
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

672

Abstract—XML files contain data which is in well formatted

manner. By studying the format or semantics of the grammar it will
be helpful for fast retrieval of the data. There are many algorithms
which describes about searching the data from XML files. There are
no. of approaches which uses data structure or are related to the
contents of the document. In these cases user must know about the
structure of the document and information retrieval techniques using
NLPs is related to content of the document. Hence the result may be
irrelevant or not so successful and may take more time to search..
This paper presents fast XML retrieval techniques by using new
indexing technique and the concept of RXML. When indexing an
XML document, the system takes into account both the document
content and the document structure and assigns the value to each tag
from file. To query the system, a user is not constrained about fixed
format of query.

Keywords—XML Retrieval, Indexed Search, Information
Retrieval.

I. INTRODUCTION
OW a day there is huge amount of data from all fields is
available on internet. By using simple keyword technique

user may get more time to retrieve the data, as data is
available in a huge plain text. However, web search engines
index mainly plain documents as texts and HTML pages.
When data is structured, or semi structured, by studying the
structure of data we can get the nearly exact information in
less amount of time. The semantics of the data is conveyed by
content and structure of the data. Thus, it appears important to
index the structure in order to capture all the semantic of a
document. An exact matching paradigm supported by XML
query languages such as W3C’s XPath or XQuery has widely
proved his effectiveness. But, XML query languages are very
complex for a naïve user and require a prior knowledge about
the structure of the documents searched. Such knowledge is
hardly available in Windows and Web environment.

Hence indexing XML documents must be for: It is well
indexing the structure and the content of XML documents, in
a way which preserves the document semantic and give the
search the document in short amount of time, and allows a
simplest user query language. This is done by our system.

Some approaches we have cited are mainly for plain text
retrieval and database retrieval oriented. For database
approach they have mainly considered query language, for
such XQuery [14] which is selected as the basis for an official

W3C query language for XML. We can also cite XPath [6]
which is the ancestor of XQuery, XQL [4] etc... A
comparative study of some query languages is published in
[15]. IR-oriented approaches use techniques of IR to index
and search XML documents. Some of these approaches are an
adaptation of traditional IR-models to XML search [15] like
the Boolean and the probabilistic models, the vector space
model is extended also to search XML documents [9]. Other
approaches, uses adaptations of techniques like tf-idf to
XML data, like for example, XSearch [10] and XRank [11].

A. About the System
While designing the system we are mainly concerned about

the time required to access the data. As XML is a File based
accessing scheme so while accessing by multiple applications
at a time some integrity problem may occur .We have
overcome this problem by creating a new type of XML
Management Server. Through this we can make XML File
access as connection oriented. A query is submitted to the
system and a list of documents is searched in public folder and
displayed along with weight of the document in return. Hence
the user can discover the context of the information returned,
this, helps user to assess the relevance of a result.

The search engine is made of two main modules.
1) A Document Indexer and
2) A Query evaluator.

The document goes through the document parser which
analyses its structure and contents perform indexing on it,
while the query from user goes through query evaluator. In
query evaluator the meaningful words are extracted or
matched from query and they are searched in document
indexer. If they are found the result is displayed according to
relevancy to original document.

Diagrammatically the system can be shown in following
Fig. 1.

Fig. 1 Diagrammatic Representation of Search Engine

Data Extraction of XML Files using Searching
and Indexing Techniques
Sushma Satpute, Vaishali Katkar, and Nilesh Sahare

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

673

II. ARRANGING THE INDEX
Indexing the document: We need three indexes to store the

value associated with each node,
First is the file indexer to keep track of each file that will be

file-id.
Second is weight of the node which is calculated according

to occurrences of the tag.
Third is the distance of the node from the root node.
To index a document, our system performs operations,

which need three index structures:
• fmanager table archiving the files indexed.
• nlist table keeping the structure of documents

archived.
• wlist table keeping every word appearing in

documents archived.
We choose to store the index in a MySql database.

