
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2336

Abstract—The security of computer networks plays a strategic

role in modern computer systems. Intrusion Detection Systems (IDS)
act as the ‘‘second line of defense’’ placed inside a protected
network, looking for known or potential threats in network traffic
and/or audit data recorded by hosts. We developed an Intrusion
Detection System using LAMSTAR neural network to learn patterns
of normal and intrusive activities, to classify observed system
activities and compared the performance of LAMSTAR IDS with
other classification techniques using 5 classes of KDDCup99 data.
LAMSAR IDS gives better performance at the cost of high
Computational complexity, Training time and Testing time, when
compared to other classification techniques (Binary Tree classifier,
RBF classifier, Gaussian Mixture classifier). we further reduced the
Computational Complexity of LAMSTAR IDS by reducing the
dimension of the data using principal component analysis which in
turn reduces the training and testing time with almost the same
performance.

Keywords—Binary Tree Classifier, Gaussian Mixture, Intrusion

Detection System, LAMSTAR, Radial Basis Function.

I. INTRODUCTION
OMPUTER security has become a critical issue with the
rapid development of business and other transaction

systems over the internet. Intrusion detection is to detect
intrusive activities while they are acting on computer network
systems. There are two major intrusion detection techniques:
misuse detection and anomaly detection [1]. Misuse detection
discovers attacks based on the patterns extracted from known
intrusions. Anomaly detection identifies attacks based on the
deviations from the established profiles of normal activities.
Activities that exceed thresholds of the deviations are detected
as attacks. Misuse detection has low false positive rate, but
cannot detect new types of attacks. Anomaly detection can
detect unknown attacks, under a basic assumption that attacks
deviate from normal behavior.

We developed an Intrusion Detection System using
LAMSTAR neural network to learn patterns of normal and
intrusive activities, to classify observed system activities and

Manuscript received November 22, 2006.
V. Venkatachalam is with the Erode Sengunthar Engineering College,

Thudupathi, Erode-638057, Tamilnadu, India (phone: +91-04294 232704,
98420 20719; e-mail:vv@erode-sengunthar.ac.in).

S. Selvan is with the PSG College of Technology, Coimbatore, Tamilnadu,
India.

compared the performance of LAMSTAR IDS with other
classification techniques using 5 classes of KDDCup99 data.
LAMSAR IDS gives better performance at the cost of high
Computational complexity, Training time and Testing time,
when compared to other classification techniques (Binary
Tree classifier, RBF classifier, Gaussian Mixture classifier).
we further reduced the computational complexity of
LAMSTAR IDS by reducing the dimension of the data using
principal component analysis which in turn reduces the,
training and testing time with almost the same performance.

This paper is organized as follows: Section 2 gives some
theoretic background about LAMSTAR Neural Network.
Section 3 presents the details about KDDCup99 dataset used
for testing and training the Intrusion Detection system, and the
cost matrix used to calculate cost per example. Section 4 gives
details about the principal component analysis. In Section
5&6 we discuss the dimension reduction of data and
performance of various algorithms in classifying the data.
Section 7 summarizes the obtained results with comparison
and discussions. The paper is finally concluded in section 8
with the most essential points.

II. LAMSTAR
A Large Scale Memory Storage and Retrieval (LAMSTAR)

network is proposed in [2],[3] by combining SOM modules
and statistical decision tools. It was specifically developed for
application to problems involving very large memory that
relates to many different categories (attributes) where some
data is exact while the other is fuzzy and where for a given
problem some categories might be totally missing [2]. Large
Scale Memory Storage and Retrieval (LAMSTAR) network
research, which targets large-scale memory storage and
retrieval problems. This model attempts to imitate, in a gross
manner, processes of the human central nervous system
(CNS) concerning storage and retrieval of patterns,
impressions, and sensed observations including processes of
forgetting and recollection. It attempts to achieve this without
contradicting findings from physiological and psychological
observations, at least in an input/output manner. Furthermore,
it attempts to do so in a computationally efficient manner
using tools of neural networks, especially Self-Organizing-
Map based (SOM) network modules, combined with statistical
decision tools. Its design was guided by trying to find a
mechanistic neural network-based model for very general
storage and retrieval processes involved. This general

An Approach for Reducing the Computational
Complexity of LAMSTAR Intrusion Detection

System using Principal Component Analysis

V. Venkatachalam, and S. Selvan

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2337

approach is related to Minsky’s idea that the human brain
consists of many agents, and a knowledge link is formed
among them whenever the human memorizes an experience.
When the knowledge link is subsequently activated, it
reactivates the mental agents needed to recreate a mental state
similar to the original. The LAMSTAR network employs this
general philosophy of linkages between a large number of
physically separate modules that represent concepts, such as
time, location, patterns, etc., in an explicit algorithmic
network.

