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Abstract—Different variants for buoyancy-affected terms in k-ε 

turbulence model have been utilized to predict the flow parameters 
more accurately, and investigate applicability of alternative k-ε 
turbulence buoyant closures in numerical simulation of a horizontal 
gravity current. The additional non-isotropic turbulent stress due to 
buoyancy has been considered in production term, based on 
Algebraic Stress Model (ASM). In order to account for turbulent 
scalar fluxes, general gradient diffusion hypothesis has been used 
along with Boussinesq gradient diffusion hypothesis with a variable 
turbulent Schmidt number and additional empirical constant c3ε.To 
simulate buoyant flow domain a 2D vertical numerical model (WISE, 
Width Integrated Stratified Environments), based on Reynolds-
Averaged Navier-Stokes (RANS) equations, has been deployed and 
the model has been further developed for different k-ε turbulence 
closures. Results are compared against measured laboratory values of 
a saline gravity current to explore the efficient turbulence model.  
 

Keywords—Buoyant flows, Buoyant k-ε turbulence model, 
Saline gravity current.  

I. INTRODUCTION 
RAVITY stratified and buoyancy-affected flows are very 
dominant in many flow domains in different fields of 

engineering in hydraulics and fluid mechanics; transient 
stratification in estuaries and coastal zones due to salt 
intrusion, gravity currents in lakes and dam reservoirs as result 
of heat gradient, pollutant dispersion, and thermal plumes are 
some cases of non-homogeneous (i.e. variable density) gravity 
stratified flow fields [1]. Since most flows in nature and 
industry are almost always turbulent, and buoyancy has an 
important role in production and dissipation of turbulent 
kinetic energy, the accuracy of numerical simulation of 
turbulent buoyant flows is largely dependent on how well the 
buoyancy effects in turbulence are considered and modeled 
[2], [3]. 

Because of complexity of turbulence phenomenon and its 
modeling, turbulence has been the subject of diverse studies in 
different  fields of engineering and science. Many turbulence 
models for different purposes and applicability have been 
proposed ranging from zero and one-equation models, the 
two-equation k-ε, k-ω and k-kl Mellor and Yamada model [4], 
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Reynolds Stress Model (RSM), algebraic Stress Model (ASM) 
to more recent ones such as the Large Eddy Simulation (LES) 
and Direct Numerical Simulation (DNS) models. However, 
DNS and LES are less practical because of difficulty in 
numerical simulations, especially in complex flows, and the 
vast required computer resources [5]. 

Among the turbulence models, the Boussinesq based two-
equation models have been able to satisfy engineering needs 
proportional to an acceptable    accuracy [2], [3], [5]. In 
particular, the k-ε turbulence model is possibly the most 
extensively used because of its almost simplicity, stability in 
numerical methods, and less computing capacity, comparing 
to other complex models such as RSM and ASM or DNS and 
LES [3], [5]. However, the standard k-ε model with buoyancy 
terms needs especial modification to improve the prediction 
and consideration of buoyancy effects on production and 
destruction of turbulence in different turbulent buoyant flows 
[3], [5]–[7]. 

ASM and RSM use specific algebraic or partial differential 
equations to solve each individual Reynolds stress; therefore, 
ASM and RSM will be able to account for the buoyancy 
effects automatically and more realistically [5], [8]. However, 
they demand much more computational time and consequently 
are more costly. Beside the numerical difficulty, the model 
might suffer from a higher risk of instability in complex flow 
conditions [5]. Initial turbulence model developments utilized 
the Standard Boussinesq Gradient Diffusion Hypothesis 
(SGDH) to represent buoyancy induced turbulence generation. 
The mean deficiency of these models, like the k-ε model, is 
the isotropic eddy viscosity assumption, which does not take 
into account the non-isotropic behavior of turbulence due to 
buoyancy forces [7], [9], [10]. Moreover, in simulation of 
each specific turbulent buoyant flow, a suitable level of 
turbulent mixing with calibrated values for coefficients, as 
well as appropriate production and destruction terms are 
required; for example, in thermal simulations, the standard 
buoyancy modified k-ε model tends to under-predict the 
spreading rate of vertical buoyant plumes, and over-predict 
the spreading rate of horizontal, stably-stratified flows [5], 
[11], [12].  

