
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1885

Abstract—Finding synchronizing sequences for the finite

automata is a very important problem in many practical applications
(part orienters in industry, reset problem in biocomputing theory,
network issues etc). Problem of finding the shortest synchronizing
sequence is NP-hard, so polynomial algorithms probably can work
only as heuristic ones. In this paper we propose two versions of
polynomial algorithms which work better than well-known
Eppstein’s Greedy and Cycle algorithms.

Keywords—Synchronizing words, reset sequences, Černý
Conjecture.

I. INTRODUCTION

ET us first define the finite automaton without initial or
final states as a triple A = (Q, A, δ), where Q is the finite

set of states, A is the finite alphabet, and δ is the transition
function from Q×A into Q. The free monoid A* is the set of all
words over A. It contains the empty word ε. We use the
notation |w| for the length of w, i.e. the number of letters in w.
The length of an empty word is 0. If u and v are two words,
then u.v is a word uv which is the concatenation of them. If
w=w1w2...wk, we say that wi is a subword of w. We extend
the transition function on the whole free monoid A* in a
natural way:

*(,) ((,),), , ,q aw q a w q Q a A w Aδ δ δ= ∈ ∈ ∈ (1)

Let A be the finite automaton. We say that the word w
synchronizes A iff

 * : , (,) (,).w A p q Q p w q wδ δ∃ ∈ ∀ ∈ = (2)

If such a word exists for A, we say that A is synchronizing.

If w is the synchronizing word for A and there is no shorter
one, we say that w is the minimal synchronizing word (MSW)
for A. It is easy to find a synchronizing word for a given
automaton, but the problem of finding minimal synchronizing
word is NP-complete [1].

In 1964 Černý stated the following conjecture:
Conjecture (Černý). If the n-state automaton is

Manuscript received July 07, 2005. This work was supported in part by the

State Committee for Scientific Research under Grant 3 T11C 010 27.
Adam Roman is with the Institute of Computer Science, Jagiellonian

University, 30-072 Cracow, Poland (email: roman@ii.uj.edu.pl).

synchronizing, then the length of its MSW is not greater than
(n-1)2.

The Conjecture turned out to be true for some special cases
([1], [4], [7], [8]) but in general the problem is still open.

The problem of finding the minimal synchronizing word for
a given automaton seems to be just a nice combinatoric
puzzle, but in fact there is a deep connection between the
problem and applications (see for example the pioneer works
of Natarajan [2], [3]). Synchronizing sequences are used in
part orienters (see the very good example in [4]),
biocomputing ([5], [6]), network theory etc. Kari [7] gives
other examples for possible applications: simple error
recovery in finite automata, leader identification in processor
networks, road map problem.

The paper is organized as follows: in Section II we
introduce the notion of a pair automaton. This construction
will be used in our algorithms. In Section III we present the
well-known Eppstein’s Greedy and Cycle algorithms, and
then we introduce two new algorithms: SynchroP and
SynchroPL. Section IV includes the numerical results for all
four algorithms. Then, in Section V we present the example of
SynchroPL action for particular automaton. Finally, in Section
VI we discuss obtained results.

II. THE PAIR AUTOMATON
Let A=(Q, A, δ) be the finite automaton. For a given

automaton A we define the pair automaton A2 as a triple (Q’,
A’, δ’) where:

- Q’ is a set of states. Each element of Q’ is either the 2-
element subset of Q: {p,q}, where p and q belong to Q
(p≠q) or a special state q0.

- A’=A
- δ’ is a transition function defined in the following way:

 0 (,) (,),
'({ , },)

{ (,), (,)} ,
q if p a q a

p q a
p a q a otherwise

δ δ
δ

δ δ
⎧ =

= ⎨
⎩

 (3)

where {p, q} ∈Q’, a ∈ A’. We also define δ(q0, a)=q0 for

all a ∈ A’. The following Lemma establishes the relation
between the synchronization of A and some property of its
pair automaton.