The LAMSTAR network has been successfully applied in
fields of medicine (diagnosis)[4]-[6], engineering (automotive
fault detection) and multimedia information systems[7].
Whereas the LAMSTAR design addresses large-scale memory
retrieval problems, we use LAMSTAR concepts to processes
of storage and retrieval, interpolation and extrapolation of
input data, and the use of reward-based correlation-links
between modules to detect intrusions. In this modified
LAMSTAR network, each Kohonen SOM module represents
a class of sub-patterns. The model assumes that the input
patterns have been separated into sub-patterns before entering
the SOM module. The network is thus organized to assign
each neuron to a class of neurons (i.e., one SOM module) that
best corresponds to the input sub-pattern. This SOM
configuration yields very rapid matching with good error
tolerance, and is capable of generalization. Arrays of
correlation links (C-links) connect the modules using
coefficients determined by the statistical correlations between
the various patterns considered. A coordinated activation of
neurons between the various modules allows the network to
recreate (interpolate) complex patterns and make associations.

A. LAMSTAR IDS Design
A modified LAMSTAR network used for intrusion

detection is as shown in Fig. 1. The model reads in KDDCup
99 data sends it first to the feature extraction module which
extracts 41 features of the data and sends it to preprocessing
module. The preprocessing module converts the 41 features
into a standardized numeric representation. Normalization
block reads the preprocessed data and normalizes the data into
a format required by the SOM’s. The normalized input pattern
was split into sub patterns (basic features 9, content features
13, traffic 9, and others 10) [8]. Each sub pattern is given to
one SOM module. This SOM configuration yields very rapid
matching with good error tolerance, and is capable of
generalization.

Between SOM modules, connections are established using
correlation links. The correlation links distribute information
between various modules. The training data contains 22 attack
patterns and normal patterns. The SOM modules are trained
using this pattern. The coordinated activation of neurons
between the various modules allows the network to detect
intrusions.

C-links

KDDCup99

Normal
ization

Prepro
cessing

Feature
Extract

Pattern

Pattern

Pattern

-

-

SOM 1

SOM 2

C-links SOM n

Output
layer

 Winning Neuron; for clarity not all C-links are shown

 Fig. 1 Modified LAMSTAR architecture

The input pattern is stored as a real vector x given by:

X= [x1T,….xiT,….xmT]T
 (1)

To store data concerning the i'th category of the input
pattern, each sub-pattern x

i
is channeled to the corresponding

i'th SOM module. A winning neuron is determined for each
input based on the similarity between the input vector x

i
and

weight vectors w
i

(stored information). For a sub-pattern x
i
,

the winning neuron is determined by the minimum Euclidean
distance between x

i
and w

i
:

kwxwx i

k

ii

winner

i ∀−=− ||||min|||| (2)

where xi - input vector in i’th SOM module
winner -index of the winning neuron

wi

winner
 - winner weight vector in ith SOM module

k - a number of neurons(stored patterns)in ith
 SOM module
||-|| - Vector Euclidean distance

()2
1

|||| ∑
=

=

−=−
ni

i

i

i xwwx

 where n - dimension of sub vectors x and w

The SOM module is a Winner-Take-All [9] network where
only the neuron with the highest correlation between its input
vector and its correspondence weight vector will have a non-
zero output. The Winner-Take-All feature also involves lateral
inhibition such that each neuron has a single positive feedback
onto itself and negative feedback connections to all other
units.

Otherwisejwinner

for wxwxo i

j

ii

winner

ii

j

0

||||||||1{1

0

≠∀

−<−=
 (3)

where

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2338

oi

j
 - output of neuron j in ith SOM module

wi

winner
 - winning weight vector in ith SOM module

 winner - index of winning neuron in ith SOM module

The neuron with the smallest error determined is declared
the winner and its weights Wwinner are adjusted using the
Hebbian learning law, which leads to an approximate solution:

)()(()()1(tttt wxww i

winner

ii

winner

i

winner
−+=+ α (4)

α -Learning rate a slowly decreasing function of time, initial
weights are assumed with random values. The learning rate is
updated by, α (t+1) = 0.5α (t).

The adjustment in the LAMSTAR SOM module is
weighted according to a pre-assigned Gaussian hat
neighborhood function Δ(winner,j).

))()(().,()()1(ttjwinnertt wxww i

j

ii

j

i

j
−Δ+=+ α

 (5)

Where)1(+twi

j
- new weight of the neighbour neuron j

from winning neuron
),(jwinnerΔ – Neighborhood define as gaussian hat

B. Training Phase
The training of the SOM modules are done as described

below SOM modules are trained with sub-patterns derived
from the KDDCup99 data. Given an input pattern x and for
each x

i
sub-pattern to be stored, the network inspects all

weight vectors w
i
in the i’th SOM module. If any previously

stored pattern matches the input sub-pattern within a preset
tolerance (error ε), the system updates the proper weights or
creates a new pattern in the SOM module. The choice of ε ‘s
value depend on the size of the cluster. The following
expression is used to calculate the value of ε:

() 10/,.
. cxdistMAX iclixε

ε = (6)

where ci is the cluster center and cli is the cluster i. It stores
the input sub-pattern x

i
as a new pattern, x

i
= w

j

i
, where index j

is the first unused k
j

i
neuron in i'th SOM module. If there are

no more ‘free’ neurons, the system will fail, which means
either the preset tolerance has to be increased to include more
patterns in the same cluster of already stored patterns, or more
neurons have to be added on the i’th SOM module.