As RSM and ASM turbulence models solve transport 
equations for individual 

jiuu ′′  stress and φ′′iu  flux components, 

they are able to take direct account of transport and history 
effects on these components and also of the anisotropy of the 
turbulent transport in complex flows; moreover, they 
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introduce terms accounting for the effect of buoyancy 
automatically [8]. Therefore, the main attempts of previous 
researchers, related to buoyancy effects, have been  to modify 
the simple two equation k-ε model on the basis of employing 
some relations from ASM or RSM models to consider direct 
effect of buoyancy on turbulence components. Thus, the 
relations for Reynolds stresses and turbulent scalar fluxes 
have been modified by this consideration. Daly and Harlow 
[13] proposed general gradient diffusion hypothesis (GGDH) 
for accounting turbulent scalar fluxes. Yan and Holmstedt [5] 
and Worthy et al. [6] in their studies on thermal plumes found 
that generalized diffusion hypothesis gives more realistic 
results. Davidson [9] combined ASM and k-ε formulas for 
Reynolds stress, and proposed a second closure correction 
method for accounting Reynolds stress components. Bonnet et 
al. [10] and Kun et al. [7] used this hybrid model in their 
studies respectively on coastal circulations modeling and 
vertical planar buoyant jets and came to more realistic results.   

In this study we have implemented different  considerations 
of computing  turbulent scalar (e.g. salinity) fluxes and 
Reynolds stresses (i.e. turbulent stresses or turbulent 
momentum fluxes) in terms P and G in the k-ε equations on 
the basis of general gradient diffusion hypothesis of Daly and 
Harlow [13] for turbulent scalar fluxes and hybrid expression 
of Davidson [9] for Reynolds stresses. Along with these 
implementations, Henkes’s [14] suggestion for controversial 
empirical constant, c3ε, in ε equation has been used with a 
variable turbulent Schmidt number. To investigate the 
applicability of these solutions for gravity currents the 
experimental study of Gerber [15] on a horizontal saline 
gravity current has been simulated numerically and results 
have been compared to explore the most suitable turbulence 
model.   

II. BUOYANT ε−k  MODELS 

A. The Standard  k-ε Model with Buoyancy Terms 
The standard buoyancy-modified k-ε model is based on the 

eddy- viscosity/diffusivity concept of Boussinesq, which uses 
an isotropic eddy-viscosity/diffusivity to relate the Reynolds 
stresses ji uu ′′  and turbulent flux φ ′′iu  of concentration or heat 

to the mean fields: 
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where Ui and ui

′ are respectively the mean and fluctuating 
velocity components in xi direction, φ and φ′ are the mean and 
fluctuating of either temperature or concentration (e.g., of 
salinity), νt is the turbulent or eddy viscosity, Γ is turbulent 
diffusivity of heat or concentration, and σt is the turbulent 
Schmidt number which relates eddy viscosity to the eddy 

diffusivity and its value can be an indication of the level of 
turbulent mixing. The production and dissipation of turbulent 
kinetic energy is subject to transport process, thus to describe 
the evolution of turbulence, two transport equations for k and 
ε are written in tensorial form as follows:  
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where P represents the production of k by interaction of 
Reynolds stresses and mean-velocity gradient, and G 
represents the production/destruction of turbulence by 
buoyancy [16]: 
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In the k-ε model the eddy viscosity νt, relates to k and ε via 
(7), which is obtained from a dimensional analysis and eddy 
viscosity concept [8].    

ε
ν μ

2kct =                                                                         (7) 

                            
In above equations c1ε, c2ε, c3ε, β, and cµ are empirical 
constants, gi acceleration in xi direction, and Rf is flux 
Richardson number. The Rf term is the ratio of the buoyancy 
production or dissipation of k to its production by the shear, Rf 
= –G/P [16]. By this definition of Rf, in accordance with 
Rodi’s argument [16], c3ε should be close to unity for vertical 
buoyant shear layers and close to zero for horizontal layers. 
To simplify this difficulty Rodi suggested an alternative 
definition of Rf, as Rf = –G/(G+P). By this definition of Rf, 
miscellaneous value of c3ε has been proposed as optimized 
amounts.  Another approach for c3ε is the suggestion of 
Henkes et al. [14] as follows: 

 
uvc /tanh3 =ε                                                                   (8) 

  
Equation (8) expresses that in vertical shear layers and 
unstable stratifications which lateral component of velocity (v) 
has much greater value than horizontal component (u), the 
value of c3ε is close to unity, and in contrary, in horizontal 
shear layers it adopts a value almost equal to zero; therefore, 
the contribution ratio of buoyancy in turbulence is adjusted 
automatically.        

