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Approximation of Sturm-Liouville problems by exponentially weighted

Legendre-Gauss Tau Method

Mohamed K. El Daou

Abstract—We construct an exponentially weighted Legendre-
Gauss Tau method for solving differential equations with oscillatory
solutions. The proposed method is applied to Sturm-Liouville prob-
lems. Numerical examples illustrating the efficiency and the high
accuracy of our results are presented.
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I. INTRODUCTION

THE accurate  computation of   Sturm-Liouville problems

eigenvalues continues to be a challenging problem for

computational physicists. In the past there has been much

interest in standard numerical methods such as Numerov,

Runge-Kutta or de Vogelaere (see [5]). But due to the un-

satisfactory performance of standard methods in detecting

the strong oscillations exhibited by the eigenfunctions, efforts

have concentrated on developing modern techniques that have

proven to be highly accurate and effective in treating this

type of problems. Such techniques are based on piecewise

coefficient perturbation and on exponential fitting (see [2] and

[4]).

This paper is mainly devoted to construct an exponentially

weighted approach for a spectral method called Legendre-

Gauss Tau method, (see [6], [8] and [1]). The main idea of

the classical Legendre-Gauss Tau method (LGT) is to find

an approximation ỹ for y expressed in terms of Legendre

polynomial {Li(x)} as ỹ =
∑n+1

i=0
aiLi(x), where {ai; i =

0, 1, 2, . . . , n} are fixed, by imposing some prescribed ini-

tial/boundary conditions on ỹ and by forcing the residual

produced by ỹ to vanish at n Gauss points. The proposed

method, that will be called Exponentially weighted Legendre-

Gauss Tau method (ELGT), is an extension of LGT; it seeks

approximations in terms of an exponentially weighted Legen-

dre polynomials basis {Li(x)eωx
}, where the frequencies ω’s

are determined in terms of the local behaviour of the solution.

These ω’s are accuratly estimated using the Piecewise Constant

Perturbation Method (see [9] and [2]).

II. LEGENDRE-GAUSS TAU METHOD LGT

LGT was invented by Lanczos in [6] and later developed

by Ortiz [8] and by Gottlieb and Orszag [1] to treat problems

with different degrees of complexities. It has two equivalent

approaches: recursive and spectral.
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A. Recursive formulation of LGT

Given an initial value problem (i.v.p.) of order ν ∈ N, with

variable coefficients {Pi(x), i = 0, 1, · · · , ν},

(Dy)(x) :=

ν
∑

i=0

Pi(x)
diy

dxi
= f(x); x ∈ [a, b], (1)

y(k)(a) = αk ∈ R; k = 0, 1, · · · , ν − 1, (2)

Let us assume that Pν(x) does not vanish in the domain of

integration I := [a, b].
The recursive formulation of LGT ([6], [8]) consists in

replacing f(x) by an approximation f̃(x) in a way that the

solution ỹ of,

(Dỹ)(x) :=

ν
∑

i=0

Pi(x)
diỹ

dxi
= f̃(x); x ∈ I,

ỹ(k)(a) = αk ∈ R; k = 0, 1, · · · , ν − 1,

is an exact polynomial. In practice f̃(x) takes the form,

f̃(x) = f(x) + HN (x)

where,

• HN (x) := (
r

∑

i=0

τix
i)LN (x); Lk(x) stands for the kth

Legendre polynomial shifted to interval I.

• {τi} are free parameters adjusted so that ỹ is an exact

polynomial satisfying the initial conditions (2).

B. Spectral approach of LGT

The spectral approach of LGT, which this paper is con-

cerned with, seeks an approximation yN of the form

yN =

N+ν−1
∑

i=0

aiLi(x).