Correlation links C-links among SOM modules are created
as follows. Individual neurons represent only a limited portion
of the information input. Sub-patterns are stored in SOM’s
and the correlation links between these sub-patterns are
established in such a way that the information’s are distributed
between neurons in various SOM modules and correlation
links. Even if one neuron fails only a little information is lost
since the information is spread among SOM’s and correlation

links. Correlation-link coefficient values C-link are
determined by evaluation distance minimization to determine
winning neurons, where a win activates a count-up element
associated with each neuron and with its respective input-side
link. During training sessions, the values of C-links are
modified according to the following simple rule (reward)

C li

jk

,

,
(new)= C li

jk

,

,
 (old) - β reward(C li

jk

,

,
 (old)- C Max) , for

C li

jk

,

,
 (old) ≠ 0, 1 otherwise (7)

C li

jk

,

,
 - correlation link between k’th neuron in i’th SOM

 module and l’ th neuron in j’th SOM module
β reward - reward coefficient ,initially value is assumed
with random values . β reward (t+1) = .5 β reward(t)

To keep link-weights within a reasonable range, whenever the
highest of all weights reaches a certain threshold all link-
weights to that SOM are uniformly reduced by the same
proportion, for example 50%. Additionally, link-weights are
never reduced to zero or the connection between the two
neurons will be lost permanently. If the correlation link

between two sub-patterns already exists, namely, C ji

lk

,

,
> 0 (a

result from previous training), the formula of equation 6
updates (increases) the analyzed C-link. If there are no

correlations (C ji

lk

,

,
= 0), the system creates new C-link with

initial value C ji

lk

,

,
=1.

C. Detection Phase
The sub-patterns from input pattern is selected and the

correlations with stored sub-patterns in each SOM module is
examined. For example, one i’th SOM module could have
previously stored source IP address, and will correlate any
given input i’th sub-pattern and determine if there is a match
or not. The Intruder packet is detected by means of its C-
links. Once all the winning neurons are determined, the
system obtains all correlation-links coefficient values among
all SOM modules. The output SOM layer (Fig. 1), with which
all C-links are inter-connected, will determine whether the
input pattern is an intruder packet or a normal packet.

III. DATA SET & COST MATRIX

A. Data Set
The KDDCup99 intrusion detection datasets are based on

the 1999 DARPA initiative, which provides designers of
intrusion detection systems (IDS) with a benchmark on which
to evaluate different methodologies .We trained and tested our
system using KDDCup99 dataset [8],[10] which covers 22
attack types in the training data which are classified into 5
classes : Denial of Service (DoS) attacks:deny legitimate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2339

requests to a system, e.g.syn flood, User-to-Root (U2R)
attacks: unauthorized access to local super user(root)
privileges, e.g.various buffer overflow attacks, Remote-to-
Local (R2L) attacks: unauthorized access from a remote
machine, e.g. guessing password, and Probing: surveillance
and other probing, e.g. port scanning. The 1999 Defense
Advanced Research Projects Agency (DARPA) Intrusion
Detection Evaluation Program was prepared and managed by
MIT Lincoln Labs. The objective was to survey and evaluate
research in intrusion detection. A standard set of data to be
audited, which includes a wide variety of intrusions simulated
in a military network environment, was provided. Table I
gives the details of KDDCup99 data.

TABLE I

KDDCUP99 TRAINING AND TESTING DATA

B. Feature Extractions and Preprocessing
The input data to the neural network must be in the range [0

1] or [-1 1]. Hence preprocessing and normalization of data is
required. The KDDCup99 format data is preprocessed. Each
record in KDDCup99 format has 41 features, each of which is
in one of the continuous, discrete and symbolic form, with
significantly varying ranges. Based on the type of neural nets,
the input data may have different forms and so needs different
preprocessing. Some neural nets only accept binary input and
some can also accept continuous-valued data. In Preprocessor,
after extracting KDDCup99 features from each record, each
feature is converted from text or symbolic form into numerical
form. For converting symbols into numerical form, an integer
code is assigned to each symbol. For instance, in the case of
protocol_type feature, 0 is assigned to tcp, 1 to udp, and 2 to
the icmp symbol. Attack names were first mapped to one of
the five classes, 0 for Normal, 1 for Probe, 2 for DoS, 3
for U2R, and 4 for R2L.

Two features spanned over a very large integer range,
namely src_bytes [0, 1.3 billion] and dst_bytes [0, 1.3
billion]. Logarithmic scaling (with base 10) was applied
to these features to reduce the range to [0.0, 9.14]. All
other features were boolean, in the range [0.0, 1.0]. Hence
scaling was not necessary for these attributes.

C. Normalizations
For normalizing feature values, a statistical analysis is

performed on the values of each feature based on the existing
data from KDDCup99 dataset and then acceptable maximum
value for each feature is determined. According to the
maximum values and the following simple formula,
normalization of feature values in the range [0,1] is calculated.

