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Abstract—The security of computer networks plays a strategic 

role in modern computer systems. Intrusion Detection Systems (IDS) 
act as the ‘‘second line of defense’’ placed inside a protected 
network, looking for known or potential threats in network traffic 
and/or audit data recorded by hosts. We developed an Intrusion 
Detection System using LAMSTAR neural network to learn patterns 
of normal and intrusive activities, to classify observed system 
activities and compared the performance of LAMSTAR IDS with 
other classification techniques using 5 classes of KDDCup99 data. 
LAMSAR IDS gives better performance at the cost of high 
Computational complexity, Training time and Testing time, when 
compared to other classification techniques (Binary Tree classifier, 
RBF classifier, Gaussian Mixture classifier). we further reduced   the 
Computational Complexity of LAMSTAR IDS by reducing the 
dimension of the data  using principal component analysis which in 
turn  reduces the  training and testing time with almost  the  same 
performance. 

 
Keywords—Binary Tree Classifier, Gaussian Mixture, Intrusion 

Detection System, LAMSTAR, Radial Basis Function. 
 

I. INTRODUCTION 
OMPUTER security has become a critical issue with the 
rapid development of business and other transaction 

systems over the internet. Intrusion detection is to detect 
intrusive activities while they are acting on computer network 
systems. There are two major intrusion detection techniques: 
misuse detection and anomaly detection [1]. Misuse detection 
discovers attacks based on the patterns extracted from known 
intrusions. Anomaly detection identifies attacks based on the 
deviations from the established profiles of normal activities. 
Activities that exceed thresholds of the deviations are detected 
as attacks. Misuse detection has low false positive rate, but 
cannot detect new types of attacks. Anomaly detection can 
detect unknown attacks, under a basic assumption that attacks 
deviate from normal behavior. 

We developed an Intrusion Detection System using 
LAMSTAR neural network to learn patterns of normal and 
intrusive activities, to classify observed system activities and  
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compared the performance of LAMSTAR IDS with other 
classification techniques using 5 classes of KDDCup99 data.  
LAMSAR IDS gives better performance at the cost of high 
Computational complexity, Training time and Testing time, 
when compared to other classification techniques (Binary 
Tree classifier, RBF classifier, Gaussian Mixture classifier). 
we further reduced the computational complexity of  
LAMSTAR IDS by reducing the dimension of the data  using 
principal component analysis which in turn  reduces the, 
training and testing time with almost  the same performance. 

This paper is organized as follows: Section 2 gives some 
theoretic background about LAMSTAR Neural Network. 
Section 3 presents the details about KDDCup99 dataset used 
for testing and training the Intrusion Detection system, and the 
cost matrix used to calculate cost per example. Section 4 gives 
details about the principal component analysis. In Section 
5&6 we discuss the dimension reduction of data and 
performance of various algorithms in classifying the data. 
Section 7 summarizes the obtained results with comparison 
and discussions. The paper is finally concluded in section 8 
with the most essential points. 

II. LAMSTAR 
A Large Scale Memory Storage and Retrieval (LAMSTAR) 

network is proposed in [2],[3] by combining SOM modules 
and statistical decision tools. It was specifically developed for 
application to problems involving very large memory that 
relates to many different categories (attributes) where some 
data is exact while the other is fuzzy and where for a given 
problem some categories might be totally missing [2]. Large 
Scale Memory Storage and Retrieval (LAMSTAR) network 
research, which targets large-scale memory storage and 
retrieval problems. This model attempts to imitate, in a gross 
manner, processes of the human central nervous system 
(CNS) concerning storage and retrieval of patterns, 
impressions, and sensed observations including processes of 
forgetting and recollection. It attempts to achieve this without 
contradicting findings from physiological and psychological 
observations, at least in an input/output manner. Furthermore, 
it attempts to do so in a computationally efficient manner 
using tools of neural networks, especially Self-Organizing-
Map based (SOM) network modules, combined with statistical 
decision tools. Its design was guided by trying to find a 
mechanistic neural network-based model for very general 
storage and retrieval processes involved. This general 
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approach is related to Minsky’s idea that the human brain 
consists of many agents, and a knowledge link is formed 
among them whenever the human memorizes an experience. 
When the knowledge link is subsequently activated, it 
reactivates the mental agents needed to recreate a mental state 
similar to the original. The LAMSTAR network employs this 
general philosophy of linkages between a large number of 
physically separate modules that represent concepts, such as 
time, location, patterns, etc., in an explicit algorithmic 
network.  