For the other empirical constants the following standard 
values are specified [16]: 
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,09.0=μc ,4.11 =εc ,92.12 =εc ,0.1=kσ 3.1=εσ         (9) 

 
The turbulent transport is inversely proportional to the 

Schmidt number σt; its value, according to Rodi [16], is about 
0.90 in near-wall flows, 0.50 in plane jets and mixing layers, 
and 0.70 in round jets. However, as σt can directly affect the 
level of turbulence, and buoyancy is one of the 
production/dissipation source terms of turbulence, its value 
should be modified by the effect of buoyancy force. One 
relation to account for this is the Munk-Anderson formula 
[16] as follows: 
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ρ is the density and Ri is the gradient Richardson number 
which is the ratio of gravity to internal forces and 
characterizes the importance of buoyancy effects. One may be 
able to fit definite experimental data by simply adjusting the 
constant σt as has been demonstrated by Gerber [15], and Nam 
and Bill [17], although, this may seems to vanished the 
generality of turbulence model [5]. In this paper σt = 0.90 has 
been used and is updated in each time step by (10). 

B. The ε−k  Model with General Gradient Diffusion 
The term G in k and ε equations represents an exchange 

between the turbulent kinetic energy and potential energy. In 
stable stratification it is negative and acts as a sink term which 
damps turbulence, while it is positive in unstable flows and 
acts as a source term that amplifies turbulence [16]. Thus, it 
can be understood that there is a direct relation between 
intensity of production/dissipation of turbulence by buoyancy 
and shear layer situation; it means that the greater stable 
stratification, the less turbulence production. It implies that in 
accounting for term G the direct effects of Reynolds stresses 
should be considered on prediction of turbulent scalar fluxes.  
A particular advantage of ASM is that terms accounting for 
buoyancy effect are in close correlation with turbulent 
stresses, so as an alternative to the standard gradient diffusion 
hypothesis of Boussinesq in accounting term G, the ASM 
relation of turbulent scalar fluxes (Φ) can be used as follows: 
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where ii xukR ∂Φ∂Φ′′−=Φ′ /.)./(22 ε , and 1c , 2c , 3c , and R 
are constants [8]. 

Shabbir and Taulbee [12] in their study on buoyant plumes 
found that the magnitude of G predicted by (12) agrees well 

with measured data, while it is likely to be under-estimated, 
using standard gradient diffusion hypothesis. Yan and 
Holmestedt [5] tried to implement above expression to 
compute turbulent scalar (i.e. heat) flux in their study; 
however, they encountered problem to reach convergence. 
Daly and Harlow [13] proposed the so-called generalized 
gradient diffusion hypothesis, which is simpler than above 
ASM formula but retains its basic features: 
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Therefore, according to this and recommendations of Gerber 
[15] in his experimental study of same field of interest, saline 
gravity current, We used (14) in accounting for term G in the 
second turbulence closure.     

C. The k-ε Model with Davidson’s Second-order 
Correction  for Term P.  

A particular limitation of turbulence models based on the 
eddy-viscosity/diffusivity concept, concerning buoyant flows, 
is that they cannot describe non-isotropic behavior of 
turbulence. This non-isotropy which is due to Buoyancy force 
or Earth rotation in geophysical flows is characterized by 
amplification of the turbulent fluctuations in one direction and 
damping it in the other one [10]. Second-order closure 
schemes which employ transport equations for each jiuu ′′

 
and 

φ ′′iu  components have been developed to hinder this 

deficiency. However, these models like RSM and ASM give 
complex relations which need large amount of time and cost 
for practical use. In  ASM turbulent stresses are computed 
through (15) [5], [7], [8]: 
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Davidson [9] proposed a second closure correction method to 
simplify above relation while it preserves its advantages. In 
this method Reynolds stresses consist of two parts: the non-
isotropic turbulence stresses due to buoyancy force and 
isotropic turbulence part due to shear production; the first part 
will be calculated through ASM model and the second part is 
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as given by standard k-ε model on the basis of Boussinesq 
assumption, that is:       
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therefore the total production term, P becomes:  
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Equation (18) can also be used for accounting term G in (14); 
however, Yan and Holmestedt [5] found that utilizing this 
equation simultaneously for both G and P can cause numerical 
difficulty. In the present study this relation has only been used 
for term P. Regarding local equilibrium assumption according 
to the Rodi [16], the term “(P+G)/ε–1” in (22) will be 
omitted; Rodi demonstrated that equilibrium assumption does 
not affect the accuracy of the ASM model. We have used this 
assumption herein.