If (f > MaxF) Nf=1; Otherwise Nf = (f / MaxF) (8)

--
-
F: Feature f: Feature value MaxF: Maximum acceptable
value for F Nf: Normalized or scaled value of F
--
-

Another simple way to normalize the data is to use SOM

toolbox of the MATLAB software. In this paper the following
MATLAB commands were used to normalize the data.

sD=som_read_data(‘KDDCup99.data’)
sD=som_normalize(sD,‘var’,1:4)
sD=som_normalize(sD,‘log’,5:6)
sD=som_normalize(sD,‘var’,7:41)
sD=som_normalize(sD,‘var’,1:41)

D. Cost Matrix
A cost matrix (C) is defined by associating classes as

labels for the rows and columns of a square matrix: in the
current context for the KDDCup99 dataset, there are five
classes, {Normal, Probe, DoS, U2R, R2L}, and therefore
the matrix has dimensions of 5×5. An entry at row i
and column j, C(i,j), represents the non-negative cost of
misclassifying a pattern belonging to class i into class j.
Cost matrix values employed for the KDDCup99 dataset are
defined elsewhere in [11]. These values were also used for
evaluating results of the KDDCup99 competition. The
magnitude of these values was directly proportional to the
impact on the computing platform under attack if a test
record was placed in a wrong category. A confusion matrix
(CM) is similarly defined in that row and column labels
are class names: a 5×5 matrix for the KDDCup99 dataset.
An entry at row i and column j, CM(i,j), represents the
number of misclassified patterns, which originally belong
to class i yet mistakenly identified as a member of class j.
Given the cost matrix as predefined in [11] and the
confusion matrix obtained subsequent to an empirical
testing process, cost per example (CPE) was calculated
using the formula,

 CPE= ∑∑
==

5

1

5

1

),(*),(1
ji

jiCjiCM
N

 (9)

where CM corresponds to confusion matrix, C
corresponds to the cost matrix, and N represents the
number of patterns tested. A lower value for the cost per
example indicates a better classifier model. Comparing
performances of classifiers for a given attack category is
implemented through the probability of detection along with
the false alarm rate, which are widely accepted as standard
measures. Table II shows the cost matrix used for scoring
entries.

Dataset
Label

DOS PROBE U2R R2L Total
Attack

Total
Normal

Training
data

391458 4107 52 1126 494020 97277

 Testing
data

229853 4166 228 16189 311029 60593

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2340

TABLE II
THE COST MATRIX USED FOR SCORING ENTRIES

 Normal Probe DOS U2R R2L
Normal 0 1 2 2 2
Probe 1 0 2 2 2
DOS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

In the confusion matrices above, columns correspond to
predicted categories, while rows correspond to actual
categories.

The software tool LNKnet, which is a publicly
available pattern classification software package [12],
was used to simulate pattern recognition and machine
learning models. The LAMSTAR was simulated using JNNS
[13] software tool.

E. Standard Metrics for Evaluations of Intrusions(Attacks)
We evaluated the performance of various IDS systems

based on the Detection Rate: detecting normal traffic from
attack and recognizing the known attack type False Alarm
Rate: mis-detecting attack [14]. Table III shows the standard
metrics for evaluation of Intrusions.

 Number of samples classified correctly
Detection rate: --
 Number of samples used for training

 False Positives
False Alarm Rate: --
 Total number of normal connections

TABLE III

STANDARD METRICS FOR EVALUATIONS OF INTRUSIONS (ATTACKS)
 PREDICTED CONNECTION LABEL CONFUSION MATRIX

(STANDARD METRICS) NORMAL Intrusions
(Attacks)

Normal True
Negative(TN)

False Alarm(FP) Actual
Connection
 label Intrusions

(Attacks)
False
Negative(FN)

Correctly detected
Attacks (TP)

IV. PRINCIPAL COMPONENT ANALYSIS
Principal Component Analysis (PCA) [15]-[17] is one of

the most widely used dimensionality reduction techniques for
data analysis and compression. It is a way of identifying
patterns in data, and expressing the data in such a way as to
highlight their similarities and differences. Since patterns in
data can be hard to find in data of high dimensions, PCA is a
powerful tool for analyzing data. Once patterns in the data are
found data can be compressed by reducing the number of
dimensions without loss of information.

Given the KDDCup99 data, each data has 41 features
represented by x11 x12 … x141 , x21 x22….x241 and so on. The
data set can be represented by a matrix Xnxm.

The average observation is defined as

∑
=

=
n

i
ixn 1

1μ (10)

The deviation from the average is defined as

μ_xii =Φ (11)

The sample covariance matrix of the data set is defined as
C

AAxxc T
n

i

T
ii

Tn

i
i nnin ∑ ΦΦ−∑

==

===
11

11)_(1)(μμ (12)

Eigen values and Eigen vectors of the sample covariance
matrix C are usually computed by the Singular Value
Decomposition. Suppose (λ 1, u1), (λ 2, u2)…. (λ m, um) are m
eigenvalue-eigenvector pairs of the sample covariance matrix
C. The k eigenvectors having the largest eigenvalues are
selected. The dimensionality of the subspace k can be
determined by

α
λ

λ
≥

∑

∑

=

=
m

i

k

i

i

i

1

1 (13)

where α is the ratio of the variation in the subspace to the
total variation in the original space. A mxk matrix U is formed
whose columns consists of the k eigenvectors. The
representation of the data by principal components consist of
projecting the data onto the k-dimensional subspace according
to the following rules

Yi = iUxU T

i

T Φ=−)(μ (14)

V. DATA REDUCTION AND PERFORMANCE OF VARIOUS
ALGORITHMS

Principal component analysis is performed on the KDDCup
99 training and test data using Lnknet simulator and best 13
features were selected. The features with best eigen values are
as shown in Table IV.