The LAMSTAR network has been successfully applied in 
fields of medicine (diagnosis)[4]-[6], engineering (automotive 
fault detection) and multimedia information systems[7]. 
Whereas the LAMSTAR design addresses large-scale memory 
retrieval problems, we use LAMSTAR concepts to processes 
of storage and retrieval, interpolation and extrapolation of 
input data, and the use of reward-based correlation-links 
between modules to detect intrusions. In this modified 
LAMSTAR network, each Kohonen SOM module represents 
a class of sub-patterns. The model assumes that the input 
patterns have been separated into sub-patterns before entering 
the SOM module. The network is thus organized to assign 
each neuron to a class of neurons (i.e., one SOM module) that 
best corresponds to the input sub-pattern. This SOM 
configuration yields very rapid matching with good error 
tolerance, and is capable of generalization. Arrays of 
correlation links (C-links) connect the modules using 
coefficients determined by the statistical correlations between 
the various patterns considered. A coordinated activation of 
neurons between the various modules allows the network to 
recreate (interpolate) complex patterns and make associations. 

 

A. LAMSTAR IDS Design 
A modified LAMSTAR network used for intrusion 

detection is as shown in Fig. 1. The model reads in KDDCup 
99 data sends it first to the feature extraction module which 
extracts 41 features of the data   and sends it to preprocessing 
module. The preprocessing module converts the 41 features 
into a standardized numeric representation.  Normalization 
block reads the preprocessed data and normalizes the data into 
a format required by the SOM’s. The normalized input pattern 
was split into sub patterns (basic features 9, content features 
13, traffic 9, and others 10) [8]. Each sub pattern is given to 
one SOM module. This SOM configuration yields very rapid 
matching with good error tolerance, and is capable of 
generalization.                                                                                                                                                        

Between SOM modules, connections are established using 
correlation links. The correlation links distribute information 
between various modules. The training data contains 22 attack 
patterns and normal patterns. The SOM modules are trained 
using this pattern. The coordinated activation of neurons 
between the various modules allows the network to detect 
intrusions.     
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                          Fig. 1 Modified LAMSTAR architecture 
 
The input pattern is stored as a real vector x given by:  

X= [ x1T,….xiT,….xmT ]T
            (1) 

To store data concerning the i'th category of the input 
pattern, each sub-pattern x

i 
is channeled to the corresponding 

i'th SOM module.  A winning neuron is determined for each 
input based on the similarity between the input vector x

i 
and 

weight vectors w
i 

(stored information). For a sub-pattern x
i
, 

the winning neuron is determined by the minimum Euclidean 
distance between x

i 
and w

i
:  
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where  xi  - input vector in i’th SOM module 
winner   -index of the winning neuron 

wi

winner
  - winner weight vector in ith SOM module 

k     - a number of neurons(stored patterns)in ith                       
                      SOM module 
||-||    - Vector Euclidean distance  
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 where n  - dimension of sub vectors x and w 
  

The SOM module is a Winner-Take-All [9] network where 
only the neuron with the highest correlation between its input 
vector and its correspondence weight vector will have a non-
zero output. The Winner-Take-All feature also involves lateral 
inhibition such that each neuron has a single positive feedback 
onto itself and negative feedback connections to all other 
units.  
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oi

j
    - output of neuron j in ith SOM module 

wi

winner
   - winning weight vector in ith SOM module 

  winner   - index of winning neuron in ith SOM module 
 

The neuron with the smallest error determined is declared 
the winner and its weights Wwinner are adjusted using the 
Hebbian learning law, which leads to an approximate solution:  
 

)()(()()1( tttt wxww i

winner

ii

winner

i

winner
−+=+ α    (4)               

 
α  -Learning rate a slowly decreasing function of time, initial 
weights are assumed with random values. The learning rate is 
updated by, α (t+1) = 0.5α (t).    