The unknown coefficients {ai; i = 0, 1, . . . , n + ν − 1} are

determined by

• imposing the initial conditions (2) on yN ,

y
(k)

N
(a) = αk; k = 0, 1, · · · , ν − 1,

• and, either, by projecting orthogonally the residual

RN (x) := DyN (x) − f(x) against the subspace

span{L0(x), L1(x), . . . , LN−1(x)},

∫ b

a

RN (t)(t)Lk(t)dt = 0, l = 0, 1, 2, . . . , N − 1,

• or, by forcing RN (x) to vanish at the N Gauss points

{zi; i = 1, 2, . . . , N} ⊂ I , (which are the zeros of

LN(x)),

RN (zi) = 0, i = 1, 2, 3, ..., N.
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In the piecewise version of LGT we consider a partition

a = x0 < x1 < . . . < xM = b of [a, b]; hi = xi − xi−1, and

we use LGT(N) to solve the following sequence of M i.v.ps,

(Dyi)(x) = f(x); x ∈ [xi−1, xi], i = 1, 2, . . . , M

y
(k)

i
(xi−1) = y

(k)

i−1
(xi−1), k = 0, 1

y
(k)

1 (x0) = αk

Throughout, LGT(M,N) will stand for Piecewise LGT where

M is the number of mesh points and N is the number of Gauss

Legendre points. When M = 0, LGT(0,N)=LGT(N).

C. Numerical Experiment

In order to illustrate the performance of LGT(M,N) in

approximating functions with oscillatory behaviour, let us

approximate y = x sin x2 + 2x, shown in Figure 1, through

solving the i.v.p.

y
′′

−
3

x
y

′

+ (4x2 + 3

x2 )y = 0, x ∈ [1, 50] (3)

y(1) = 2 + sin 1, y
′

(1) = 2 + 2 cos 1 + sin 1
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Fig. 1. Curve of y = x sinx2 + 2x in interval [0,25]

by means of LGT(M,N) with M=392, h=1/8 and N=2. The

exact errors at some {xi, i = 0, 1, . . .} are listed in Table I.

i xi err(xi) err
′

(xi)
√

err2 + err′
2

8 2.0 5.99E-5 -3.99E-4 4.04E-4
16 3.0 -4.43E-4 -6.08E-3 6.10E-3
24 4.0 -3.93E-3 -3.64E-2 3.66E-2
32 5.0 1.98E-2 2.03E-1 2.04E-1
72 10.0 1.66E+0 3.18E+1 3.18E+1

112 15.0 -2.17E+2 -8.73E+2 9.00E+2
152 20.0 1.34E+2 1.69E+4 1.69E+4
192 25.0 5.60E+3 1.22E+6 1.22E+6
232 30.0 3.44E+24 3.29E+26 3.29E+26
272 35.0 1.71E+54 1.33E+56 1.33E+56
312 40.0 3.03E+88 2.13E+90 2.13E+90
352 45.0 3.33E+125 2.21E+127 2.21E+127
392 50.0 2.68E+164 1.71E+166 1.71E+166

TABLE I
LGT(392,2) ERRORS FOR y = x sinx2 + 2x IN [1,50]

It is clearly seen, from Table I, that LGT(M,N) method

becomes useless as we approach the end point. The purpose

of this paper is to develop a modified LGT by introducing in

the desired approximate solution exponential weights of the

form eωx in a way that, for suitably chosen frequencies ω,

those weights will detect the strong oscillations throughout

the domain of integration. I will prove that the main tool to

achieve this goal is the piecewise perturbation method that will

be presented in the next section.

III. THE PIECEWISE COEFFICIENTS PERTURBATION

METHOD

This method has been devised to approximate second order

o.d.e. of the form

(Dy)(x) := y
′′

+ b(x)y = 0, x ∈ [a, b] (4)

y(a) = α0, y
′

(a) = α1

Its basic idea is to replace b(x) by an approximation b̃(x) such

that the perturbed i.v.p.

y
′′

0 + b̃(x)y0 = 0, x ∈ [a, b] (reference equation)

y0(a) = α0, y
′

0(a) = α1

can be solved analytically. The accuracy of reference y0 can

be increased by adding corrections terms {yi(x)} which are

the solutions of the following sequence of i.v.ps

y
′′

1 + b̃(x)y1 = δb(x)y0, y1(a) = 0, y
′

1(a) = 0
y

′′

2 + b̃(x)y2 = δb(x)y1, y2(a) = 0, y
′

2(a) = 0
...

...

where δb(x) := b̃(x) − b(x).

• When b̃(x) is constant, the method is called CP-Method.

• When b̃(x) is linear, it is called LP-method.