Lemma 1. Let A be the finite automaton and A2 its pair

automaton. Then A is synchronizing iff the following

New Algorithms for Finding Short Reset
Sequences in Synchronizing Automata

Adam Roman

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1886

condition holds:

 *
0' ' : '(,) .s Q w A s w qδ∀ ∈ ∃ ∈ = (4)

The proof comes directly from the definition of

synchronizing word.
We also define

* 0() min{| |: (,) }
w A

d q w q w qδ
∈

= = as the

minimal distance in the pair automaton from q to q0. This
distance is defined in the terms of the proper word’s length.
By W(q) we denote the word which realizes this minimum.

If for a given word w we have δ(Q,w)=P, then the states
which at this moment belong to P are called the active states.
States from Q\P are called inactive states. Of course, at the
beginning of the synchronization process each state is active.
If w is the synchronizing word for A and δ(Q,w)=q0, only q0 is
an active state at the end of the synchronization process.

III. ALGORITHMS
Now we will describe two well-known heuristic algorithms

which find possibly the shortest synchronizing word for a
given automaton A. They were introduced by Eppstein in [1].

The Greedy Algorithm finds a pair of states such that the
word synchronizing them is the shortest one and transforms
all active states with this word. The Cycle Algorithm does the
same, but one state in the pair (in which the synchronization
takes place) is fixed.

procedure Greedy
INPUT: automaton A
OUTPUT: synchronizing word w for A
1. A2=(Q’,A,δ’) ← A2(A);
2. w←ε;
3. while (Q’ != {q0}) do {
4. find p: d(p)=min{d(q), q in Q’};
5. w←w.W(p);
6. Q’← δ’(Q’,W(p)); }
7. return w;

In the case of Cycle Algorithm we need to modify the
definition of Q’ in pair automaton because now we have to
distinguish the “single” states of A2. In the pair automaton
there is only one such state – q0. Let us define the new set
of states Q’’ in the extended pair automaton as Q’\{q0} ∪ Q
and redefine the transition function in a following way:

(,) (,) (,),
'({ , },)

{ (,), (,)} .
p a if p a q a

p q a
p a q a otherwise

δ δ δ
δ

δ δ
⎧ =

= ⎨
⎩

(5)

We also redefine the n(q). |P| denotes the cardinality of the
set P. We put

*
() min{| |:| (,) | 1}

w A
d q w q wδ

∈
= =

procedure Cycle
INPUT: automaton A
OUTPUT: synchronizing word w for A

1. A2=(Q’’,A,δ’) ← A2(A);
2. w←ε;
3. find r: d({r,_})=1;
4. while |Q’’| != 1 do {
5. find p={r,_}: d(p)=min{d(q), q in

Q’’};
6. w←w.W(p); Q’’← δ’(Q’’,W(p));
7. r←p.W(p); }
8. return w;

We will now introduce two new algorithms based on d

function for the pair automata. In each step the algorithms will
find the sequence which synchronizes at least two states of the
pair automaton, but now we will also look one step forward,
that is – we will be checking how the choice of a particular
state q (and, automatically, the synchronizing subword W(q))
in the pair automaton will affect the positions of active states.
The estimation of how “good” is a given distribution of active
states among all states of the pair automaton requires
introducing a measure for it. We will use the d function and
the following heuristics:

Suppose that at some stage of our procedure p is an active
state. We choose a word w=W(q) and we look how the value
of d for p changes before and after the word w is applied. The
considered difference is defined as follows:

((,)) ()

(,)
0 .q

d p w d p if p q
p w

if p q
δ⎧ − ≠

∆ = ⎨
=⎩

 (6)

For a given word w=W(q) we can compute ∆q for all active
states and summarize this values:

 1(,) (,),q

p Act
w q p w

∈

Φ = ∆∑ (7)

where Act is the set of all active states and q is the currently

considered state. We compute Φ1 for all words W(r), where r
is an active state. We also assume that if for two words u and
v Φ1(u) < Φ1(v), then it is better to apply u than v at the stage
because after applying u to all active states, all transformed
active states are closer to the synchronizing state than if v is
applied. The Φ1 function is our measure described above and
it is the base measure in the first algorithm.