The adjustment in the LAMSTAR SOM module is 
weighted according to a pre-assigned Gaussian hat 
neighborhood function  Δ(winner,j). 
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                          (5) 

Where )1( +twi

j
-  new weight of the neighbour neuron j 

from winning neuron  
),( jwinnerΔ   – Neighborhood define as gaussian hat 

 

B. Training Phase 
The training of the SOM modules are done as described 

below SOM modules are trained with sub-patterns derived 
from the KDDCup99 data. Given an input pattern x and for 
each x

i 
sub-pattern to be stored, the network inspects all 

weight vectors w
i 
in the i’th SOM module. If any previously 

stored pattern matches the input sub-pattern within a preset 
tolerance (error ε), the system updates the proper weights or 
creates a new pattern in the SOM module. The choice of  ε ‘s 
value depend on the size of the cluster. The following 
expression is used to calculate the value of ε: 

( ) 10/,.
. cxdistMAX iclixε

ε =         (6)  

where ci is the cluster center and cli is the cluster i. It stores 
the input sub-pattern x

i 
as a new pattern, x

i 
= w

j

i
, where index j 

is the first unused k
j

i 
neuron in i'th SOM module. If there are 

no more ‘free’ neurons, the system will fail, which means 
either the preset tolerance has to be increased to include more 
patterns in the same cluster of already stored patterns, or more 
neurons have to be added on the i’th SOM module.  

Correlation links C-links among SOM modules are created 
as follows. Individual neurons represent only a limited portion 
of the information input. Sub-patterns are stored in SOM’s 
and the correlation links between these sub-patterns are 
established in such a way that the information’s are distributed 
between neurons in various SOM modules and correlation 
links. Even if one neuron fails only a little information is lost 
since the information is spread among SOM’s and correlation 

links. Correlation-link coefficient values C-link are 
determined by evaluation distance minimization to determine 
winning neurons, where a win activates a count-up element 
associated with each neuron and with its respective input-side 
link. During training sessions, the values of C-links are 
modified according to the following simple rule (reward) 
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C li
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,

,
  -  correlation link between k’th neuron in i’th SOM                   

                    module and l’ th neuron in j’th   SOM module 
β reward  -   reward coefficient ,initially  value is assumed 
with random values . β reward (t+1) = .5 β reward(t)  
 
To keep link-weights within a reasonable range, whenever the 
highest of all weights reaches a certain threshold all link-
weights to that SOM are uniformly reduced by the same 
proportion, for example 50%. Additionally, link-weights are 
never reduced to zero or the connection between the two 
neurons will be lost permanently. If the correlation link 

between two sub-patterns already exists, namely, C ji

lk

,

,  
> 0 (a 

result from previous training), the formula of equation 6 
updates (increases) the analyzed C-link. If there are no 

correlations (C ji

lk

,

,
= 0), the system creates new C-link with 

initial value C ji

lk

,

,
=1.  

 

C. Detection Phase 
The sub-patterns from input pattern is selected and the 

correlations with stored sub-patterns in each SOM module is 
examined. For example, one i’th SOM module could have 
previously stored source IP address, and will correlate any 
given input i’th sub-pattern and determine if there is a match 
or not.  The Intruder packet is detected by means of its C-
links. Once all the winning neurons are determined, the 
system obtains all correlation-links coefficient values among 
all SOM modules. The output SOM layer (Fig. 1), with which 
all C-links are inter-connected, will determine whether the 
input pattern is an intruder packet or a normal packet.  
 

III. DATA SET & COST MATRIX 
 
A.   Data Set 
The KDDCup99 intrusion detection datasets are based on 

the 1999 DARPA initiative, which provides designers of 
intrusion detection systems (IDS) with a benchmark on which 
to evaluate different methodologies .We trained and tested our 
system using KDDCup99 dataset [8],[10] which  covers 22 
attack types in the training data which are classified into 5 
classes : Denial of Service (DoS) attacks:deny legitimate 
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requests to a system, e.g.syn flood, User-to-Root (U2R) 
attacks: unauthorized access to local super user(root) 
privileges, e.g.various buffer overflow attacks, Remote-to-
Local (R2L) attacks: unauthorized access from a remote 
machine, e.g. guessing password, and Probing: surveillance 
and other probing, e.g. port scanning. The 1999 Defense 
Advanced Research Projects Agency (DARPA) Intrusion 
Detection Evaluation Program was prepared and managed by 
MIT Lincoln Labs. The objective was to survey and evaluate 
research in intrusion detection.  A standard set of data to be 
audited, which includes a wide variety of intrusions simulated 
in a military network environment, was provided. Table I 
gives the details of KDDCup99 data.  