TABLE IV

BEST 13 FEATURES SELECTED AFTER PRINCIPAL COMPONENT ANALYSIS
S.no Feature Description

0 Duration Continuous
1 Flag Symbolic
2 src_bytes Continuous
3 dst_bytes Continuous
4 Land Symbolic
5 wrong_fragment Continuous
6 Urgent Continuous
7 num_failed_logins Continuous
8 logged_in Continuous
9 dst_host_serror_rate Continuous
10 dst_host_srv_serror_rate Continuous
11 dst_host_rerror_rate Continuous
12 dst_host_srv_rerror_rate Continuous

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2341

VI. INTRUSION DETECTION PERFORMANCE OF VARIOUS
ALGORITHMS USING ALL FEATURES AND REDUCED FEATURES

A. Gaussian Mixture
The Gaussian Mixture classifier [18] can perform better

than a Gaussian classifier when classifier distributions are not
unimodal Gaussian. Different simulations were performed by
changing various parameters like, each class has its own
Gaussian mixture, all classes share a single set of tied
Gaussian mixtures, diagonal covariance, full matrices
covariance, separate variance for each Gaussian. The
simulation result with parameters, each class has its own
Gaussian mixture and diagonal covariance gives the better
cost per example 0.2796 when 41 features were used and
.2776 when 13 features were used. Table V shows the
Confusion Matrix obtained for Gaussian mixture IDS for all
features. Table VI shows the results for reduced features.

TABLE V

CONFUSION MATRIX FOR GAUSSIAN MIXTURE IDS (41 FEATURES)
CPE = .2796

Predicted

Actual

Normal Probe DOS U2R R2L %correct

Normal 59969 423 190 5 6 98.97
Probe 195 3876 95 0 0 93.03
DOS 18015 9002 202822 9 5 88.24
U2R 145 25 1 52 5 22.8
R2l 13950 650 5 30 1554 9.6
%correct 64.99 27.73 99.85 54.16 98.98

TABLE VI
CONFUSION MATRIX FOR GAUSSIAN MIXTURE IDS (13 FEATURES)

 CPE = .2776
Predicted

ACTUAL

NORMA
L

PROBE DOS U2R R2L %
correct

Normal 60019 383 180 5 6 99.05
Probe 195 3876 95 0 0 93.03
DOS 17945 8972 202922 9 5 88.28
U2R 155 25 1 42 5 18.42
R2l 13825 625 5 30 1704 10.5

%correct 65.13 27.92 99.86 48.83 99.06

The top left entry in the confusion matrix shows that 59969

of the actual “normal” test examples were predicted to be
normal by this entry. The last column indicates that in total
98.97% of the “normal” examples were recognized correctly.
The bottom row shows that 64.99% of test examples said to be
normal were indeed “normal” in reality. From the last column,
we can obtain the average detect rate of 62.52%. The false
positive rate for Normal class is 100-64.99 =35.01 %.

B. Radial Basis Function
Radial Basis Function classifiers [19] calculate discriminant

functions using local Gaussian functions. A total of six
simulations for 41 features and six simulations for 13 features
were performed using the RBF algorithm. Each simulation
used initial clusters created using K-means algorithm: there

were 8,16,32,40,64 and 75 clusters each in different output
classes. Weights are trained using least-square matrix
inversion to minimize the squared error of the output sums
given the basis function outputs for the training patterns.
During training and testing variance are increased to provide
good coverage of the data .For each simulation using the RBF,
cost per example for the test dataset were calculated. The
model with 64 clusters performed best with the cost per
example equal to .3801 when 41 features were used and .3805
when 13 features were used. Table VII shows the Confusion
Matrix obtained for Radial Basis IDS for all features. Table
VIII shows the results for reduced features.

TABLE VII
CONFUSION MATRIX FOR RBF IDS(41 FEATURES)

CPE = .3801
 Predicted

Actual

Normal Probe DOS U2R R2L %
correct

Normal 60030 263 290 8 2 99.07
Probe 350 3804 8 3 1 91.31
DOS 37050 20163 172620 15 5 75.10
U2R 190 20 2 16 0 7.01
R2l 7282 7800 200 0 907 5.6

%correct 57.22 11.87 99.71 38.09 99.1

TABLE VIII

CONFUSION MATRIX FOR RBF IDS (13 FEATURES)
CPE = .3805

Predicted

Actual

Normal Probe DOS U2R R2L %correct

Normal 59940 313 330 8 2 98.92
Probe 450 3704 8 3 1 88.91
DOS 36975 20116 172742 15 5 75.15
U2R 196 20 2 10 0 4.38
R2l 7294 7820 200 0 875 5.4
%correct 57.16 11.58 99.68 27.77 99.09

