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Abstract|In°uence diagrams (IDs) are one of the most
commonly used graphical decision models for reasoning
under uncertainty. The quanti¯cation of IDs which con-
sists in de¯ning conditional probabilities for chance nodes
and utility functions for value nodes is not always obvious.
In fact, decision makers cannot always provide exact
numerical values and in some cases, it is more easier for
them to specify qualitative preference orders. This work
proposes an adaptation of standard IDs to the qualitative
framework based on possibility theory.
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I. Introduction

In°uence diagrams introduced by Howard and
Matheson in 1981 [8] provide an e±cient tool for
decision making in intelligent systems, they allow to
model and evaluate complex decision problems via a
compact graphical representation.

In°uence diagrams are quanti¯ed by conditional
probabilities relative to uncertain variables and util-
ity functions evaluating decision maker's satisfac-
tion. Nevertheless, the speci¯cation of this numerical
component is not always obvious. In fact, experts
may be enable to provide exact conditional probabil-
ities. Moreover, it is generally more easier for them
to provide a preferential relation between di®erent
consequences that expresses utilities rather than
numerical values.

To overcome these limitations, this paper proposes
a new approach extending standard IDs to a qual-
itative framework based on the possibility theory
[5]. In fact, this theory can be interpreted in two
ways: qualitatively, if the handled values re°ect only
an ordering between di®erent states of the world or
quantitatively, if the handled values make sense in
the ranking scale.

Our idea is to use the qualitative aspect of this the-
ory in order to specify qualitative relations between
chance nodes.

Concerning utilities, in the literature we can dis-
tinguish two kinds of utility: cardinal utility [1] when
the decision maker is able to express his satisfaction
by exact numerical values and ordinal utility [1][17]
otherwise.

Di®erent combinations of the quanti¯cation be-
tween chance and utility nodes o®er several kinds
of possibilistic in°uence diagrams. In this paper, we
are interested in qualitative ones.

Our new approach named, qualitative possibilistic
in°uence diagrams, bene¯ts from the simplicity and
e±cacity of standard in°uence diagrams and from
the suitability of the possibility theory for modeling
qualitative uncertainty.

We also propose an evaluation method to generate
optimal decisions maximizing the expected utility.
The proposed method is based on the transformation
of qualitative possibilistic in°uence diagrams into
qualitative possibilistic causal networks recently pro-
posed in [2] and on making inference in this secondary
structure.

This paper is organized as follows: Section 2
provides a brief description of the basics of in°uence
diagrams. The necessary background on possibility
theory is recalled in Section 3. Ordinal utility theory
is brie°y presented in section 4. Then in Section
5, we will de¯ne qualitative possibilistic in°uence
diagrams. Finally, section 6 presents an evaluation
method relative to these graphical decision models.

II. In°uence Diagrams

An in°uence diagram is a directed acyclic graph
(DAG) denoted by G=(N, A) where A is the set of
arcs and N = fC;D; V g such that:
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² C = fC1; ::; Cng is the set of chance nodes
represented by circles.

² D = fD1; ::; Dmg is the set of decision nodes
represented by rectangles.

² V = fV1; ::; Vkg is the set of value nodes repre-
sented by lozenges.

In what follows cij (resp. dij, vij) denotes an
instance of the variable Ci (resp. Di, Vi).

Di®erent links existing between chance nodes are
quanti¯ed by conditional probability tables repre-
senting dependencies between them. Namely, each
chance node Ci will be attached to its probability in
the context of its parents, denoted by Pa(Ci) (pa(Ci)
denoted any instance of Pa(Ci)). Whereas, each value
node Vi is characterized by a utility function U in the
context of its parents. In fact, the set of combinations
of di®erent parents of value nodes represent the
set of consequences relative to the decision problem
represented by the in°uence diagram.

Decision nodes act di®erently from remaining
nodes, since they are not quanti¯ed.

Once the ID constructed, it can be used to identify
better decisions via evaluation algorithms which al-
low to generate the optimal strategy yielding to the
highest expected utility.

IDs can be evaluated through direct methods [14]
which operate directly on the original structure or
indirect methods [4][16][18] which transform them
into Bayesian networks [9] [10] [11] and reduce the
ID evaluation problem into a Bayesian networks
inference one. Direct evaluation requires a lot of
probabilistic calculations which justify the great de-
velopment of indirect methods initiated by Cooper
[4] for the particular case of in°uence diagrams with
a unique value node.

The key idea of indirect methods is to transform
decision and value nodes into chance nodes. Indeed,
each decision node Di is converted into a chance node
with an equi-probability distribution. The value node
V is transformed into a binary chance node with
two values False (F) and True (T) and its utility
function is converted into a probability distribution
by rescaling it in the unit interval [0, 1].