 
TABLE   I 

KDDCUP99 TRAINING AND TESTING DATA 

 
 

B.   Feature Extractions and Preprocessing 
The input data to the neural network must be in the range [0 

1] or [-1 1]. Hence preprocessing and normalization of data is 
required. The KDDCup99 format data is preprocessed. Each 
record in KDDCup99 format has 41 features, each of which is 
in one of the continuous, discrete and symbolic form, with 
significantly varying ranges. Based on the type of neural nets, 
the input data may have different forms and so needs different 
preprocessing. Some neural nets only accept binary input and 
some can also accept continuous-valued data. In Preprocessor, 
after extracting KDDCup99 features from each record, each 
feature is converted from text or symbolic form into numerical 
form. For converting symbols into numerical form, an integer 
code is assigned to each symbol. For instance, in the case of 
protocol_type feature, 0 is assigned to tcp, 1 to udp, and 2 to 
the icmp symbol.  Attack names  were first mapped to  one  of  
the  five  classes, 0  for Normal, 1  for Probe, 2  for  DoS,  3  
for  U2R,  and  4  for  R2L.   

Two  features  spanned over  a very  large  integer  range, 
namely src_bytes  [0,  1.3  billion]  and  dst_bytes  [0,  1.3  
billion].  Logarithmic  scaling  (with  base  10) was  applied  
to  these  features  to  reduce  the  range  to  [0.0,  9.14].    All 
other features were    boolean, in the range [0.0, 1.0].    Hence 
scaling was not necessary for these attributes.  

 
 
C.   Normalizations 
For normalizing feature values, a statistical analysis is 

performed on the values of each feature based on the existing 
data from KDDCup99 dataset and then acceptable maximum 
value for each feature is determined. According to the 
maximum values and the following simple formula, 
normalization of feature values in the range [0,1] is calculated. 

 
If ( f > MaxF ) Nf=1; Otherwise Nf = ( f / MaxF)        (8) 

--------------------------------------------------------------------------
- 
F: Feature f: Feature value MaxF: Maximum acceptable 
value for F Nf: Normalized or scaled value of F 
--------------------------------------------------------------------------
- 

 
Another simple way to normalize the data is to use SOM 

toolbox of the MATLAB software. In this paper the following 
MATLAB commands were used to normalize the data. 

 
sD=som_read_data(‘KDDCup99.data’) 
sD=som_normalize(sD,‘var’,1:4) 
sD=som_normalize(sD,‘log’,5:6) 
sD=som_normalize(sD,‘var’,7:41) 
sD=som_normalize(sD,‘var’,1:41) 

 
D.   Cost Matrix 
A  cost matrix  (C)  is defined by  associating  classes  as  

labels for the rows and columns of a square matrix: in the  
current context for the KDDCup99 dataset, there are five 
classes,  {Normal,  Probe,  DoS,  U2R,  R2L},  and  therefore  
the  matrix  has  dimensions  of  5×5.    An  entry  at  row  i  
and  column  j,  C(i,j),  represents  the  non-negative  cost  of  
misclassifying  a  pattern  belonging  to  class  i  into  class  j.   
Cost matrix values employed for the KDDCup99 dataset are 
defined elsewhere in [11]. These values were also used for 
evaluating results of the KDDCup99 competition.    The  
magnitude of these values was directly proportional to the  
impact  on  the  computing  platform  under  attack  if  a  test  
record was placed in a wrong category.    A  confusion matrix  
(CM)  is  similarly  defined  in  that  row and column  labels 
are class names: a 5×5 matrix  for  the KDDCup99 dataset.  
An entry at row i and column j, CM(i,j),  represents  the  
number  of  misclassified  patterns,  which  originally belong  
to  class  i yet mistakenly  identified  as  a  member of class j.    
Given  the  cost  matrix  as  predefined  in  [11 ]  and  the  
confusion  matrix  obtained  subsequent  to  an  empirical  
testing  process,  cost  per  example  (CPE)  was  calculated  
using the formula,  

  CPE= ∑∑
==

5

1

5

1

),(*),(1
ji

jiCjiCM
N

           (9) 

where  CM  corresponds  to  confusion  matrix,  C  
corresponds  to  the  cost  matrix,  and  N  represents  the  
number of patterns tested.  A lower value for the cost per 
example indicates a better classifier model.  Comparing 
performances  of  classifiers  for  a  given  attack category is 
implemented through the probability of  detection along with 
the false alarm rate, which are widely accepted as standard 
measures.  Table II shows the cost matrix used for scoring 
entries. 
 

 
 
 
 
 
 

 

Dataset 
Label 

DOS PROBE U2R R2L Total 
Attack 

Total 
Normal 

 
Training 
data 

391458 4107 52 1126 494020 97277 

 Testing 
data 

229853 4166 228 16189 311029 60593 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2340

TABLE II 
THE COST MATRIX USED FOR SCORING ENTRIES 

 Normal Probe DOS U2R R2L 
Normal 0 1 2 2 2 
Probe 1 0 2 2 2 
DOS 2 1 0 2 2 
U2R 3 2 2 0 2 
R2L 4 2 2 2 0 

 
 

In the confusion matrices above, columns correspond to 
predicted categories, while rows correspond to actual 
categories.  

