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On the Invariant Uniform Roe Algebra as Crossed
Product

Kankeyanathan Kannan

Abstract—The uniform Roe C* —algebra (also called uniform
translation)C"*- algebra provides a link between coarse geometry and
C~*- algebra theory. The uniform Roe algebra has a great importance
in geometry, topology and analysis. We consider some of the
elementary concepts associated with coarse spaces. A discrete group
$GS$ has natural coarse structure which allows us to define the the
uniform Roe algebra, C{;(G). The reduced C* — algebra C:(G) is
naturally contained in C{j(G). We show that the elements of
L°(G) Xgig G which are invariant under Adp are of the
form (€°(6))? x4y G. Finally we show that if Xand Y are
bounded geometry discrete metric spaces, then

CiX X Y) # CL(X0) ® Ci(Y).

Keywords—Invariant Approximation Property, Uniform Roe
algebras.

1. INTRODUCTION

E assume that the reader is familiar with the basic

notions in operator algebras and operator spaces, Roe
[8], Kannan [4], [5], [6] and [7] Jolissaint [3], Brown and
Ozawa [2], and Anantharaman-Delaroche [1] for the details on
the invariant approximation property and the coarse geometry.
The wuniform Roe algebra C{(G) is the C* —algebra
completion of the algebra of bounded operators on ((X)
which have finite propagation. In other words: According to
Roe [8] G has the invariant approximation property (IAP) if

G(6) =C(6)° .

In Section IV, we study the crossed product of C* —algebra.
In section IV we study stone-cech compactification. In section
IV we study the following statements:

C;(G) =C(BG) %, G = £*(G) Naig G

and we show the induce action of G on C(BG) .. G.

The main purpose of this paper is to prove that the Theorem
5.2, in section V. We also show that the elements of
£%(G) Xgqq G which are invariant under Adp are of the
form (£2(6))P@ x4, G. Finally we show that if X and
Y are bounded geometry discrete metric spaces, then
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CiXXY) = Ci(X) ® Ci().

II. PRELIMINARIES

Coarse geometry is the study of the large scale properties of
spaces. The notion of large scale is quantified by means of a
coarse structure. First we recall the following definitions:

Definition 1 [8]: Let X, Y be metric spaces and f: X — Y a
not necessarily continuous map.

1. The map f is called coarsely proper (or metrically
proper), if the inverse image of a bounded set is bounded.

2. The map f is called coarsely uniform (or uniformly
bornologous), if for every r > 0 there is s(r) > 0 such
that for all x,y € X,

dix,y) <r = d(f(0),f(¥) < s(r)

3. The map fis called a coarse map, if it is coarsely proper
and coarsely uniform.

4. LetSbeaset. Twomaps f,g:S— X, are called close if
there is C > 0 such that for all

s€ES, d(f(s),g(s)) < C.

5. AsubsetE of X X Xiscalled controlled (or entourage),
if the coordinate projection a 1, w;: E — X is close.
Definition 2 [8]: A coarse structure on a set X is a collection
of subsets of XxX, called the controlled sets or entourages for
the coarse structure, which contains the diagonal and is closed
under the formation of subsets, inverses, products, and (finite)
unions.
It is easy to see that the controlled sets associated to a
metric space X have the following properties:
e Any subset of a controlled set is controlled;
e The transpose Ef = {(x,y): (y,x) € E}
of a controlled set E is controlled;
e The composition E; o E, of controlled sets E; and E, is
controlled; where

E oF, = {xz)eX x X:3y € X,
1772 7 (x,y) € E; ,and (y,2) € E,}

e A finite union of controlled sets is controlled;
e The diagonal A, (X):= {(x,x):x € X}
is controlled.
Definition 3 [8]: A set equipped with a coarse structure is
called a coarse space. Coarse geometry is the study of metric
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spaces (or perhaps more general objects) from a ‘large scale'
point of view, so that two spaces which ‘look the same from a
great distance' are considered equivalent.

Let X and Y be metric spaces. A (not necessarily
continuous) map f : X — Y is a coarse equivalence if
there are constants C, A such that

dix,y) = Cd(f (), f () + A

and
aif).f(y) = Cd(xy) + A

forallx andy in X.

Definition 4 [8]: A coarse structure on X is connected if
each point of X X X belongs to some controlled set.