In the second algorithm we add the reward function which
equals the length of the chosen word. The Φ2 function with
“reward” factor is defined as follows:

 2 (,) ((,)) | | .q

p Act
w q p w w

∈

Φ = ∆ +∑ (8)

Now, let us define the two new algorithms. We name them

SynchroP and SynchroPL. “P” denotes use of Φ1 (Phi)
function and “L” means that we add the reward factor related
to the length of the word.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1887

procedure SynchroP
INPUT: automaton A
OUTPUT: synchronizing word w for A
1. A2=(Q’,A,δ’) ← A2(A);
2. w←ε;
3. while |Q’| != 1 do {
4. min_phi←∞;
5. for each active state p do
6. if (Φ1(W(p))<min_phi) then
7. {min_phi←Φ1(W(p)); v←W(p);}
8. w←w.v; Q’← δ’(Q’,W(p)); }
9. return w;

The procedure SynchroPL is almost the same as
SynchroP except line 6. in which Φ2 stands for Φ1.

One can prove the following facts (we omit the proofs):

Proposition 2. The time complexity of greedy and cycle
algorithm is O(n3) .

Proposition 3. The time complexity of SynchroP and

SynchroPL is O(51
8

n).

IV. NUMERICAL RESULTS
It is very difficult to analyse the synchronizing algorithms

because still little is known about the property of “being
synchronizable”. For example, we don’t even know any
simple property of the synchronization. Although there are
many properties (for example, see Lemma 1.), they are all
defined in algorithmic rather than in theoretical way and
therefore are worthless in theoretical analysis.

That is why the only way to compare algorithms is to do a
computer experiment: generate all n-state synchronizing
automata, find the synchronizing words for them using all four
algorithms, and compare the lengths of words being the
algorithms output. The best algorithm should find the shortest
synchronizing words.

We did the experiment for n=2,3,4,5. We generated all
synchronizing automata over binary alphabet with transition
functions δ=(a1...an)(b1...bn), where ti=δ(i,t) and
(a1...an)≤(b1...bn) in lexicographic order.

Now, let us use two methods for estimating the quality of
our algorithms. The first one is some kind of a “global
method” – we take into consideration all results returned by
the algorithm. The second one is focused only on cases in
which the algorithm works optimal, i.e. the returned word is
exactly a MSW.

Method 1. We define m(n,ALG) in the following way:

 ()
(() ())

(,) ,
| () |

A Syn n
ALG A MSW A

m n ALG
Syn n

∈

−
=

∑
 (9)

where:
- A is an automaton
- n is the (fixed) number of states
- ALG(A) is the length of synchronizing word for A

found with algorithm ALG
- Syn(n) is the set of all synchronizing n-state automata.

The value m(n,ALG) says how much longer is a synchronizing
word found by algorithm ALG than MSW length. For
example, if ALG is the exponential, optimal algorithm which
always finds the shortest synchronizing word, then
m(n,ALG)=0. If for a given n and two algorithms A1 and A2
we have m(n,A1)<m(n,A2), we say that A1 works better in
finding synchronizing words for n-state automata.

Comparision of algorithms

0,55

0,93

0,23

0,39

0,66 0,77

0,17

0,34
0,39

0,21

0,06

0
0

0,35

0,17
0 0,030

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

2 3 4 5 6
number of states

m
(|Q

|,A
lg

)

Cycle Greedy
SynchroP StnchroPL

Fig. 1 Comparision of algorithms

The results of our experiment, in terms of m value from the
Method 1., is presented in Fig. 1. We can see that the Cycle
Algorithm is the least efficient one. Our two new algorithms
work better than Eppstein’s greedy algorithms. The second
one (with reward factor) is the most efficient one: for
example, for 5-state automata it finds the synchronizing word
of average length |MSW|+0.17, whereas the Cycle Algorithm
finds the word of length |MSW|+0.66.