Finally, the maximal expected utility is computed
begining by the last decision Dm to the ¯rst one
D1, by considering for each node a set of evidence
E updated in the light of the previous step.

More formally, for each decision node Di, the
maximal expected utility is computed as follows:

MEU(Di; E) = K1:maxdij [P (v = T j dij ; E)]¡K2

(1)
where 8pa(V ) 2 Pa(V ):
K1 = maxpa(V )(U(pa(V )))¡minpa(V )(U(pa(V )))

and K2 = ¡minpa(V )U(pa(V )).

III. Possibility theory

This section brie°y recalls basic elements of possi-
bility theory, for more details see [6] [7].

The basic buildings block in the possibility theory
is the notion of possibility distribution denoted by
¼, it is a mapping from the universe of discourse
denoted by − to the unit interval [0,1].
This scale has two interpretations, a quantitative one
when the handled values have a real sense and a
qualitative one when the handled values re°ect only
an ordering between the di®erent states of the world.
In the ¯rst case, the product operator can be applied
and in the second one, the min operator is used.

A possibility degree is the value from the interval
[0,1] associated to each element ! of −. The pos-
sibility measure of any subset Ã μ − is de¯ned as
follows:

¦(Ã) = max!2Ã¼(!) (2)

A possibility distribution is said to be normalized, if
max!2Ã¼(!) = 1.

In the possibilistic framework, extreme forms of
partial knowledge can be represented as follows:

² Complete knowledge:

9!i 2 −; s:t ¼(!i) = 1 and !j 6= !i; ¼(!j) = 0 (3)

² Total ignorance:

8!i 2 −; ¼(!i) = 1 (4)

The two interpretations of the possibilistic scale
induce two de¯nitions of the conditioning [5]:

² min-based conditioning relative to the ordinal
setting:

¼(!jmÃ) =

8<
:

1 if ¼(!) = ¦(Ã) and ! 2 Ã
¼(!) if ¼(!) < ¦(Ã) and ! 2 Ã
0 otherwise:

(5)

² product-based conditioning relative to the nu-
merical setting:

¼(!jpÃ) =

(
¼(!)
¦(!) if! 2 Ã

0 otherwise:
(6)
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IV. Ordinal utility theory

As mentioned above, each value node in the in°u-
ence diagram is quanti¯ed by a utility function in
the context of its parents. Both cardinal and ordinal
utility can be used for this quanti¯cation.

The problem with cardinal utility comes from the
di±culty in expressing the utilities by numerical
values, and in ¯nding the appropriate measurement
index (metric). This is not the case in the context
of ordinal utility, when we suppose that the decision
maker can only provide a total preference relation on
the di®erent states of the world.
Let A, B and C be three states and º be the relative
preference relation:

² A º B means that A is more preferred than B,
² A ¹ B means that A is less preferred than B,
² A » B means that A and B are equally preferred.

Von Neumann and Morgenstern [17] have de¯ned the
following axiom's system for any preference relation:

² Axiom 1. Completeness (Orderability): It is
always possible to state either that A º B or
that B º A or A » B.

² Axiom 2. Re°exivility: any consequence A is
always at least as preferred as itself: A º A.

² Axiom 3. Transitivity: If A º B and B º C then
A º C.

If a preference relation º veri¯es these axioms then
there exists a utility function U such that:

A º B iff U(A) ¸ U(B) (7)

and

A » B iff U(A) = U(B) (8)

V. Qualitative possibilistic in°uence diagrams

A qualitative possibilistic in°uence diagram,
denoted by ¦IDO

min, is de¯ned by two components:

Graphical component represented by a DAG
G = (N;A) having the same structure than stantard
in°uence diagrams (c.f section 2).

Numerical component evaluating di®erent links in
the graph concerning chance nodes and utilities for
value nodes in the following way:

For each chance node Ci, experts should provide
conditional possibility degrees ¦(cij j pa(Ci)) of each
instance cij of Ci and each instance pa(Ci) of Pa(Ci)

of its parents. In order to satisfy the normalization
constraint, these conditional distributions should sat-
isfy:

maxcij¦(cij j pa(Ci)) = 1; 8pa(Ci) (9)

Note that for root chance nodes (i.e (Pa(Ci) =
;), this will correspond to an a prior possibility
distribution ¦(cij) satisfying maxcij¦(cij) = 1.

For the value node V, we assume that ordinal
utilities are used for the quanti¯cation. Namely, the
decision maker can express a preferential relation º
between di®erent consequences.