Indexing Document Structure
For now, we expose the simple case of a document without

id references. Since the storing structures of MySql are tables
that have a fixed number of columns, the idea is to transform
the tree into a table, while allowing navigation in both
directions. Each node tree represents an element or an
attribute. They are stored in a table (nodelist) containing the
following parameters:

• name is the name of the element or attribute,
• idfile is the ID of the document,
• idnode is the unique ID (in the entire tree) of the node itself,
• child1 is the ID of the first child of the current node,
• childcount is the number of children of the node (the number
of attributes plus the number of elements),
• parent is the ID of the parent node

The principle is quite simple: each element or attribute is
represented by a node. Each node is assigned an identifier ID
called idnode. Identifiers are stored by using breadth-first
technique, so, every child that is “neighbor” is adjacent in the
nodelist. To refer to its children, a node must specify the
idnode of its first child and the child number. In the Fig. 2 we
can see an example of a tree and its associated nodelist.
Particular values are attributed to some parameters:

• The root node has always an idnode set to 0.

• The leaves have a childcount equal to 0. Then, the value of
child1 is :
– 1 if the node is an element.
– 0 for nodes representing attributes.

(a) Tree structure of Document

(b) Table structure
Fig. 2 Example of a tree structure and its associated nodelist

III. QUERY EVALUATOR
To evaluate a query, the system first transforms it in an

adequate structure, this step is called here query analysis.
Subsequently, the index structure is searched and the relevant
documents are listed.

A. Query Analysis
For this search engine, a query is a set of keywords given

by the user and separated by operators. We can say operators
are words which join the two words; they may be Boolean or
commonly used English language words. The matching
documents must contain the words matching the query
keywords. The operators include the common Boolean
operators or commonly used English language words .They
are described below: () The parentheses classically change
the order used to resolve the expression. AND this performs
the usual Boolean and operator. It is equivalent to the ‘+’ or
the ’&’ symbol or when no symbol is specified. OR This
performs the usual Boolean or operator. It is equivalent to the
‘|’ symbol. Query analysis consists of parsing the queries and
transforming it into a tree where nodes are Operators and
leaves contain the keywords.

ID Node Parent ChildCount Child1 Weight

0 Node1 0 2 1 7

1 Node2 1 2 3 5

2 Node3 1 1 5 8

3 Node4 2 0 / 4

4 Node5 2 3 6 6

5 Node6 3 0 / 9

6 Node7 5 0 / 1

7 Node8 5 0 / 2

8 Node9 5 0 / 3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

674

B. Searching the Index
Searching the index is done in two steps.

a) First, the system localizes nodes containing the query
keywords, secondly, it eliminates those nodes or documents
which don’t match the query specifications expressed by the
operators. Before detailing these two steps, we initially
present the structures used to store the results. For each query
keyword, our system assigns a structure, called Resultquery. It
is a set of NodeSet, one by document in which the keyword
occurs. Each NodeSet contains a unique ID (called idfile) and
a set of Score. Each Score structure has got an ID (called
idnode) corresponding to the node where the keyword occurs
and two vectors cnttype and proxim described below.

Values in cnttype and proxim will be used to rank the
documents. cnttype is a vector containing the types of the
keyword occurrences. Each element of this vector takes one of
the following values:
- 1 if the occurrence of the keyword is a tag name,
 - 2 if the occurrence of the keyword is an attribute name,
- 3 if the occurrence of the keyword is a tag value,
- 4 if the occurrence of the keyword is an attribute value. Note
that these values have not any other role than representing a
term type. proxim is a vector that keeps the distance of the
keyword occurrence, in term of node nesting, with the root
node. The Fig. 3 schematizes these structures. In all vectors,
the structures presented above are always sorted according to
the ID of the item to which it refers. The node localization
step consists of filling the ResultQuery structure presented
above for each query key. To perform this, the system creates
the no of nodes as many as the total no of keywords present in
the document. And for each NodeSet, the system creates as
many Scores as nodes in the corresponding document which
contains the keyword.