The exact solution y has the formal series expansions, y ∼
∑

∞

k=0
yk.

We call an mth approximation of y the finite sum,

Ym := y0 + y1 + . . . + ym.

In the piecewise version of coefficient pertrubation (PPM), we

consider a partition a = x0 < x1 < . . . < xM = b of [a,b],

and on each [xi−1, xi], i = 1, 2, . . .M , we replace b(x) by an

approximation b̃i(x) in a way that allows to solve analytically

the following sequence of M i.v.ps:

y
′′

0i
+ b̃i(x)y0i = 0; x ∈ [xi−1, xi] (5)

y0i(xi−1) = y0,i−1(xi−1), i = 1, 2, . . . , M

y
′

0i(xi−1) = y
′

0,i−1(xi−1)

y00(x0) = α0, y
′

00(x0) = α1

The corrections will be defined then as:

y
′′

1i + b̃i(x)y1i = δbi(x)y0i, y1(xi−1) = y
′

1(xi−1) = 0
y

′′

2i + b̃i(x)y2i = δbi(x)y1i, y2(xi−1) = y
′

2(xi−1) = 0
...

...

where δbi(x) := b̃i(x) − b(x). The PPM mth approximation

of y on the ith subinterval [xi−1, xi] will be then,

Ymi := y0i + y1i + . . . + ymi. (6)
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A. Strucrure of CP-Method residual

In this section we will supress the i indices and let X

designate one of the xi. Adding up the reference equation

and the first m correction equations, we find that

Y
′′

m
+ b(x)Ym = −δb ym, x ∈ [X, X + h] (7)

Ym(X) = η0, Y
′

m(X) = η1

where {η0, η1} are generic values available from the approx-

imation computed on the previous subinterval [x i−2, xi−1].
Comparing (7) with the original i.v.p, (4), we observe that

when the PPM approximant Ym is substituted in the original

differential equation, it produces a residual made up of δb(x),
the perturbation in b(x), and the mth correction ym(x),

R(x) = −δb ym.

In other words, Ym is the exact solution of a perturbed version

of the original one where the perturbation occurs in the right

hand side.

In particular, if b̃(x) ≡ b̄ is constant, (CP-Method), and

ω =
√

−b̄, then

• the CP-reference y0 is given as

y0(x) = p10e
ωx + p20e

−ωx

where {p10, p20} are constants fixed in terms of the

initial conditions associated with (5),
• the kth CP-correction has the form

yk(x) = p1k(x)eωx + p2k(x)e−ωx,

for some polynomials {p1k, p2k} that involve two con-

stants fixed in terms of the initial conditions yk(X) =
y

′

k
(X) = 0.

• the CP-approximant Ym := y0 + y1 + . . . + ym can be

written as,

Ym = Pm1(x)eωx + Pm2(x)e−ωx.

Further from (7) follows that, for x ∈ [X, X +h], Ym satisfies

Y
′′

m
+ b(x)Ym = −(δb p1m)eωx

− (δb p2m)e−ωx,

Ym(X) = η0, Y
′

m
(X) = η1

If we compare the latter with the original i.v.p, (4), we find

that the CP approximant Ym produces the residual

R(x) = −(δb p1,m)eωx
− (δb p2m)e−ωx. (8)

This structure of CP-residual will be very constructive in

assuring the close dependence between the error function and

the quality of perturbation measured by δb(x). Subsequently

this will allow to propose a technique that reduces the error

substantially.

B. Error analysis

Let em(x) := y(x)−Ym(x) denote the mth error function.

The difference between (4) and (7) gives the error equation,

e
′′

m + b(x)em = (δb p1m)eωx + (δb p2m)e−ωx,

em(X) = εm, e
′

m
(X) = ε

′

m

where x ∈ [X, X + h]. em(x) is formally represented as

em(x) =

∫

x

X

G∗(x, t)δb(t)dt + G(x, X)ε
′

+ Gx(x, X)ε. (9)

G(x, t) is the Green function associated with D and

G∗(x, t) := G(x, t)
[

p1,m(t)eωt + p2,m(t)e−ωt
]

For the local truncation error (l.t.e.), let ε = ε
′

= 0 and take

norms in (9)

‖em‖ ≤ κ‖δb‖, where ‖G∗
‖ ≤ κ

for some constant κ = κ(ω) .