The  software  tool  LNKnet,  which  is  a  publicly  
available  pattern  classification  software   package  [12],   
was  used  to  simulate  pattern  recognition  and  machine  
learning models. The LAMSTAR was simulated using JNNS 
[13] software tool.  

 
 
E.   Standard Metrics for Evaluations of Intrusions(Attacks) 
We evaluated the performance of various IDS systems 

based on the Detection Rate: detecting normal traffic from 
attack and recognizing the known attack type False Alarm 
Rate: mis-detecting attack [14]. Table III shows the standard 
metrics for evaluation of Intrusions. 

 
 

                 Number of samples classified correctly 
Detection rate: -------------------------------------------------------- 
                             Number of samples used for training 
 
                                  False Positives 
False Alarm Rate:  ------------------------------------------------ 
                            Total number of normal connections 
 

 
TABLE III 

STANDARD METRICS FOR EVALUATIONS OF INTRUSIONS (ATTACKS) 
                PREDICTED CONNECTION LABEL CONFUSION MATRIX   

(STANDARD METRICS) NORMAL Intrusions 
(Attacks) 

Normal True  
Negative(TN) 

False Alarm(FP) Actual  
Connection 
 label Intrusions 

(Attacks) 
False  
Negative(FN) 

Correctly detected 
Attacks (TP) 

 

IV. PRINCIPAL COMPONENT ANALYSIS 
Principal Component Analysis (PCA) [15]-[17] is one of 

the most widely used dimensionality reduction techniques for 
data analysis and compression. It is a way of identifying 
patterns in data, and expressing the data in such a way as to 
highlight their similarities and differences. Since patterns in 
data can be hard to find in data of high dimensions, PCA is a 
powerful tool for analyzing data. Once patterns in the data are 
found data can be compressed by reducing the number of 
dimensions without loss of information.   

Given the KDDCup99 data, each data has 41 features 
represented by x11 x12 … x141 , x21 x22….x241 and so on. The 
data set can be represented by a matrix Xnxm. 

The average observation is defined as  

∑
=

=
n

i
ixn 1

1μ                (10) 

The deviation from the average is defined as  

μ_xii =Φ             (11)  

The sample covariance matrix of the data set is defined as  
C

AAxxc T
n

i

T
ii

Tn

i
i nnin ∑ ΦΦ−∑

==

===
11

11)_(1 )( μμ (12) 

Eigen values and Eigen vectors of the sample covariance 
matrix C are usually computed by the Singular Value 
Decomposition. Suppose (λ 1, u1), (λ 2, u2)…. (λ m, um) are m 
eigenvalue-eigenvector pairs of the sample covariance matrix 
C. The k eigenvectors having the largest eigenvalues are 
selected. The dimensionality of the subspace k can be 
determined by  

α
λ

λ
≥

∑

∑

=

=
m

i

k

i

i

i

1

1               (13) 

where α  is the ratio of the variation in the subspace to the 
total variation in the original space. A mxk matrix U is formed 
whose columns consists of the k eigenvectors. The 
representation of the data by principal components consist of 
projecting the data onto the k-dimensional subspace according 
to the following rules 

Yi = iUxU T

i

T Φ=− )( μ             (14) 
 

V. DATA REDUCTION AND PERFORMANCE OF VARIOUS 
ALGORITHMS 

Principal component analysis is performed on the KDDCup 
99 training and test data using Lnknet simulator and best 13 
features were selected. The features with best eigen values are 
as shown in Table IV. 

 
TABLE IV  

BEST 13 FEATURES SELECTED AFTER PRINCIPAL COMPONENT ANALYSIS 
S.no Feature Description 

0 Duration Continuous 
1 Flag Symbolic 
2 src_bytes Continuous 
3 dst_bytes Continuous 
4 Land Symbolic 
5 wrong_fragment Continuous 
6 Urgent Continuous 
7 num_failed_logins Continuous 
8 logged_in Continuous 
9 dst_host_serror_rate  Continuous 
10 dst_host_srv_serror_rate  Continuous  
11 dst_host_rerror_rate  Continuous  
12 dst_host_srv_rerror_rate  Continuous  
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VI. INTRUSION DETECTION PERFORMANCE OF VARIOUS 
ALGORITHMS USING ALL FEATURES AND REDUCED FEATURES 