 

III. NUMERICAL MODELING 
An arbitrary Lagrangian-Eulerian (ALE) 2D vertical 

hydrodynamic numerical model has been deployed, based on 
time dependent Reynolds-averaged Navier-Stokes equations 
to simulate saline gravity currents. The model is further 
refined and developed for different k-ε turbulence closures.   
A structured non-orthogonal curvilinear staggered mesh is 
used for computational domain. To discrete flow and transport 
equations of velocities and scalar quantities like salinity, 
concentration, k and ε, finite volume method was utilized, 
providing flexibility for defining control volumes in a 
staggered grid system, especially near the bed and water 
surface, where rapid changes of bathymetry and free surface 
may have significant effect on the prediction of the flow flied. 
Moreover, the finite volume method provides the assurance of 
global conservation. 

A. Governing Equations in ALE   
In the ALE method the mesh motion can be chosen 

arbitrarily; the newly updated free surface is determined 
purely by Lagrangian method, by the velocity of fluid 
particles at the free surface. Therefore, in horizontal direction 
the grids are fixed while they move in vertical direction. The 

grid geometry is computed and redistributed after completion 
of each time step. With this consideration, an additional grid 
velocity wg, appears in the the Navier-Stokes and species 
concentration equations. The set of equations of continuity, 
momentum and species concentration (C) in two directions is 
written as follows: 
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where u and w are velocity components in x and z directions 
respectively, ρ is the local density and ρr a reference density, ν 
is kinematic viscosity, and g is the gravitational acceleration.                     

B. Solution Method  
The projection (fractional-step) method, proposed by 

Chorin [18] and Temam [19], has been adopted. The method 
generally is accomplished in two steps; the pressure gradient 
terms are omitted from the momentum equations in the first 
step. The transport part of Navier-Stokes equations including 
advection and diffusion are advanced in time to obtain a 
provisional velocity field U*. In the second step, the 
provisional velocity is corrected by accounting for the 
pressure gradient and continuity equation as follows: 
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Subject to the continuity constraint:     
 

01 =+ndivU                                                                      (28) 
 
by taking the divergence of (27), the continuity equation will 
be exerted and the Possion equation is obtained:  
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From the above equations the pressure distribution is 

obtained and velocity quantities are then updated. Advection 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:7, 2009

467

 

 

and diffusion parts of transport equations were computed in a 
locally one-dimensional manner in sub-sub-fractional-steps in 
two directions. A fifth degree accurate scheme for advection 
and the Crank-Nicolson method has been utilized for diffusion 
computations.  

C. k-ε Numerical Models 
According to (3) and (4) the k-ε equations consist of a 

transport part and source terms including P and G variables. 
Although transport part of equations is commonly used in 
existing turbulence closures k-ε models, the term P and G 
have been used differently in a variety of research in this area. 
The transport equations for k and ε have been solved by 
fractional step method. In the first fractional time step the 
values have been advected in sub-fractional steps for each 
direction and in the second fractional time step the values 
have been diffused in x and z directions in the same manner. 
Discrete equations for k and ε in ALE form are as follows: 
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ε-equation: 
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Therefore the viscosity is obtained: 
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In the above equations “→” indicates the sub fractional time 
that a specific process has been performed; these processes 
have been indicated by: 
Ax: Advection in x-direction has been completed. 
A: Advection in both directions has been completed. 
Dx: Diffusion in x-direction has been completed. 
D: Diffusion in both directions has been completed.    

D. Simulation of a Gravity Current  
To investigate the alternate k-ε models in buoyant flow 

fields, the gravity current studied experimentally by Gerber 
[15] has been simulated. The experiment was carried out in a 
Perspex flume with an inlet for the salt current with an excess 
density of 2 kg/m3 with respect to water, and flux of 0.59 l/s. 
The gravity current was planned to travel along the flume 
bottom and exit it to a damping tank to prevent creation of a 
reverse flow to the upstream. The detail of experimental 
apparatus is elaborated in Fig. 1. 