Definition 5 [8]: Let (X,d) be a metric space, we say that
the metric d induces a coarse structure on X, which is called a
bounded coarse structure. More precisely, we can define the
bounded coarse structure induced by the metric d as follows:
Set

D, :={(x,y) €X x X:d(x,y) < r}

Then E € X X X is controlled, if E € D,. for some r > 0.
The following is an example of coarse structure.

Example 6 [8]: Let G be a finitely generated group. Then
the bounded coarse structure associated to any word metric on
G is generated by the diagonals

A, = {(h,hg):h €G},

as g runs over G.

Definition 7 [8]: Let X and Y be coarse spaces. A map
i: X—— Y isacoarse embedding if it is a coarse equivalence
between X and i(X) €Y.

We next recall some definitions about uniform Roe algebra
and metric property of a discrete group. Let X be a discrete
metric space.

Definition 8[8]: We say that discrete metric space X has
bounded geometry if for all R there exists N in N such that for
allx € X, |Br(x)| < N, where

Br(x) ={x € X:d(y,x) < R}.

Definition 9[8]: A kernel ¢:X XX — C

1. is bounded if there exists M > 0 such that |¢(s, t)|< M for
alls,t € X

2. has finite propagation if, there exists R > 0 such that
@ (s,t)=0, d(s,t) > R.

Next, we show the operator associated with a bounded
kernel is bounded.

Lemma 10 [4]: Let X be bounded geometry metric space.
An operator associated with a bounded finite propagation
kernel is bounded.

We shall denote the finite propagation kernels on by A% (X).

Definition 11 [8]: The uniform Roe algebra of a metric
space X is the closure of A*(X) in the algebra B(£%(X)) of
bounded operators on X.

If a discrete group G is equipped with its bounded coarse
structure introduced in Example 2.4 then one can associated
with it to uniform Roe algebra C{;(G) by repeating the above.

Next we recall the left and right regular representation: An
important class of C* —algebra algebras arise in the study of
groups. Let G be a discrete group, then the characteristic
function 8,(s) of g,s € G is defined as follows:

Sg(s)={1 g=s }

0 otherwise.

If we assume that the Gis a discrete group then the
functions §,(s) form a basis for the Hilbert space £%(G) of
square summble functions on G.

The group ring C[G] consists of all finitely supported
complex-valued functions on G, that is of all finite

combinations
f = z ass

SEG

with complex coefficients.
The convolution product and the adjoins are defined as

follows:

(Xsec asS)(Xseg art) =(Xseg asa;st)

<Zass> =) @

SEG SEG

Denote by B(#?(G)) the C* — algebra of all bounded linear
operator on the Hilbert space #2(G). We may distinguish
between the left regular representation, which is induced by
the left multiplication action, and the right regular
representation, which is comes from the multiplication on the
right.

Definition 12: The left regular representation

A:C[G] — B(#2(6))

is defined by
A($)8:(1) = 8, (s7'r) = 65(r)

for s,r € G.
The right regular representation is given by

p()8,(r) = 8 (rs) = 815-1(1)

for s,r € G.
The left regular representation is implemented using the
familiar convolution formula
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(8g *2 8p)(s) = Z 8y (st™)8k () = Ggn(s)

teG
It follows that for any function f € £2(G) the left action
by &, is given by
(g *2 )s) = Z 8y (st™Of () = f(g7's)
teG
We can define the following right convolution:
(8g * Bn)(s) = Z 8y (t718)8R (1) = Bng(s)
teG
which gives rise to the right regular representation:
(8g *p )(s) = Z 8 TIf () = f(sg™)
teG
We note that:
(59 *3 5}1)(5) =Yty (st™1)6, (1)
= Yee s 8 (st'7)5,(t"
and hence: (6g *; 5}1)(5) = (84 *p 0p)(5)

Proposition 13: The left and right representations commute
that is for alls, t € G:

P(SA(L) = A()p(s)-

Proof: We have:

pA)S, = p(s)8; = 8pps-1 = A(t)65—1
= At)p(s)6,

Thus
pP(HA®) = A)p(s).

Remark 14: The left regular representation A of the group
ring C[G] assigns to each element f € C[G] a bounded
operator A(f) which acts on any £ € £2(G) by convolution:

A = [ *¢.

and

A =AU

The image A(C[G]) of the group ring under the left regular
representation is a * — subalgebra of the algebra B(fZ(G)) of
bounded operators on £2(G).

Lemma 15: The left and right regular representations A and
p are * — homomorphisms.