To develop possibilistic chain rule, utility nodes
and links into decision nodes in possibilistic in°uence
diagrams must be ignored, as in standard in°uence
diagrams [10].

As mentioned before, decision nodes act di®erently
from chance nodes, thus it is meaningless to specify
prior possibility distribution on them. Moreover, it
has no meaning to attach a possibility distribution to
children nodes of a decision node Di unless a decision
dij has been taken.

Therefore what is meaningful is ¦(cij j do(dij)),
where do(dij) is the particular operator de¯ned by
Pearl [12], and not ¦(cij; dij). When iterating this
reasoning we can bunch the whole decision nodes to-
gether and express the joint possiblity distribution of
di®erent chance nodes conditioned by decision nodes.
This means that if we ¯x a particular con¯guration of
decision nodes, say d, we get a min-based possibilistic
causal network [2] representing ¦(C j do(d)) i.e the
joint possibility relative to C, in the context of the
decision d.

In other words, the joint distribution relative to C
remains the same when varying d. Thus, using the
possibilistic chain rule relative to min-based causal
network [2], we can infer the following chain rule
relative to qualitative possibilistic IDs:

¼(C jm D) = minCi2C¦(Ci jm Pa(Ci)) (10)

Example 1: Let ¦IDO
min be a qualitative in°uence

diagram with three chance nodes (A, B and C),
one decision node (D) and one value node (V)(see
Figure 1). The a priori and conditional possibility
distributions for A, B and C are presented in Table
1.

The preference order between di®erent combina-
tions of parents of the value node V (i.e A and D) is
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C B

A

D V

Fig. 1. Example of an in°uence diagram

TABLE I

Possibility distributions relative to chance nodes

A ¦(A) A B ¦(BjA) B C ¦(CjB)
T 1 T T 0.9 T T 1
F 0.6 F T 0.2 F T 0.3

T F 1 T F 0.2
F F 1 F F 1

expressed by:
(D = Act2 ^A = F ) º (D = Act1 ^A = T ) º
(D = Act1 ^A = F ) º (D = Act2 ^A = T ):

VI. Evaluation of qualitative in°uence diagrams

To evaluate qualitative possibilistic in°uence dia-
grams, we propose to de¯ne the possibilistic coun-
terpart of the indirect Cooper's method [4]. This
choice allows us to avoid heavy computations of direct
methods. In addition, we will use the possibilistic
counterpart of Bayesian networks, recently proposed
in [2]. The principal steps of our evaluation's method
are detailed in what follows.

A. Decision nodes transformation

Each decision node Di in ¦IDO
min is transformed

into a chance node which will be quanti¯ed by the
following conditional possibility distribution in the
context of its parents:

¦(dij j pa(Di)) = 1; 8dij ;8pa(Di) (11)

This distribution expresses the state of total igno-
rance with respect to the new chance node Di. Note
that this quanti¯cation is more appropriate than the
one used in standard in°uence diagram, since equi-
probability represents randomness rather than total
ignorance.

B. Value node transformation

The value node V is converted into a new binary
chance node having two values: False (F) and True
(T). The new chance node is characterized by a

possibility distribution deduced from the original
preference relation.

The following proposition gives a transformation
function of the preference relation between di®erent
consequences which satis¯es VNM axioms into nu-
merical utilities.

Proposition 1: Let º be a preference relation be-
tween di®erent consequences. Then, the order in-
duced by º can be transformed into a numerical
scale as follows:

U(pa(V )) = card(Pa(V ))¡ rank(pa(V )) + 1 (12)

where card(Pa(V)) is a function that determines
the number of combinations of pa(V ) 2 Pa(V ).
rank(pa(V)) is the rank of pa(V) in the preference
order.

Proof 1: Let pa1(V ) and pa2(V ) be two conse-
quences such that pa1(V ) º pa2(V ), we have:
rank(pa1(V )) · rank(pa2(V ))
) ¡rank(pa1(V )) + 1 ¸ ¡rank(pa2(V )) + 1
) card(Pa(V ))¡ rank(pa1(V )) + 1 ¸
card(Pa(V ))¡ rank(pa2(V )) + 1
) U(pa1(V )) ¸ U(pa2(V )).

The set of utilities assigned to the di®erent conse-
quences according to the preference relation will be
transformed into a possibility distribution. Namely,
we are interested in computing ¦(v = T j Pa(V ))
and ¦(v = F j Pa(V )) which can be obtained as
follows:

¦(v = T j Pa(V )) = U(Pa(V ))¡Umin

Umax¡Umin
(13)

¦(v = F j Pa(V )) = U(Pa(V ))¡Umax

Umin¡Umax
(14)

Where Umax and Umin are the maximal utility level
and the minimal utility level, respectively.