As far as CP-method is concerned, in the uniform norm

‖.‖∞ the smallest ‖δb‖∞ is realized when b̄ is the best zeroth

approximation of b(x),

b̄ = b(X +
h

2
), ω =

√

−b(X +
h

2
)

Alternatively, for the L2-norm, ‖.‖2, the smallest ‖δb‖2 is

achieved if b̄ is the best zeroth approximation of b(x) in

L2[X, X + h],

b̄ =

∫ 1

0

b(X + ht)dt

Hence, whether ‖.‖∞ or ‖.‖2 is adopted, δb(x) is of the form

δb(x) = L1,h(x) × function of x

We conclude that the residual (8) can be written as

R(x) = L1,h(x)τ1(x)eωx + L1,h(x)τ2(x)e−ωx (10)

This result suggests that there could be PPM other than CPM

that would lead to a residual whose the same structure as (10),

except that the coefficients of the exponentials e±ωx must be

multiples of higher order Legendre polynomial, LN,h(x) say.

In other words, we wish to find a method whose the residual

is of the form

RN (x) = LN,h(x)τ1(x)eωx + LN,h(x)τ2(x)e−ωx (11)

Next section demonstrates that LGT can be extended to

achieve this goal.

IV. EXPONENTIALLY WEIGHTED LGT METHOD, ELGT

The investigation in this section will be carried out for

homogenous and nonhomogenous o.d.e.

A. Case 1: y
′′

+ b(x)y = 0

For each ω ∈ C let us associate to Du := u
′′

+ b(x)u(x)
the auxilliary operator Dω defined as

Dωu := u
′′

+ 2ωu
′

+ [ω2 + b(x)]u.

THEOREM 1. The exact solution of

Dy := y
′′

+ b(x)y(x) = 0 (12)

is expressible as a linear combination of two exponentials e±ωx,

ω =
√

−b(X̄)
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whose the coefficients {φ1, φ2} are the exact solutions of the

auxiliary equations

D±ωφ = φ
′′

± 2ωφ
′

+ δb(x)φ = 0. (13)

In other words, solving Dy = 0 is equivalent to solving

Dωφ1 = 0 and D−ωφ2 = 0.

The proof of this theorem is based on the following two

lemmas:

LEMMA 1. The following assertions hold true:

1) For any ω, Dωφ = 0 ⇒ D[φ(x)eωx] = 0.

2) For any constants {ωi, ci; i = 1, 2}

{Dω1
φ1 = Dω2

φ2 = 0} ⇒ D[c1φ1e
ω1x+c2φ2e

ω2x] = 0

LEMMA 2. Let ω1,2 = ±ω = ±

√

−b(X̄). Then

1) D±ωφ = φ
′′

± 2ωφ
′

+ δb(x)φ,

2) For any constants { ci; i = 1, 2}

{Dωφ1 = D−ωφ2 = 0} ⇒ D[c1φ1e
ωx+c2φ2e

−ωx] = 0
(14)

Theoretically, y(x) can be found, once {φ1, φ2} are avail-

able, and the constants c1 and c2 in y = c1φ1(x)eωx +
c2φ2(x)e−ωx are fixed according to the given initial condi-

tions. Analytically, solving (13) is not easier, however, than

solving the original problem (12). Computationally, numerical

methods that approximates the smooth solutions of (13) could

be more successful than approximating (12) directly, specially

when y(x) exhibits sharp variations. Next I will propose an

algorithm for LGT that can effectively generate approxima-

tions {φ̃1, φ̃2} for {φ1, φ2} defined by (13) and subsequently

construct approximation ỹ for y as ỹ = c1φ̃1e
ωx + c2φ̃2e

−ωx.

I will refer to this procedure by ELGT(M,N) where M

indicates the number of steps and N is the number of Gauss

points in each subinterval [xi−1, xi].
ALGORITHM 1 – Follows is an ELGT(M,N) algorithm that

approximates i.v.p. problems of the form:

y
′′

+ b(x)y = 0, x ∈ [a, b]

y(a) = α0, y
′

(a) = α1

1) construct a partition a = x0 < x1 < . . . < xM = b of

[a, b]; set hi = xi − xi−1.