Proof: Let f,g € C[G]

A =f*&.

and

A(g)(§) =g =&

Consider

M+ =(+g)+x{ =f+(@g=*] = f=A(g)?)
= AOADE)

Thus

A(f * g) = A(f)A(g) forallf,g € C[G]

Thus A satisfies the product.Consider

AN +AUD)O) = 2N +AUPE) = f+E+g*¢
=(f+g*$ =2 +9)(©&)

Thus (A(f) + l(g)) = A(f + g) satisfies the sum. It is
easy to prove scalar multiplication, and adjoin. Therefore
A satisfies the properties of an * —homomorphisms. The proof
for pis similar.

Lemma 16: The left and right regular representations A and
p are unitary bounded representations.

Proof: Let us define an operator

Ag:t3(G) — £2(G)
which for any function & € £2(G) is given by
2g8(8) = (85 % )(t) =&(g7'0).

We have
Aefim) = ) 25 §OF®

teG

= ZtE G g(g_lt) f(t) = (fl lg_ln)'

This means that
Ay = )lg—l.
We have for every g € G, & € £2(G)

167 = Secolé@ O
S eclé (O
= .

Therefore, A, is a unitary bounded representation. The
proof for pis similar.

Remark 17: The left regular representation A is a faithful
representation. The same argument can be used to show that
pis a faithful representation as well.

The reduced C* — algebra C;(G) of a group G (which we
shall assume to be discrete) arises from the study of the left
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regular representation A of the group ring C[G] on the Hilbert
space of square-summable functions on the group.

Definition 18: The reduced group C* —algebra G, denoted
by C;(G) is the completion of C[G] in the norm given,

for ¢ € C[G] , by

llellx = ACCG])

This mean that the closure of C[G] for the operator norm as
a sub-algebra of B({’2 (G)) is called the reduced C* —algebra
C;(G) of a group G. This is equivalently, it is the closure of
C[G] is identified with its image under the left regular
representation. i.e.

G (G) = A(C[a])

Definition 19: The reduced group C* —algebra G, denoted
by C;(G) is the completion of C[G] in the norm given, for
c € C[G] , by

llcllz = pCClGD

This mean that the closure of C[G] for the operator norm as
a subalgebra of B(fz (G)) is called the reduced C* —algebra
C;(G) of a group G. This is equivalently, it is the closure of

C[G] is identified with its image under the left regular
representation. i.e.

Gi(G) = p(C[G])

III. INVARIANT APPROXIMATION PROPERTY

In this section we will give the definition of invariant
approximation property. A discrete group G has a natural
coarse structure which allows us to define the uniform Roe
algebra C;(G).

A group G can be equipped with either the left or right-
invariant of the metric. A choice of one of the determines
whether C5(G) or C;(G) is a sub-algebra of the uniform Roe
algebra C[;(G) of G as we now explain. If the metric of G is
right-invariant then

G (G) € CH(6).
Let d; be the right-invariant metric on G.
di(x,y) = dy(xg,yg9)vVg € G.
The operator A(g) is given by the matrix. Let

1 ,ifx=yg.
2 _
Ag(xy) = 0 ,otherwise.

Note that A}é (x,y) is right-invariant:

1 xt=ygt
AX(xt, yt) =
g (xt,yt) {O otherwise.}

Therefore: Ag(xt, yt) =A§(x,y). If the metric on G is

right-invariant, Az(x, y)is of finite propagation and

Al (xy) € C(G) since A}(x,y) is non-zero when y'x = g
and so d;(x,y) = d1(xg,y9).

Hence any element of C[G] will finite propagation and this
assignment extends to an inclusion C3(G) < C{;(G), similarly
we can show that if the metric on G is left-invariant then

C;(G) € Cy(6).

Let us now choose a right invariant metric for G so
that C3(G) < C{;(G). The following important result as given
in [8].

Lemma 20: If TeCj(G) has kernel A(x,y), then
Adp(t)T has kernel A(xt, yt).

Proof: We have that:

(Adp(DTE)(s) = p(D(Tp(t)*E)(s)
=T p(D)"E(st)
= Yrec A(st, ) (p(O) 71 () =Zeq Alst, ) (xt™1)

Now A(st,x) is non-zero whenever x,y,t € G are such
that y = xt™1, so x = yt and we have

(Adp(OTE)(s) ==Xrec A(st, yt)§(xt™)

Thus Adp(t)T has kernel A(st, yt).