Fig. 3 Structure used to evaluate query

Moreover, for each ancestor of those nodes, a Score is created.
The Score structures of the ancestors have their value proxim
incremented for each additional level. To determine the
documents (NodeSets) matching the query, some rules are
applied to merge the Resultquery corresponding to query
keywords. These rules are operations on sets of NodeSets and
sets of Scores. These operations are intersection, union. The
way to handle the ranking parameters is explained in the next
section. The intersection is used to perform an AND operator,
the union, to perform an OR operation. Note that the
intersection returns the first common ancestor of each pair of
operand nodes. Therefore, if a document contains two
keywords, the operator AND between these keywords returns
at least a Score referring to the root node. For operators which
involve document structure, we use an operation a bit more
complex.
1) Each fileid appears in Resultquery of both operands. In
other words, that simply means that the keywords must appear
in the same document.
2) These such NodeSet must contain the idnode that have a
proxim equal to 0 in the left operand and greater than 0 in the
right operand where:
1) As previous, each idfile appears in Resultquery of both
operands.
2) These such NodeSet must contain the idnode that have a
proxim equal to 0 in both operands. Thus, the query tree is
traversable from leaves to root and Resultquery are merged
accordingly to rules associated to the operators. When
reaching the root, only one Resultquery remains and it
contains NodeSets corresponding to the relevant documents.
These NodeSets contain in turn Scores corresponding to the
relevant fragments (nodes) in the document.
3) Example of query evaluation: Consider the following mini
database containing two documents.

<root>
<Product ref="29" category="music">
<Title>
Blue Miles
</Title>
<Authors>
<Author type="artist">
Miles Davis
</Author>
</Authors>
<Support>
DVD, CD
</Support>
</Product>
</root>

The second document is
<root>
<Product ref="36" category="movie">
<Title>
The Big Blue
</Title>
<Authors>
<Author type="director">

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

675

Luc Besson
</Author>
<Author type="actor">
Jean Reno
</Author>
</Authors>
<Support>
DVD, VHS
</Support>
</Product>
</root>

The XML-graphs associated with these documents are
depicted on fig. D. Let us consider the query : “blue AND title
AND cd” represented in D(b). First, three Resultquery are
constructed for the three keywords contained in the query,
namely,” blue,title and cd.” Then, the two Resultquery
corresponding to first keywords blue and title are merged into
unique query result which in turn merge with third query
result i.e. query.

(a) XML-graph associated with the document doc0

(b) XML-graph associated with the document doc1

Fig. 4 XML Graphs

Result of the query tree resulted.

(a) Query

(b) Query tree associated

Fig. 5 Query Tree Generation

Evaluation of the query tree is as shown in figure below:

Fig. 6 Query Tree Evaluation

C. Assigning the Rank and Final Results
The nodes are ranked according to the relevance of the

document to the node. Relevance of a fragment to the query
depends on several factors listed below.
• First, the number of occurrences of query keywords in the
underlying fragment. This measure is usually used in
information retrieval to determine how well a term describes a
document (in our case a fragment).
• Secondly, the position of query keywords within the
fragment (tag name, tag value, attribute name, attribute value).
The impact of the keyword type on the fragment relevance is
not trivial. Intuitively, we suppose that words in an attribute
value are more significant than those in a tag content like
shows the following example. Let us consider the two parts of
XML documents:
<book>
<title = "Reigen">
<author = "Schnitzler">
<summary>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

676

… the scene that confronts
Emma and Alfred, the young man
who cite "Le rouge et le Noir"
of Stendhal to proof his love...
</summary>

</book>

<book>
<title = "Le Rouge et le Noir">
<author = "Stendhal">
<summary>
...
</summary>
</book>
Suppose that a user submits the query:

Stendhal AND Rouge
It is more relevant to give a higher rank to the second

document since Stendhal and Rouge are attribute values that
are more structured words than the words simply present in a
tag content.
• Thirdly, the distance between query keywords (in term of
nodes) within documents. Like in traditional information
retrieval, we think that keyword proximity in a document
enhances the relevance judgment of this document. Suppose
for example that a user who is looking for museums in
Brussels submits the query” museums AND Brussels”. If
retrieved fragments are ranked accordingly to the distance
between museums and Brussels the fragment (a) in figure 7
would be ranked higher than the fragment (b)
in the same figure.
• Fourth, the hierarchical position between query keywords.
We are considering the semantic of the document which relate
parent and child elements.

On that basis, the element (a) in Fig. 7 would be ranked
higher than the element (b) in the same Fig. 7.
• Fifth, the relevance of the document which the element
belongs.
• Finally, The specificity of an element.

Fig. 7 Keyword Proximity

IV. IMPLEMENTATION OF AN INDEXING AND QUERYING
METHOD OVER XML DOCUMENT

Let us consider the example of an XML document which
contains the records of employees.

<?xml version="1.0" standalone="yes"?>
<company>
<Employees>
 <Employee1>
 <Eid>PR100</Eid>
 <Ename>NILESH</Ename>
 <EDesig>PROGRAMMER</EDesig>
 </Employee>
 <Employee2>
 <Eid>TL101</Eid>
 <Ename>VAISHALI</Ename>
 <EDesig>TEAMLEADER</EDesig>
 </Employee>
 <Employee3>
 <Eid>SA102</Eid>
 <Ename>PRASHANT</Ename>
 <EDesig>TEAMLEADER</EDesig>
 </Employee>
 <Employee4>
 <Eid>TL103</Eid>
 <Ename>AMOL</Ename>
 <EDesig>TEAMLEADER</EDesig>
 </Employee>
 <Employee>
 <Eid>PR</Eid>
 <Ename>SHASHANK</Ename>
 <EDesig>PROGRAMMER</EDesig>
 </Employee>
 <Employee5>
 <Eid>SA104</Eid>
 <Ename>HEMANT</Ename>
 <EDesig>SYSTEM ANALYST</EDesig>
 </Employee>
 <Employee>
 <Eid>SA105</Eid>
 <Ename>BIJOY</Ename>
 <EDesig>SYSTEM ANLYST</EDesig>
 </Employee>
 <Employee>
 <Eid>PR107</Eid>
 <Ename>ATUL</Ename>
 <EDesig>PROGRAMMER</EDesig>
 </Employee>
 <Employee>
 <Eid>SA108</Eid>
 <Ename>VEENA</Ename>
 <EDesig>SYSTEM ANALYST</EDesig>
 </Employee>
 <Employee>
 <Eid>PR109</Eid>
 <Ename>HEEMA</Ename>
 <EDesig>PROGRAMMER</EDesig>
 </Employee>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

677

 <Employee>
 <Eid>PR110</Eid>
 <Ename>AJIT</Ename>
 <EDesig>PROGRAMMER</EDesig>
 </Employee>
 <Employee>
 <Eid>pr12</Eid>
 <Ename>pqr</Ename>
 <EDesig>program</EDesig>
 </Employee>
</Employees>

Here to build the query we are taking the actual values as a
query and searching it, first in tags and then matching to
attributes and then value, as shown in following Fig. 8.

Fig. 8 Implementation of an indexing and querying method over

XML document

In above program, we are able to add new values at run
time. We also view the XML Document at the same time.
Updations can be made runtime and these changes are directly
stored in XML file and are visible runtime. And for this
implementation we require R-XML API,s. As shown in the
Fig 9. We need to develop following modules for making the
application connection oriented environment and to create
proper index between different XML files.