Method 2. This is a very simple method; we just compute the
ratio of optimal results returned by a given algorithm. Let us
define the value k:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1888

 ()
[() ()]

(,) ,
| () |

A Syn n
ALG A MSW A

k n ALG
Syn n

∈

=
=

∑
 (10)

where [expression]=1 iff expression is true and 0 otherwise. If
for two algorithms A1 and A2 we have k(n,A1)<k(n,A2), we
can say that for n-state automata algorithm A2 works better
because it finds more optimal synchronizing words (MSWs).

 The results of the experiment are presented in Table I. The
cell in n-th row and “ALG” column contains the value
k(n,ALG). This method gives the same order of algorithms
quality: Cycle Algorithm is the least efficient one, SynchroPL
is the most efficient one. For example, SynchroPL gives the
optimal result cases (i.e. it returns MSW) for 5-state automata
in 87% of. Cycle algorithm does it only in 55% and Greedy –
in 60% of cases.

V. THE EXAMPLE
Let us give an example which shows how SynchroPL

algorithm works. We will use the algorithm to find the
possibly shortest synchronizing word for automaton
A0=(Q,A,δ), where Q={0,1,2,3,4}, A={a,b} and the transition
function is presented in Table II.

The SynchroPL algorithm works as it is described below.

First, the pair automaton A2(A) is generated. Next, for each
state s from A2(A) we compute W(s) and |s|. It can be done in
a very simple way: we build the spanning tree for A2(A)

where q0 is its root. This allows us to compute W(s) for any s.
In order to compute d(s) we reverse the arrows in the spanning
tree and use BFS procedure starting with q0. We define
d(q0)=0 and in each step of BFS procedure, when we process
the state q, we put d(q)=d(r)+1, where r is the parent of q in

the spanning tree with reverse arrows. When all W(s) and d(s)
values are computed, the algorithm builds the table with this
values, of size n4. Such table for A0 is shown in Table III. The
cell in the row s and column t contains ∆t(s,W(t)).

Now, at every stage of the main loop we compute
Φ2(W(p),q) for all p,q from the set of active states. We choose
the state r (and the word W(r)), which minimalizes the value
of Φ2.

The computed values for A0 are presented in Table IV. The

lowest values at every stage are bolded. At the first stage the
lowest value is 5. This is the value for the state {0,1}, for
which the corresponding word W({0,1}) is a. We put w=w.a
(at the beginning w is an empty word). Now, the set of active
states is transformed according to the found word:
Q←Q.a={0,2,3,4}. For active states 0,2,3,4 the minimal value

of Φ2 is realized by the word bbababba related with state
{2,3}. We put w=w.bbababba and again transform the set of
active states: Q←Q.bbababba={0,3}. For state {0,3} we have
only one possibility: the word W({0,3})=babba. Again, we
concatenate w with babba and finally we obtain the
synchronizing word w=abbababbababba. This word has the
length 14. The greedy algorithm finds the word of length 17,
w=abbaabbabbbababba. The MSW for A0 has the length 13:
w=abbabbbababba.

VI. CONCLUSION AND FUTURE WORK
We presented two new algorithms for finding possibly the

shortest synchronizing words for synchronizing automata. We
presented two methods for evaluating the quality of the
algorithms and we used them for Greedy, Cycle, SynchroP
and SynchroPL algorithms. The numerical experiments

TABLE I
OPTIMAL RESULTS RATIO

n

Number
of

synchr.
automata

Cycle
(%)

Greedy
(%)

SynchroP
(%)

SynchroPL
(%)

2 5 5
(100)

5
(100)

5
(100)

5
(100)

3 270 208
(77)

225
(83)

270
(100)

270
(100)