C. Binary Tree
The binary decision tree classifier [20] trains and tests very

quickly. It can also be used to identify the input features
which are most important for classification because feature
selection is part of the tree-building process. Two different
training options were used 1. Expand tree until there are no
errors. 2. Stop Expansion Early. Two different testing options
were used: 1. Full tree for testing, 2. Maximum number of
nodes during testing. The simulation with the parameters
Expand tree until there are no errors for training and Full tree
for testing gives the best cost per example .1841 when 41
features were used and .1837 when 13 features were used.
Table IX shows the Confusion Matrix obtained for Binary
IDS for all features. Table X shows the results for reduced
features.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2342

TABLE IX
CONFUSION MATRIX FOR BINARY TREE CLASSIFIER IDS

CPE=.1841

Predicted

Actual

Normal Probe DOS U2R R2L %correct

Normal 58430 1475 678 7 3 96.43
Probe 419 3247 492 6 2 77.94
DOS 7159 995 221694 4 1 96.45
U2R 97 99 1 31 0 13.59
R2l 8063 1000 7054 0 72 0.44
%correct 78.78 47.63 96.42 64.58 92.30

TABLE X
CONFUSION MATRIX FOR BINARY TREE CLASSIFIER IDS

 CPE=.1837

Predicted

Actual

Normal Probe DOS U2R R2L %correct

Normal 58683 1300 600 7 3 96.84
Probe 564 3102 492 6 2 74.45
DOS 7174 1003 221671 4 1 96.44
U2R 97 99 2 29 1 12.71
R2l 8063 1000 7054 0 72 0.44
%correct 78.68 47.69 96.45 64.04 91.13

D. LAMSTAR
Using the LAMSTAR [21, 4, 5] algorithm, different

clusters were specified and generated for each output class.
Simulations were run having 2,4,8,16,32,40,64 clusters.
Clusters were trained until the average squared error
difference between two epochs was less than 1%. The cost per
example for 41 features is .1027 and for reduced features is
.1030. Table XI shows the Confusion Matrix obtained for
Lamstar IDS for all features. Table XII shows the results for
reduced features.

TABLE XI

CONFUSION MATRIX FOR LAMSTAR IDS
 CPE=.1027

Predicted
Actual

Normal Probe DOS U2R R2L %correct

Normal 60411 140 37 4 1 99.69
Probe 56 4103 6 0 1 98.48
DOS 1603 186 228060 3 1 99.21
U2R 99 54 8 66 1 28.94
R2L 7519 985 1015 0 6670 41.20
%correct 86.68 75.03 99.53 90.04 99.94

TABLE XII

CONFUSION MATRIX FOR LAMSTAR IDS
 CPE=.1030
Predicted
Actual

Normal Probe DOS U2R R2L %correct

Normal 60411 140 37 4 1 99.69
Probe 42 4118 5 0 1 98.84
DOS 1688 146 228015 3 1 99.20
U2R 99 54 5 69 1 30.26
R2L 7519 985 1020 0 6665 41.16
%correct 86.68 75.03 99.53 90.04 99.94

VII. EXPERIMENTAL RESULTS AND COMPARISONS
Best performing instances of all classifiers, developed

through the KDDCup99 data set [22]. For a given classifier,
its detection rate, false alarm rate, Training time and Testing
time, performance on a specific attack category for full
features and reduced features using principal component
analysis were recorded. Simulation results are presented in
Table XIII and XIV. Detection rate, false alarm rate, training
time and testing time are indicated for each classifier and each
attack category. From the results it can be seen that the
training time and testing time significantly reduces when
reduced features were used keeping the detection rate and
false alarm rate almost the same. Performance of LAMSTAR
IDS for all the five categories of data is significant compared
to other classifiers. The comparison charts are shown in Fig. 2
to Fig. 9.

TABLE XIII
COMPARISON OF DETECTION RATE, FALSE ALARM RATE, TRAINING TIME AND

TESTING TIME OF VARIOUS CLASSIFIERS (41 FEATURES)
 C

os
t P

er

Ex
am

pl
e

 N
or

m
al

Pr
ob

e

D
O

S

U
2R

R
2L

DR 98.97 93.03 88.24 22.8 9.6
FAR 35.01 72.27 0.15 45.84 1.02
Training
Time 40s 15s 60s 5s 10

G
m
i
x

0.2796

Testing
Time 28s 10s 45s 5s 12s

DR 99.07 91.31 75.10 7.01 5.6
FAR 42.78 88.13 0.29 61.91 0.88
Training
Time 41s 14s 55s 5s 11s

R
B
F

0.3801

Testing
Time 31s 10s 40s 5s 9s

DR 96.43 77.94 96.45 13.59 0.44
FAR 21.22 52.37 3.58 35.42 7.70
Training
Time 39s 14s 53s 6s 11s

B
I
N
A
R
y
Tr
ee

0.1841

Testing
Time 30s 12s 29s 6s 9s

DR 99.69 98.48 99.21 28.94 41.20
FAR 13.32 24.97 0.47 9.96 0.06
Training
Time 47s 16s 60s 6s 15s