1. Client module
a. Client Query Processor
b. Client Network Model

2. Server module
a. Server Network Model
b. Client Query Analyzer
c. Relation Manager Functions

XML File 1 XML File 2 Relational File

XML API / Parser

R - XML API

Applications

R – XML Client Query

Client Network Programming Model

Server Network Programming Model

R–XML Query Parser Server
Model

Client
Model

Fig. 9 R-XML Architecture

V. CONCLUSION
We have presented the design and naive technology for

indexing. The distinctive feature of our indexing method is
that it takes into account the keyword type (tag, content etc...)
and keywords proximity along with keyword weight into
XML documents. Regarding our querying method, it allows
both complex and simple system querying. So, an ordinary
user can submit a list of keywords when a more experienced
user can submit complex queries to express structure
constraints for example. Moreover, we have presented the
elements which we think necessary to arrive at an effective
ranking model for XML fragments. Like it said above, we are
currently working on use of this technique on the distributed
system.

REFERENCES
[1] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no.

3, pp. 130–137, 1980.
[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener, “The lorel

query language for semistructured data,” JODL, vol. 1, no. 1, pp. 68–88,
April 1997.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine,” Computer Networks and ISDN Systems, vol. 30, no. 1–7,
pp. 107–117, 1998. [Online]. Available: citeseer.ist.psu.edu/
brin98anatomy.html

[4] D. S. J. Robie, J. Lapp, “Xml query language (xql),” QL’98 The Query
Languages Workshop, 1998, www.w3.org/TandS/QL/QL98/pp/xql.html.

[5] Xml path language (xpath) version 1.0,” Tech. Rep., November 1999,
http://www.w3.org/TR/xpath.

[6] A. Bonifati and S. Ceri, “Comparative analysis of five XML query
languages,” SIGMOD Record, vol. 29, no. 1, pp. 68–79, 2000. [Online].
Available: citeseer.ist.psu.edu/article/bonifati00comparative.html

[7] N. Fuhr and K. Grosjohann, “XIRQL: A query language for information
retrieval in XML documents,” in Research and Development in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

678

Information Retrieval, 2001, pp. 172–180. [Online]. Available:
citeseer.ist.psu.edu/fuhr01xirql.html

[8] A. Theobald and G. Weikum, “The index-based xxl search engine for
querying xml data with relevance ranking,” in EDBT ’02: Proceedings
of the 8th International Conference on Extending Database Technology.
London, UK: Springer-Verlag, 2002, pp. 477–495.

[9] D. Carmel, Y. Maarek, Y. Mass, N. Efraty, and G. Landau, “An
Extension of the Vector Space Model for Querying XML documents via
XML fragments,” in ACM SIGIR 2002 Workshop on XML and
Information Retrieval, Tampere, Finland, august 2002.

[10] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “XSearch : A Semantic
Search Engine for XML ,” in 29th VLDB Conference, berlin, Germany,
2003, http://www.vldb.org/conf/2003/papers/S03P02.pdf.

[11] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “Xrank: Ranked
keyword search over xml documents,” 2003. [Online]. Available:
citeseer.ist.psu.edu/guo03xrank.html

[12] H. Meyer, I. Bruder, G. Weber, and A. Heuer, “The xircus search
engine,” 2003. [Online]. Available: citeseer.ist.psu.edu/meyer03xircus.
Html

[13] P. Francq, “Collaborative and structured search: an integrated approach
for sharing documents among users,” Ph.D. dissertation, Universit´e
libre de Bruxelles, June 2003.

[14] W. W. W. Consortium, “Xquery 1.0: an xml query language,” Tech.
Rep., November 2003, http://www.w3.org/TR/xquery.

[15] K. Sauvagnat and M. Boughanem, “XFIRM: A Flexible Information
Retrieval Model for Indexing and Searching XML documents,” in ECIR
(European Conference on Information Retrieval)- Proceedings volume 2
(Poster Abstracts) , Sunderland, UK. - Edited by Michael P. Oakes,5-7
avril 2004, pp. 17–18.