4 25728 17674
(69)

18465
(72)

24341
(95)

24910
(97)

5 4031380 2221524
(55)

2423148
(60)

3428673
(85)

3510181
(87)

6 93571956
0

430721082
(46)

476010680
(51)

705120829
(75)

719721209
(77)

TABLE II
TRANSITION FUNCTION FOR A0

δ 0 1 2 3 4
a 0 0 3 2 4
b 3 0 1 4 2

TABLE III
TABLE OF D FUNCTION USED BY SYNCHROPL

n 01 02 03 04 12 13 14 23 24 34

01 0 -1 8 4 5 -1 8 3 2 -1
02 -1 0 3 3 0 3 3 -1 3 2
03 1 4 0 -5 -2 -5 -1 0 -1 4
04 0 -4 -4 0 -1 -4 0 -4 0 0
12 3 -2 -2 2 0 7 -2 7 4 2
13 -1 2 2 -2 2 0 -2 2 1 2
14 2 -2 -3 -2 -2 -2 0 2 -1 2
23 0 1 1 1 1 1 -3 0 -3 -3
24 1 2 1 6 2 1 -3 -3 0 2
34 -1 0 1 -4 0 1 1 -4 1 0

TABLE IV
PHI VALUES COMPUTED BY SYNCHROPL

step
(act.

states)
01 02 03 04 12 13 14 23 24 34

1
(01234) 5 6 12 12 7 8 8 10 9 10

2
(0234) 9 7 10 -4 3 5

3
(03) 0

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1889

indicated that the SynchroP and SynchroPL work better than
well-known greedy algorithms.

We can try to modify the Φ function from equation (7) and
check if it improves the algorithm quality. For example, one
could add the weights for two components of Φ2 - ∆ and the
reward factor. The heuristics here would be as follows: if
there are a few active states, then in the current stage of the
algorithm we should emphasize minimizing the length of
synchronizing subword rather than minimize the ∆ value. If
there are many active states, it is important to minimize the ∆
component because in later stages we will emphasize the
length of synchronizing word (there will be fewer states than
before). Minimizing the ∆ component allows us to increase
the possibility that in future configuration we will find short
synchronizing subwords. In the greedy algorithm only the
length of synchronizing subword is taken into consideration.
Experiments show that minimizing the ∆ component allows us
to improve the quality of an algorithm. It would be interesting
to check if a fusion of this two approaches gives better results
than SynchroPL.

REFERENCES
[1] D. Eppstein, Reset Sequences for Monotonic Automata, SIAM J.

Comput. 19(1990), 500-510.
[2] B. K. Natarajan, An algorithmic Approach to the Automated Design of

Parts Orienters, Proc. 27th Annual Symp. Foundations of Computer
Science, IEEE (1986), 132-142.

[3] B. K. Natarajan, Some paradigms for the automated design of parts
feeders, Internat. J. Robotics Research 8(1989) 6, 89-109.

[4] D. S. Ananichev, M. V. Volkov, Synchronizing Monotonic Automata,
Lecture Notes in Computer Science, 2710(2003), 111--121.

[5] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro,
Programmable and autonomous computing machine made of
biomolecules, Nature 414(2001).

[6] Y. Benenson, R. Adar, T. Paz-Elizur, L. Livneh, E. Shapiro, DNA
molecule provides a computing machine with both data and fuel, Proc.
National Acad. Sci. USA 100(2003) 2191-2196.

[7] L. Dubuc, Les automates circulaires et la conjecture de Černý, Inform.
Theor. Appl. 32(1998), 21-34.

[8] A. N. Trahtman, The existence of synchronizing word and Cerny
Conjecture for some finite automata, Second Haifa Workshop on Graph
Theory, Combinatorics and Algorithms, Haifa (2002).

[9] A. Salomaa, Compositions over a Finite Domain: from Completeness to
Synchronizable Automata, Turku Centre for Computer Science,
Technical Report No 350(2000).