A.   Gaussian Mixture 
The Gaussian Mixture classifier [18] can perform better 

than a Gaussian classifier when classifier distributions are not 
unimodal Gaussian. Different simulations were performed by 
changing various parameters like, each class has its own 
Gaussian mixture, all classes share a single set of tied 
Gaussian mixtures, diagonal covariance, full matrices 
covariance, separate variance for each Gaussian. The 
simulation result with parameters, each class has its own 
Gaussian mixture and diagonal covariance gives the better 
cost per example 0.2796 when 41 features were used and 
.2776 when 13 features were used.  Table V shows the 
Confusion Matrix obtained for Gaussian mixture IDS for all 
features. Table VI shows the results for reduced features. 

 
TABLE V  

CONFUSION MATRIX FOR GAUSSIAN MIXTURE IDS (41 FEATURES) 
CPE = .2796  

  
Predicted 
 
Actual 

Normal Probe DOS U2R R2L %correct 

Normal 59969 423 190 5 6 98.97 
Probe 195 3876 95 0 0 93.03 
DOS 18015 9002 202822 9 5 88.24 
U2R 145 25 1 52 5 22.8 
R2l 13950 650 5 30 1554 9.6 
%correct 64.99 27.73 99.85 54.16 98.98       

 
 

TABLE VI 
CONFUSION MATRIX FOR GAUSSIAN MIXTURE  IDS (13 FEATURES) 

 CPE = .2776 
Predicted 

 
ACTUAL 

NORMA
L 

PROBE DOS U2R R2L % 
correct 

Normal 60019 383 180 5 6 99.05 
Probe 195 3876 95 0 0 93.03 
DOS 17945 8972 202922 9 5 88.28 
U2R 155 25 1 42 5 18.42 
R2l 13825 625 5 30 1704 10.5 

%correct 65.13 27.92 99.86 48.83 99.06    
 

 
The top left entry in the confusion matrix shows that 59969 

of the actual “normal” test examples were predicted to be 
normal by this entry. The last column indicates that in total 
98.97% of the “normal” examples were recognized correctly. 
The bottom row shows that 64.99% of test examples said to be 
normal were indeed “normal” in reality. From the last column, 
we can obtain the average detect rate of 62.52%. The false 
positive rate for Normal class is 100-64.99 =35.01 %.  
 

B.   Radial Basis Function 
Radial Basis Function classifiers [19] calculate discriminant 

functions using local Gaussian functions. A total of six 
simulations for 41 features and six simulations for 13 features 
were performed using the RBF algorithm. Each simulation 
used initial clusters created using K-means algorithm: there 

were 8,16,32,40,64 and 75 clusters each in different output 
classes. Weights are trained using least-square matrix 
inversion to minimize the squared error of the output sums 
given the basis function outputs for the training patterns. 
During training and testing variance are increased to provide 
good coverage of the data .For each simulation using the RBF, 
cost per example for the test dataset were calculated. The 
model with 64 clusters performed best with the cost per 
example equal to .3801 when 41 features were used and .3805 
when 13 features were used. Table VII shows the Confusion 
Matrix obtained for Radial Basis IDS for all features. Table 
VIII shows the results for reduced features. 
 

TABLE VII 
CONFUSION MATRIX FOR RBF IDS(41 FEATURES) 

CPE = .3801    
  Predicted 

 
Actual 

Normal Probe DOS U2R R2L % 
correct 

Normal 60030 263 290 8 2 99.07 
Probe 350 3804 8 3 1 91.31 
DOS 37050 20163 172620 15 5 75.10 
U2R 190 20 2 16 0 7.01 
R2l 7282 7800 200 0 907 5.6 

%correct 57.22 11.87 99.71 38.09 99.1    
 

 
TABLE VIII  

CONFUSION MATRIX FOR RBF IDS (13 FEATURES)                  
CPE = .3805 

 

  
Predicted 

 
Actual 

Normal Probe DOS U2R R2L %correct 

Normal 59940 313 330 8 2 98.92 
Probe 450 3704 8 3 1 88.91 
DOS 36975 20116 172742 15 5 75.15 
U2R 196 20 2 10 0 4.38 
R2l 7294 7820 200 0 875 5.4 
%correct 57.16 11.58 99.68 27.77 99.09  

 
 