L
A
M
S
T
A
R

0.1027

Testing
Time 28s 13s 28s 5s 9s

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2343

Detection Rate Comparison (41 features)

0

20

40

60

80

100

120

Gmix RBF Binary Tree LAMSTAR
Neural Network

D
et

ec
tio

n
R

at
e Normal

Probe
DOS
U2R
R2L

Fig. 2 Detection Rate Comparison (41 features)

Detection Rate Comparison (13 features)

0

20

40

60

80

100

120

Gmix RBF Binary Tree LAMSTAR
Neural Network

D
et

ec
tio

n
R

at
e Normal

Probe
DOS
U2R
R2L

Fig. 3 Detection Rate Comparison (13 features)

False Alarm Rate Comparison (41 features)

0
10
20
30
40
50
60
70
80
90

100

Gmix RBF Binary Tree LAMSTAR
Neural Network

Fa
ls

e
A

la
rm

Normal
Probe
DOS
U2R
R2L

Fig. 4 False Alarm Rate Comparison (41 features)

False Alarm Rate Comparison(13 Features)

0
10
20
30
40
50
60
70
80
90

100

Gmix RBF Binary Tree LAMSTAR
Neural Network

Fa
ls

e
A

la
rm

 R
at

e

Normal
Probe
DOS
U2R
R2L

Fig. 5 False Alarm Rate Comparison (13 features)

Training Time Comparison (41 features)

0

10

20

30

40

50

60

70

Gmix RBF Binary Tree LAMSTAR

Neural Network

Tr
ai

ni
ng

 T
im

e
R

at
e

Normal
Probe
DOS
U2R
R2L

Fig. 6 Training Time Comparison (41 features)

Training Time Comparison(13 Features)

0
5

10
15
20
25
30
35
40
45
50

Gmix RBF Binary
Tree

LAMSTAR

Neural Network

Tr
ai

ni
ng

 T
im

e

Normal
Probe
DOS
U2R
R2L

Fig. 7 Training Time Comparison (13 features)

Testing Time Comparison (41 features)

0
5

10
15
20
25
30
35
40
45
50

Gmix RBF Binary Tree LAMSTAR

Neural Network

Te
st

in
g

Ti
m

e
R

at
e

Normal
Probe
DOS
U2R
R2L

Fig. 8 Testing Time Comparison (41 features)

TABLE XIV
COMPARISON OF DETECTION RATE, FALSE ALARM RATE, TRAINING TIME AND

TESTING TIME OF VARIOUS CLASSIFIERS (13 FEATURES)

 C

os
t P

er

 E
xa

m
pl

e Norm
al

Probe DOS U2R R2L

DR 99.05 93.03 88.28 18.42 10.50
FAR 34.87 72.08 0.14 51.17 0.94
Training
Time 30s 12s 45s 4s 9s

G
M
I
x

0.2776

Testing
Time 23s 8s 36s 4s 10s

DR 98.92 88.91 75.15 4.38 5.40
FAR 42.84 88.42 0.32 72.23 0.91
Training
Time 31s 11s 42s 5s 9s

R
B
F

0.3805

Testing
Time 25s 8s 33s 5s 8s

DR 96.84 74.45 96.44 12.71 0.44
FAR 21.32 52.31 3.55 35.96 8.87
Training
Time 29s 11s 40s 5s 9s

B
I
N
A
R
Y
T
R
E
E

0.1837

Testing
Time

23s 10s 22s 5s 8s

DR 99.69 98.84 99.20 30.26 41.16
FAR 13.32 24.97 0.47 9.96 0.06
Training
Time 36s 12s 46s 6s 12s

L
A
M
S
T
A
R

0.1030

Testing
Time 23s 11s 22s 5s 8s

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2344

Testing Time Comparison(13 Features)

0
5

10
15
20
25
30
35
40

Gmix RBF Binary Tree LAMSTAR
Neural Network

Te
st

in
g

Ti
m

e

Normal
Probe
DOS
U2R
R2L

Fig. 9 Testing Time Comparison (13 features)

VIII. CONCLUSION
A novel approach for detecting network intrusions using

LAMSTAR Neural Network is proposed in this paper. The
performance of LAMSTAR IDS evaluated using KDDCup99
data and compared with three other classifiers. Simulation
results demonstrated that all the algorithms performed well for
NORMAL, DOS and PROBE classes except Binary Tree,
which shows poor result for PROBE class. For the U2R and
R2L class LAMSTAR gives a better performance than the
other algorithms. The performance of LAMSTAR IDS is
obtained at the cost of high training and testing time due to
computational complexity. To reduce the computational
complexity, training and testing time, Principal Component
Analysis was applied to KDDCup99 data and 13 important
features were selected out of 41 features in the KDDCup99
data. Experimental results with 13 features show significant
reduction in training and testing time due to the reduction in
computation, while keeping the detection rate and false alarm
rate almost the same.

REFERENCES
[1] A.K.Ghosh, A.Schwartzbard, “Study in Using Neural Networks for

Anomaly and Misuse Detection”, in Proc. 8th USENIX Security
Symposium, pp 131-142, August 1999, Washington, D.C.