0.
30

 m

0.
03

 min flo w
to  the  dam p ing  tan k

 
Fig. 1 Experimental flume 

 
     General characteristics of flow and inlet conditions which 
is utilized in laboratory experiment by Gerber [15] and the 
simulations are summarized in Table I. 
 

TABLE I 
SUMMARY OF INLET FLOW CONDITIONS  

Parameter Units Value 
water depth in flume m 0.30 
depth of inlet current m 0.03 
ambient density kg/m3 9982 
excess fractional density kg/m3 2.0 
inlet velocity  m/s 0.079 
k0 m2.s-2 6.875× 10−5 
ε0 m2.s-3 1.38× 10−5 

 
The boundary at the inlet is as has been tabulated in Table I 
and illustrated in Fig. 1. At the free surface no flux conditions 
are imposed. At the bottom, (33) and (34) are applied to 
estimate the turbulence kinetic energy and its dissipation next 
to the bed [16], [19]: 
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5.30 m × 1.25 
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where u* is shear velocity, κ is the von Karman constant with 
a value of 0.41[20], and z0 denotes the roughness height. 

IV. RESULTS AND DISCUSSION  
Four alternatives of the k-ε turbulence model which are 

applied in simulation of the gravity current are summarized as 
follows:   
Model No.1: The standard k-ε model with buoyancy terms, 
and a variable buoyancy coefficient c3ε and Schmidt number 
according to (8) and (10).  
Model No.2: The standard k-ε model with buoyancy terms, 
and using general gradient diffusion hypothesis for accounting 
turbulent scalar flux in term G according to (14).  
Model No.3: The standard k-ε model with buoyancy terms, 
which term P is modeled on the basis of second-order 
correction of Davidson [9] which combines the standard k-ε 
model and algebraic stress model (ASM) according to (22).  
Model No.4: The standard k-ε model with buoyancy terms 
which term P is calculated by Davidson second-order 
correction method, and G by general diffusion hypothesis 
according to (14) and (22) respectively.  

The time series of simulated saline gravity current of 
models No.1 and No.2 have been shown in Figs. 2 and 3; 
contours show the amount of salinity within the current. 
Model No.2 shows approximately a higher spreading rate than 
model No.1; but, the propagation speed of the gravity current 
front in model No.2 is lower than model No.1, which has led 
to a shorter traveled distance.   

Tables II and III represent the maximum values of the 
gravity current thickness and velocity of the gravity current 
front predicted by different models as well as experimental 
results for two points in the flume. In addition, the results of 
Fluent package which are stimulated by Gerber [15] is 
reported herein. Fig. 4 reports the estimated eddy viscosity 
value by each turbulence model.  

The simulation results of maximum velocity of the front 
and current thickness show good correlation with the 
computed ranges of eddy viscosity; the greater the turbulence 
intensity, the greater the gravity current thickness and the less 
the maximum velocity. Moreover, as eddy viscosity increases, 
the model is more diffusive and consequently more turbulent 
mixing and spreading rate is predicted which leads to a higher 
gravity current height. 

Differences in the estimated values and closeness to the 
experimental measurements provide the level of the efficiency 
of each model in horizontal gravity current simulation. To 
compare the four simulations, model No.2 and No.4 have 
lower velocity and higher current thickness. Model No.1 has a 
closer prediction compared to measured values. While model 
No.3 does not show any considerable improvement over 
model No.1, it shows more realistic predictions than model 
No.2 and No. 4. Comparing the results of numerical 
simulation and measured values in Table II and Table III in 
conjunction with Fig. 4, the accuracy of the model decreases 
as the level of prediction of intensity of turbulence increases. 
Therefore, in a horizontal gravity current simulation a 

turbulence model with a lower level of mixing intensity may 
be more applicable, and this may demonstrate the reason that 
for two different Schmidt numbers, used in Fluent simulation 
by Gerber [15], the higher value gives the more accurate 
results. 

Model No.2 and No. 4 which utilize the general gradient 
diffusion hypothesis give higher turbulence intensity and 
accordingly are less accurate. 