The obtained qualitative possibilistic distribution
¦(V j Pa(V )) is sub-normalized. Then, to satisfy the
normalization constraint, the qualitative possibilistic
distribution should be transformed as follows:
8pa(V ) 2 Pa(V ) and v 2 fT; Fg,

¦(vjmpa(V )) =

½
1 if max(¦(vjmpa(V ));¦(:vjmpa(V ))) = ¦(vjmpa(V ))

¦(vjmpa(V )) otherwise:

(15)

After the transformation phase, we should de-
termine for each decision node Di the Maximal
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Expected Utility with respect to the set of evidences
E in order to generate the optimal decision strategy.

This computation is based on the max and min
operators instead of standard addition and multipli-
cation ones as follows:

MEU(Di; E) =

maxdij [maxpa0(V )min(¦(v = T j pa(V ));¦(pa0(V ) j dij ; E))]
(16)

where Pa'(V) denotes the set of chance nodes in

Pa(V) and pa'(V) is an instance of Pa'(V).

Note that ¦(v = T j pa(V )) is a transformation
of U(Pa(V)) into the unit interval [0,1] using (13)
in order to let U(Pa(V )) and ¦(pa0(V ) j dij; E)
commensurable.

To compute ¦(pa0(V ) j dij ; E) and
¦(v = T j pa(V )), a min-based propagation
algorithm for qualitative possibilistic networks
can be applied. Indeed, two min-based propagation
algorithms have been de¯ned according to the nature
of the DAG in the possibilistic causal network [3].
Namely, the qualitative possibilistic adaptation
of the centralized version of Pearl's algorithm is
used when the DAG is singly connected, and the
qualitative possibilistic adaptation of junction trees
propagation are appropriate for multiply connected
DAGs. In the case that these two algorithms are
blocked, the anytime algorithm [2] can be used.

Example 2: Let us continue with Example 1, after
the transformation of the in°uence diagram presented
in Figure 1, we will have the possibilistic network
represented in Figure 2.

C B

A

VD

Fig. 2. Obtained possibilistic network

Table 1 presents the a priori and conditional
possibility distributions for A, B and C.
The decision node D is transformed into a chance
node using (11) and conditional possibility degrees
¦(D j C) are presented in Table 2.

TABLE II

The possibility distribution of the node D

C D ¦(D j C)
T Act1 1
F Act2 1
T Act2 1
F Act1 1

The preference relation will be transformed into
numerical utilities using (12) as presented in Table
3.

TABLE III

Ordinal utilities

A D U(A,D)
T Act1 3
F Act2 4
T Act2 1
F Act1 2

To compute possibility degrees for the value node
presented in Table 4, (13) and (14) are used.

TABLE IV

The possibility distribution of the value node

V A D ¦(V j A;D) ¦(V jA;D) normalized
T T Act1 2/3 1
T F Act2 1 1
T T Act2 0 0
T F Act1 1/3 1/3
F T Act1 1/3 1/3
F F Act2 0 0
F T Act2 1 1
F F Act1 2/3 1

Suppose that we receive a certain information
saying that the variable C takes the value T, then
¦(pa0(V ) j dij ; E)) is computed using a min-based
propagation algorithm in Junction Trees.
We have:
min(¦(v = T j A = T;D = Act1);

¦(A = T j D = Act1; C = T )) = min(0:666; 0:666),

min(¦(v = T j A = F;D = Act1);

¦(A = F j D = Act1; C = T )) = min(0:6; 0:3),

min(¦(v = T j A = T;D = Act2);

¦(A = T j D = Act2; C = T )) = min(0; 0:9),

min(¦(v = T j A = F;D = Act2);

¦(A = F j D = Act2; C = T )) = min(0:333; 0:3),

Thus, MEU(D;C = T ) = 0:666 and D¤ = Act1.
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VII. Conclusion

In this paper we have developed a new approach for
decision making under uncertainty, namely qualita-
tive in°uence diagrams. This new approach allows
to experts to quantify the dependencies between
chance nodes qualitatively by means of possibility
distributions. Moreover, utility nodes are supposed
to be quanti¯ed by qualitative utilities. An indirect
evaluation's method was proposed allowing the de-
termination of the optimal strategy which o®ers the
maximal expected utility. As a future work, we will
investigate to optimize indirect evaluation's method
to deal with IDs with more than one value node.
Alternative methods to quantify value nodes are
under study, namely, binary qualitative utility [14].
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