In general, if T € C;(X) then Vx,y € G,

(Adp(t)T(Sx' 5y) = (T(Sxt' 5yt>~

So the operator T is Adp — invariant if and only if

(Adp(£) T8y, 8,) = (TSx, 8y1), VX, y € X,VLEG.

We now define the invariant approximation property: (IAP).

Definition 21: We say that G has the invariant
approximation property (IAP) if

Cy(6)¢ =G (6)

IV. CROSSED PRODUCT OF C* — ALGEBRAS

Let G be a discrete group. Let o: G ™ H be an action of G on
a C* — algebra H: a is a homomorphism from group G into the
group Aut(H) of automorphisms of H. This mean that for
each g € G there is defined an automorphisms a(g) of H
given by:

a()a(y) = alxy).

Any element of the algebraic crossed product of A by G is
the formal sum ), a, u;, where u, is unitary, a, € Aand t € G,
and

UpyUpy = Ugy, .

We denote by H[G] the C* — algebra of formal sums

935



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:6, 2013

a =) a; U, where t — a; is a map from G into H with finite
support and where the operations are given by the following
rules:

a:bs = aa,(b)ts

(a)" = a1 (a)t™t

fora,bin H and s,t in G.

Definition 22 [2]: A covariant representation of : G ~ H is
a pair (m, p), where T and p are unitary representation of G
and representation of H in the same Hilbert space H
respectively, satisfying the covariance rule

Va,teG, n(t)pl@n(t)” = pa(a)),

mG— U(L*G)) and p:H— B((*(G))and
U( EZ(G)) is unitary bounded operators.

Definition 23 [2]: The full crossed product of H X G
associated with a:G ™~ H is the *- algebra obtained as the

completion of H[G] in the norm

where

llall = supll(m x o) (@I,

where T X o runs over all covariant representation of a: G ~ H
Next we describe the induced covariant representations.
Definition 24 [2]: Let G be a discrete group. Let T be a

representation of H on a Hilbert space H and

H = (€*(G), Hy) = ¢*(G) ® H,

We define a covariant representation (ﬁ, 7\) of G ™~ H acting
on H by

f(@)3E(1) = m(a-1()))EM)

and

NOHOERICH

for all a€H and s,t € Gand all € (0*(G), Hy) . The
covariant representation (1) is said to be induced by .
Definition 25 [2]: The reduced crossed product of H %G is
the *- algebra obtained as the completion of
H[G] in the norm

llall, = Sup||(z x 1) (@

for a € H[G], where T is a representation of H.

We recall that the Stone - Cech compactification of a set X
is a compact Hausdorff space, equipped with an inclusion of
the discrete space X as an open dense subset and the following
universal property: Every continuous function f:X —
Z extends uniquely to continuous function f: BX — Z,
where is a compact Hausdorff space. In particular, every
bounded complex-valued function on X extends uniquely to a
continuous function on SX.

Next, we show the induced action of G on C(BG) x4, G.

V. INDUCED ACTION OF G ON C(BG) >, G.

First we shall describe the following statement:
Cy(G) = C(BG) ™, G = £7(X) Xq, G.

Any element of f € C(BG)[G] € C(BG) x4, G defined by

f=) it

where f; € C(BG) and t € G. Here:

F=) fit— 00
BG X G —C

(x, ) = fe(x) and 6(f)(x,t) = fe(x).

This mean that an isomorphism between the *- algebra
C(BG)[G] and the *- algebra C.(BG X G) of continuous
functions with compact support on 3G X G given by

C(BG)[G] = C.(BG X G)

The operation of the *- algebra C.(fG X G) on G X G is
given by the following: let F,G € C.(BG X G) then we have

(F*G)(xs) = Z F(x, ©)G(t~1x, t1s)

and
F(x,5) = F(s7'x,s71)

In addition: F+— Fo]
where J: (s,t — (s71,s71t) which gives

C.(BG x G) = bounded kernel with finitepropagation on G X G} .
The following Theorem is from Roe [8].

Theorem 26: The map between T:f— Op(6(f)of)
extends to an isomorphism between the C* — algebra

C5(G) = C(BG) % G = £2(X) X1y G

The uniform Roe algebra, C{;(G) acts on £2(G), G has
unitary representation on #2(G). (e.g. a right regular
representation):

Ch(G) ={T € C};(G):Adp(t) =T forallt €T}

where p is the left regular representation of G. Let T € C;(G)
and g € G, then we have

Vg € G Ad(p(9))(T) = pyTpy.