C.   Binary Tree 
The binary decision tree classifier [20] trains and tests very 

quickly. It can also be used to identify the input features 
which are most important for classification because feature 
selection is part of the tree-building process. Two different 
training options were used 1. Expand tree until there are no 
errors. 2. Stop Expansion Early. Two different testing options 
were used: 1. Full tree for testing, 2. Maximum number of 
nodes during testing. The simulation with the parameters 
Expand tree until there are no errors for training and Full tree 
for testing gives the best cost per example .1841 when 41 
features were used and .1837 when 13 features were used. 
Table IX shows the Confusion Matrix obtained for Binary 
IDS for all features. Table X shows the results for reduced 
features. 
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TABLE IX  
CONFUSION MATRIX FOR BINARY TREE CLASSIFIER IDS    

CPE=.1841 
  

Predicted 
 

Actual 

Normal Probe DOS U2R R2L %correct 

Normal 58430 1475 678 7 3 96.43
Probe 419 3247 492 6 2 77.94 
DOS 7159 995 221694 4 1 96.45 
U2R 97 99 1 31 0 13.59 
R2l 8063 1000 7054 0 72 0.44 
%correct 78.78 47.63 96.42 64.58 92.30       

 
 

TABLE X 
CONFUSION MATRIX FOR BINARY TREE CLASSIFIER IDS   

 CPE=.1837 
  
Predicted 
 
Actual 

Normal Probe DOS U2R R2L %correct 

Normal 58683 1300 600 7 3 96.84
Probe 564 3102 492 6 2 74.45 
DOS 7174 1003 221671 4 1 96.44 
U2R 97 99 2 29 1 12.71 
R2l 8063 1000 7054 0 72 0.44 
%correct 78.68 47.69 96.45 64.04 91.13     

 
 
D.   LAMSTAR 
Using the LAMSTAR [21, 4, 5] algorithm, different 

clusters were specified and generated for each output class. 
Simulations were run having 2,4,8,16,32,40,64 clusters. 
Clusters were trained until the average squared error 
difference between two epochs was less than 1%. The cost per 
example for 41 features is .1027 and for reduced features is 
.1030. Table XI shows the Confusion Matrix obtained for 
Lamstar IDS for all features. Table XII shows the results for 
reduced features. 

 
TABLE XI  

CONFUSION MATRIX FOR LAMSTAR IDS                       
  CPE=.1027 

Predicted 
Actual 

Normal Probe DOS U2R R2L %correct 

Normal 60411 140 37 4 1 99.69 
Probe 56 4103 6 0 1 98.48 
DOS 1603 186 228060 3 1 99.21 
U2R 99 54 8 66 1 28.94 
R2L 7519 985 1015 0 6670 41.20 
%correct 86.68 75.03 99.53 90.04 99.94      

 
TABLE XII  

CONFUSION MATRIX FOR LAMSTAR IDS                           
  CPE=.1030 
Predicted 
Actual 

Normal Probe DOS U2R R2L %correct 

Normal 60411 140 37 4 1 99.69 
Probe 42 4118 5 0 1 98.84 
DOS 1688 146 228015 3 1 99.20 
U2R 99 54 5 69 1 30.26 
R2L 7519 985 1020 0 6665 41.16 
%correct 86.68 75.03 99.53 90.04 99.94     

VII. EXPERIMENTAL RESULTS AND COMPARISONS 
Best performing instances of all classifiers, developed 

through the KDDCup99 data set [22]. For a given classifier, 
its detection rate, false alarm rate, Training time and Testing 
time, performance on a specific attack category for full 
features and reduced features using principal component 
analysis were recorded. Simulation results are presented in 
Table XIII and XIV.  Detection rate, false alarm rate, training 
time and testing time are indicated for each classifier and each 
attack category. From the results it can be seen that the 
training time and testing time significantly reduces when 
reduced features were used keeping the detection rate and 
false alarm rate almost the same. Performance of LAMSTAR 
IDS for all the five categories of data is significant compared 
to other classifiers. The comparison charts are shown in Fig. 2 
to Fig. 9. 