[2] Abirami Muralidharan, J.Patrick Rousche, “Decoding of auditory cortex
signals with a LAMSTAR neural network”, Neurological Research,
Volume 27, pp. 4-10, January 2005.

[3] D.Graupe and H. Kordylewski, “A Large Memory Storage and Retrieval
Neural Network for Adaptive Retrieval and Diagnosis”, International
Journal of Software Engineering and Knowledge Engineering, volume
8, pp.115-138, 1998.

[4] D.Graupe, “Principles of Artificial Neural Networks”, pp. 191-222,
World Scientific Publishing Co. Pte. Ltd., Singapore, 1997.

[5] H. Kordylewski, “A Large Memory Storage and Retrieval Neural
Network for Medical and Engineering Diagnosis/Fault Detection”,
Doctor of Philosophy’s Thesis, University of Illinois at Chicago, TK-
99999-K629, 1998.

[6] D.Graupe and H. Kordylewski, “A large scale memory (LAMSTAR)
neural network for medical diagnosis”, in Proc. 19th Annual
International Conference of the IEEE, Volume 3, Issue 30, Oct-2 Nov
1997 Page(s):1332 – 1335.

[7] S.K.Chang, D.Graupe, K.Hasegawa, H.Kordylewski, “An Active
Multimedia Information System for Information Retrieval, Discovery
and Fusion”, International Journal of Software Engineering and
Knowledge Engineering, volume 8, pp. 139-160, 1998.

[8] http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html
[9] Teuvo Kohonen , “The Self Organizing Map”, in Proc. IEEE, Volume

78, No. 9, pp 1464 – 1480, September 1990.
[10] Srilatha Chebrolu, Ajith Abraham, Johnson P.Thomas, “Feature

deduction and ensemble design of intrusion detection systems”, Elsevier
Journal of Computers & Security” Vol. 24/4, pp. 295-307, 2005.

[11] Itzhak Levin, KDD-99 Classifier Learning Contest LLSoft’s Results
Overview, “SIGKDD Explorations. Copyright 2000 ACM SIGKDD”,
Vol. 1, Issue 2, pp. 67 -75, January 2000.

[12] www.ll.mit.edu/SST/lnknet/
[13] www-ra.informatik.uni-tuebingen.de/ software/ JavaNNS/ welcome_e.

html.
[14] Dae-Ki Kang, “Learning Classifiers for Misuse and Anomaly Detection

Using a Bag of System Calls Representation”, in Proc. 6th IEEE
Workshop on Information Assurance and Security United States Military
Academy, West Point, NY, 2005.

[15] D. Nguyen, A. Das, G. Memik, and A. Choudhary , “Reconfigurable
Architecture for Network Intrusion Detection Using Principal
Component Analysis” In Proc. ACM/SIGDA 14th international
symposium on Field programmable gate arrays , pp. 235 – 235, 2006.

[16] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel
anomaly detection scheme based on principal component classifier”, In
Proc. IEEE Foundations and New Directions of Data Mining Workshop,
in conjunction with the Third IEEE International Conference on Data
Mining (ICDM’03), pp 172–179, Nov. 2003.

[17] I. T. Jolliffe, “Principal Component Analysis”, Springer Verlag, New
York, NY, third edition, July 2002.

[18] Jing Gao, Haibin Cheng, Pang Ming Tan, “A Novel Framework for
Incorporating Labeled Examples into Anomaly Detection”, in Proc. of
the Siam Conference on Data Mining, April 2006.

[19] Dima Novikov, Roman V. Yampolskiy, Leon Reznik, “Anomaly
Detection Based Intrusion Detection” in Proc. of the Third IEEE
International Conference on Information Technology: New Generations
(ITNG'06), pp. 420-425, 2005.

[20] Richard Lippmann, “Passive Operating System Identification From
TCP/IP Packet Headers” in Proc. of the Workshop on Data Mining for
Computer Security (DMSEC), Lincoln Laboratory ,Massachusetts, 2003.

[21] Liberios Vokorokos, Anton Baley, Martin Chovenac, “Intrusion
detection system using self organizing map”, Acta Electrotechnica et
Informatica , Vol. 6 No.1, pp.1-6, 2006.

[22] Chaker Katar, “Combining Multiple Techniques for Intrusion
Detection”, International Journal of Computer Science and Network
Security, Vol. 6 No.2B, February 2006.

Dr. S. Selvan is Professor and Head, Department of
Information Technology at PSG College of Technology,
Coimbatore, India. He has 27 years of teaching
experience. He has published more than 60 papers in
international and national journals and conference
proceedings. His areas of research include digital image
processing, soft computing, digital signal processing
and computer networking.

V. Venkatachalam received the B.E. degree in
Electronics and Communication from Bharathiyar
University and M.S. degree in software systems from
Birla Institute of Technology. He received M. Tech.
Degree in Computer Science from National Institute of
Technology. His Research interest includes Network
Security and Pattern recognition. He is currently
pursuing his PhD degree in Network Security. Presently
working as Head of the Dept. CSE in Erode Sengunthar
Engineering College, Erode.