We obtained C(BG) .G, which forms a covariant
representation of £*°(G) % G. In Theorem 26, we will use
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H = £°(G), and the algebraic crossed product of H by G is
the *- algebras.

Theorem 27: Assume that the algebraic crossed product
£%(G) X4 G is given by:

e the pointwise action of #%°(G) on £2(G)

@Q)(s) = a(s)g(s), a € £*(G), & € £2(G),
e the left regular representation A of G on £2(G)

A@D(s) = 4(g™*s),

Then the elements of £%(G) X g, G which are invariant
under Adp are of the form (£#(G))P® x4, G. And also
any element (£*(6))"?@ %, G. is of the form aA(g),

where a € £*°(G) and g € G.
Proof: Let§ € #2(G) and g,h € G. Then

(p(h)ar(g)p(h) E)(s) = (p(h)ap(h)A(g)E)(s)
= (p(h)ap(h)*§)(g's)
= (ap(h)*§)(g~'sh)
= (a(g~'sh))p(h)*§(g~"'sh)
= (p(h)a)(g~'s)3(g™"s)
= ((p(m)a)3)(g7's)
= p(h)ar(g)9)(s).

Since a is operator on £2(G)

((p(h)a)g )(s)=a(sh)¢ (s) = a(s)¢(s)

and
p(Ma=a

We also have
p(ar(g)p(h)* = ar(g).

We define the set of fixed points (£°(6))P() x4, G of
this action in the whole of (£ (G))P(® Xgg G = T(say) as

£2(6))P@ 2019 G = (ak(g) € T: p(h)ak(g)p(h)” = ak(9)}
The induce action of T on both side yields:
CE(G)G = (£*(6) Naig G)G = (£~ (G))p((}) Haig G

Proposition 28: Let X and Y be bounded geometry discrete
metric space. Then in general

CaXxY) # Ci(X) ® Ci(Y).
Proof: To show this, note that

CiX) = CBX) ¥ X = £°(X) x4 X

So that
CXXY) = C(BXXY))x, (XXY)
=X XY) > (XXY)
Since
(X)) € C(X)
and
(X)) @ £*(X) = C(BX xY))

We have

W BX X Y) 5 BX x BY
This mean v is not isomorphism.

REFERENCES

[1] C. Anantharaman-Delaroche, ~Amenable correspondences and
approximation properties for von Neumann algebras, Pacific J. Math.
171 (1995), no. 2, 309-341.

[2] N. P. Brown and N. Ozawa, C* —algebras and finite-dimensional
approximations, Graduate Studies in Mathematics, vol. 88, American
Mathematical Society, Providence, RI, 2008.

[3] Jolissaint, Rapidly decreasing functions in reduced C* —algebras of
groups, Trans. Amer. Math. Soc. 317 (1990), no. 1, 167-196.

[4] K. Kannan, On approximation properties of group C* —
University of Southampton, School of Mathematics,
Thesis,116pp., 2011.

[5] K. Kannan, Uniform Roe Algebras as Crossed Product, Journal of
Mathematics, Statistics and Operations Research, Global Science and
Technology Forum (GSTF), 2013.

[6] K. Kannan, Rapid Decay Property in the Crystallographic Groups and
Discrete Heisenberg Group, Journal of Mathematics, Statistics and
Operations Research, Global Science and Technology Forum (GSTF),
2013.

[71 K. Kannan, Weakly amenable and invariant translation approximation
property, In Proceedings of the International Conference on
Mathematics, pp.18-23, 2013.

[8] J. Roe, Lectures on coarse geometry, University Lecture Series, vol. 31,
American Mathematical Society, Providence, RI, 2003.

algebras,
Doctoral

Kankeyanathan Kannan is a Senior Lecturer at the
Department of Mathematics and Statistics, University of
Jaffna, Jaffna, Sri Lanka. He received B.Sc. (Hons)
degree in 2001 from the University of Jaffna, Sri Lanka,
M.Sc. degree in 2006 from the University of Madras,
India and Ph.D. degree in 2011 from the University of
Southampton, England. His research interest field
includes non-commutative geometry and its various
applications. This includes K-theory of operator algebras,
exactness of group C*- algebra and rapid decay property.

937