 

 
(a)-t=45 s 

 

 
(b)-t=90 s 

 

 
(c)-t=135 s 

 

 
(d)-t=180 s 

 

 
(e)-t=255 s 

 

 
(f)-t=300 s 

Fig. 2 Time series of gravity current, Model No.1 
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Fig. 3 Time series of gravity current, Model No.2 
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TABLE II 
FLOW PARAMETERS FOR X = 0.9 FROM INLET  

Test case Umax(m/s) Hd(m) 
measured values 0.0620 0.070 
model No.1 0.0563 0.095 
model No.2 0.0544 0.102 
model No.3 0.0560 0.098 
model No.4 0.0540 0.105 
fluent (σt = 0.7) 0.0409 - 
fluent (σt = 1.3) 0.0450 - 

 Hd = density current height 
TABLE III 

FLOW PARAMETERS FOR X = 2.4 FROM INLET  

Test case Umax(m/s) Hd(m) 
measured values 0.0487 0.124 
model No.1 0.0453 0.127 
model No.2 0.0441 0.131 
model No.3 0.0450 0.129 
model No.4 0.0439 0.131 
fluent (σt = 0.7) 0.0325 - 
fluent (σt = 1.3) 0.0342 - 

 Hd = density current height 

 
Fig.4 Predicted Eddy viscosity by different models 

 
Model No.3 makes very little change in increasing 

turbulence intensity compared to model No.1, and similarly, 
Model No.4 shows slightly higher turbulence intensity 
compared to Model No.2. Therefore, the slight higher 
intensity of turbulence caused by (19) is not regarded as an 
advantage of using ASM relation in a horizontal density 
current. However, in contrary to ASM model, this equation 
does not increase computational time and may propose 
advantages for other flows situation where turbulent motion 
and mixing are more dominant.  

Concerning the turbulence structure at the head and body of 
the current, simulations show that turbulence is proportional 
to dense current height which is in consistence to Kneller et al. 
[20], that the dominant length scale of turbulent eddies is 
nearly equal to thickness of gravity current. Moreover, the 
turbulence (eddy viscosity) reaches its maximum value at the 
current head where the large eddies are generated and gravity 
current has its maximum thickness. 

V. CONCLUSION 
A gravity wall jet was simulated to investigate the 

buoyancy effects in four different k-ε turbulence models. 
Basically, the gravity wall jet seems to be largely inclined to a 
stable stratified situation, in which buoyancy damps the 
turbulence and therefore the contribution of G in turbulence 
production is less. General gradient diffusion hypothesis 
predicts a higher value of eddy viscosity at the current head 
and consequently a greater spreading rate. Using Davidson [9] 
second-order correction shows a slight increase of eddy 
viscosity either in combination with general gradient 
hypothesis (model No.4) or without it (model No.3). 
Regarding the over-estimated values of simulations, it is 
recommended that the influence of general gradient diffusion 
hypothesis and hybrid relation of Davidson [9] to be 
investigated for a flow domain that turbulent mixing is more 
governing and shear layers have mainly unstable arrangement, 
which buoyancy magnifies the turbulence production.  

By increasing in the eddy viscosity (turbulence intensity), 
the depth of gravity current grows and propagation speed 
decreases, hence a shorter traveled distance for current is 
predicted.  

The simulation with turbulence closure No.1 which applies 
a variable c3ε and Schmidt number gives the best result, 
comparing to the other models and Fluent simulation; 
therefore, it is very important to consider an appropriate 
Schmidt number as well as c3ε, if a variable value is not used. 

Results show that both general gradient diffusion (14) and 
Boussinesq (7) expressions for turbulent scalar fluxes over 
predict the spreading rate in this specific simulation, and since 
the spreading rate can be an indicator of the level of 
turbulence [15], it seems that lower turbulence intensity 
closures would be more suitable. Finally, concerning the use 
of general gradient diffusion hypothesis for term G and 
second-order correction of term P, although in this certain 
simulation they led to greater turbulent kinetic energy 
production, further researches on different turbulent buoyant 
flows are needed to come to definite conclusion about their 
applicability in each especial problem. It is also worth noting 
that a distinct turbulence model and especially k-ε model 
cannot satisfactory predict all turbulent flow cases, and 
especial calibration for constants and consideration for source 
terms are needed. 
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