 

 
 
 
 
 

 
 

TABLE XIII   
COMPARISON OF DETECTION RATE, FALSE ALARM RATE, TRAINING TIME AND 

TESTING TIME OF VARIOUS CLASSIFIERS (41 FEATURES) 
 C

os
t P

er
 

Ex
am

pl
e 

 N
or

m
al

 

Pr
ob

e 

D
O

S 

U
2R

 

R
2L

 

DR 98.97 93.03 88.24 22.8 9.6 
FAR 35.01 72.27 0.15 45.84 1.02 
Training 
Time 40s 15s 60s 5s 10 

G
m
i 
x 

0.2796 

Testing  
Time 28s 10s 45s 5s 12s 

DR 99.07 91.31 75.10 7.01 5.6 
FAR 42.78 88.13 0.29 61.91 0.88 
Training 
Time 41s 14s 55s 5s 11s 

R
B
F 

0.3801 

Testing 
Time 31s 10s 40s 5s 9s 

DR 96.43 77.94 96.45 13.59 0.44 
FAR 21.22 52.37 3.58 35.42 7.70 
Training 
Time 39s 14s 53s 6s 11s 

B 
I 
N 
A 
R 
y 
Tr
ee 

0.1841 

Testing  
Time 30s 12s 29s 6s 9s 

DR 99.69 98.48 99.21 28.94 41.20 
FAR 13.32 24.97 0.47 9.96 0.06 
Training 
Time 47s 16s 60s 6s 15s 

L
A
M
S
T
A
R 

0.1027 

Testing  
Time 28s 13s 28s 5s 9s 
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Detection Rate Comparison (41 features)
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Fig. 2 Detection Rate Comparison (41 features) 

 
Detection Rate Comparison (13 features)
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Fig. 3 Detection Rate Comparison (13 features) 

 
 

False Alarm Rate Comparison (41 features)
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Fig. 4 False Alarm Rate Comparison (41 features) 

 
False Alarm Rate Comparison(13 Features)
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Fig. 5 False Alarm Rate Comparison (13 features) 

 
Training Time Comparison (41 features)
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Fig. 6 Training Time Comparison (41 features) 

 
Training Time Comparison(13 Features)
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Fig. 7 Training Time Comparison (13 features) 

 
Testing Time Comparison (41 features)
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Fig. 8 Testing Time Comparison (41 features) 

 

TABLE XIV 
COMPARISON OF DETECTION RATE, FALSE ALARM RATE, TRAINING TIME AND 

TESTING TIME OF VARIOUS CLASSIFIERS (13 FEATURES) 
 

   
  C

os
t P

er
   

  
   

   
   

 
   

  E
xa

m
pl

e  Norm
al 

Probe DOS U2R R2L 

DR 99.05 93.03 88.28 18.42 10.50 
FAR 34.87 72.08 0.14 51.17 0.94 
Training 
Time 30s 12s 45s 4s 9s 

G 
M 
I 
x 

0.2776 

Testing 
Time 23s 8s 36s 4s 10s 

DR 98.92 88.91 75.15 4.38 5.40 
FAR 42.84 88.42 0.32 72.23 0.91 
Training 
Time 31s 11s 42s 5s 9s 

R 
B 
F 

0.3805 

Testing 
Time 25s 8s 33s 5s 8s 

DR 96.84 74.45 96.44 12.71 0.44 
FAR 21.32 52.31 3.55 35.96 8.87 
Training 
Time 29s 11s 40s 5s 9s 

B 
I 
N 
A 
R 
Y 
T 
R 
E 
E 

0.1837 

Testing 
Time 

23s 10s 22s 5s 8s 

DR 99.69 98.84 99.20 30.26 41.16 
FAR 13.32 24.97 0.47 9.96 0.06 
Training 
Time 36s 12s 46s 6s 12s 

L 
A 
M 
S 
T 
A 
R 

0.1030 

Testing 
Time 23s 11s 22s 5s 8s 
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Testing Time Comparison(13 Features)
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Fig. 9 Testing Time Comparison (13 features) 

 

VIII. CONCLUSION 
A novel approach for detecting network intrusions using 

LAMSTAR Neural Network is proposed in this paper. The 
performance of LAMSTAR IDS evaluated using KDDCup99 
data and compared with three other classifiers. Simulation 
results demonstrated that all the algorithms performed well for 
NORMAL, DOS and PROBE classes except Binary Tree, 
which shows poor result for PROBE class. For the U2R and 
R2L class LAMSTAR gives a better performance than the 
other algorithms. The performance of LAMSTAR IDS is 
obtained at the cost of high training and testing time due to 
computational complexity. To reduce the computational 
complexity, training and testing time, Principal Component 
Analysis was applied to KDDCup99 data and 13 important 
features were selected out of 41 features in the KDDCup99 
data. Experimental results with 13 features show significant 
reduction in training and testing time due to the reduction in 
computation, while keeping the detection rate and false alarm 
rate almost the same.  
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