M)$, $v \in OI_x$)
 $\leq \inf_{\Delta \in O} \sup \{ \sup \{ \Delta(h) : hkx \in M \} \land \Delta(k) : k \in G \}$
 $= \inf_{\Delta \in O} \sup \{ \Delta(h) \land \Delta(k) : h, k \in G \text{ and } hkx \in M \}$
 $= \inf_{\Delta \in O} \sup \{ (\Delta \Delta)(g) : g \in G \text{ and } gx \in M \}$
 $= \inf_{\Delta \in O} \sup ((\Delta \Delta)(I_M))(x)$

But by Theorem 2.2 in [7], for every $\Delta \in O$, $\varepsilon \ge 0$ there exists $\Delta_1 \in O$ such that $\Delta_1 \Delta_1 \le \Delta + \varepsilon$. Hence, Inf hgt $(\rho T v: \rho \in C(M), v \in OI_x)$

$$\leq \inf_{\substack{\Delta \in O, \varepsilon > 0}} ((\Delta + \varepsilon) I_M)(x)$$

= $\inf_{\Delta \in O} (\Gamma I_M)(x)$
= $\bigwedge_{\Gamma \in O} (\Gamma I_M)(x) = (I_M)^{-}(x)$ by Proposition 3.9.

The opposite inequality is always valid.

Theorem 3.4. A T-G-action-topology τ_X^{T-G} coincides with the final T-neighborhood topology τ_f on X defined by the set of functions

$$\{x: G \to X: x \in X\}, x(g) = gx$$

Proof: For any $x \in X$, the function

 $\hat{x}: G \rightarrow (X, \tau_X^{T-G})$ is continuous, because for all

 $g \in G$ and for each neighborhood $\Gamma(I_{gx})$ in the fundamental system $\Re I_{gx}$ of $\hat{x}(g) = gx$, where $\Gamma \in \Re$, we have

$$\hat{x} \ (\Gamma \ . \ l_g)(y) = \sup \{ (\Gamma \ . \ l_g)(h): h \in G, \ \hat{x}(h) = y \}$$

$$= \sup \{ (\Gamma \ . \ l_g)(h): h \in G, \ hx = y \}$$

$$= (\Gamma \ . \ l_g)l_x(y)$$

then \hat{x} $(\Gamma.I_g) = (\Gamma.I_g)I_x = \Gamma I_{gx}$ and $\Gamma.I_g$ is a T-neighborhood of g by Theorem 2.3 in [7]. Therefore

 $au_X^{T-G} \subset au_f$ since au_f is the finest T-neighborhood

topology making all $\stackrel{\wedge}{x}$ continuous.

Next, let $x \in X$, μ a T-neighborhood of x in τ_f . Then $\hat{x}^{-1}(\mu)$ a T-neighborhood of e in G; i.e. $(\hat{x}^{-1}(\mu))I_x$ is a T-neighborhood of x in τ_X^{T-G} .

But $(\hat{x}^{-1} \ (\mu))I_x = \hat{x}(\hat{x}^{-1} \ (\mu)) = \mu \land l_{range\hat{x}} \leq \mu$. This proves that μ is a T-neighborhood of $x \ in \tau_X^{T-G}$. Then $\tau_f \subset \tau_X^{T-G}$. Hence, equality holds.

References

- T.M.G. Ahsanullah, On fuzzy neighbourhood groups, J. Math. Anal. Appl.130 (1988)237-251.
- [2] N. Bourbaki, "General Topology Part I," Addision- Wesley, Reading, MA, 1966.
- [3] D.H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979) 549-564.
- [4] K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part I: T- proximities, Fuzzy Sets and Systems 127 (2002) 247-264.
- [5] K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part II: T- neighborhood systems, Fuzzy Sets and Systems 127 (2002) 265-280.
- [6] K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part III: T- separation axioms, Fuzzy Sets and Systems 133 (2002) 333-361.
- [7] H. A. Khorshed and M. A. El Gendy, On Fuzzy T- neighbourhood groups, 3rd Internationa Conference of Mathematics and Engineering Physics (2006) 24-32.
- [8] A. Patronis, Colloq. Math. Soc. Janos Bolyai 23(1978) 939-944.