2) provide the N Gauss points in [0,1]; {zk, k =
1, 2, . . . , N}

3) for i = 1, 2, . . . , M repeat (a)-(d)

a) compute the frequency ωi for [xi−1, xi]; ωi =
√

−b(xi−1 + hi

2
);

b) compute the coefficients {aji} of φN,i,1 =
∑

N

j=0
ajiLji(x); solve the algebraic linear system,

(Dωi
φN,i,1)(xi−1 + hizk) = 0, k = 1, 2, ..., N

φN,i,1(xi−1) = 1

c) compute the coefficients {bji} of φN,i,2 =
∑

N

j=0
bjiLji(x); solve the algebraic linear system,

(D−ωi
φN,i,2)(xi−1 + hizk) = 0, k = 1, 2, ..., N

φN,i,2(xi) = −1

d) construct yNi = c1iφN,i,1e
ωix + c2iφN,i,2e

−ωix;

{c1i, c2i} are fixed by left-end conditions

yNi(xi−1) = yN,i−1(xi−1)

y
′

Ni(xi−1) = y
′

N,i−1(xi−1)}

Next, identify the residual resulting from ELGT(M,N).

THEOREM 2. ELGT(M,N) approximant yN,i produces a

residual of the form (11),

RN (x) = LN,h(x)τ1(x)eωx + LN,h(x)τ2(x)e−ωx

Proof - Parts (b) and (c) imply respectively that

(Dωi
φN,i,1)(x) = LNi(x) × ρ1(x)

(D−ωi
φN,i,2)(x) = LNi(x) × ρ2(x)

Therefore, if D is operated on yN,i given in (d) we get

DyN,i = D[c1iφN,i,1e
ωix + c2iφN,i,2e

−ωix]
= c1iD[φN,i,1e

ωix] + c2iD[φN,i,2e
−ωix]

= c1iDωi
[φN,i,1]e

ωix + c2iD−ωi
[φN,i,2]e

−ωix

= c1iLNi(x)ρ1(x)eωix + c2iLNi(x)ρ2(x)e−ωix

as required.

B. Case 2: y
′′

+ a(x)y
′

+ b(x)y = 0

Extend ELGT to 2nd order o.d.e. involving y
′

,

(Dy)(x) := y
′′

+ a(x)y
′

+ b(x)y = 0, x ≥ a (15)

y(a) = α0, y
′

(a) = α1

The auxiliary operator Dω is defined as

Dωu := u
′′

+ (2ω + a(x))u
′

+ (ω2 + a(x)ω + b(x))u.

Frequencies ω1 and ω2 are now given by the quadratic

equation

ω2 + a(X̄)ω + b(X̄) = 0, X̄ = X +
h

2
,

In particular for these ωj’s, the auxiliary operator Dωj
be-

comes

Dωj
u := u

′′

+ (2ωj + a(x))u
′

+ (ωjδa + δb)u.

Algorithm 1 can be adopted for equation (15) except part

(a) which estimates the frequencies. The ELGT would give

solution,

yN = c1φ1,N (x)eω1x + c2φ2,N (x)eω2x

where c1 and c2 are fixed by the initial conditions.

ALGORITHM 2 –

1) construct a partition a = x0 < x1 < . . . < xM = b of

[a, b];
set hi = xi − xi−1.

2) provide the N LG points in [0,1]; {zk, k = 1, 2, . . . , N}

3) for i = 1, 2, . . . , M repeat (a)-(d)

a) compute the frequencies {ω1i, ω2i for [xi−1, xi] by

solving ω2+a(x̄i)ω+b(x̄i) = 0, x̄i = xi−1+ hi

2
,

b) compute the coefficients {aji} of φN,i,1 =
∑

N

j=0
ajiLji(x); solve the algebraic linear system,

(Dω1i
φN,i,1)(xi−1 + hizk) = 0
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φN,i,1(xi−1) = 1, k = 1, 2, ..., N

c) compute the coefficients {bji} of φN,i,2 =
∑N

j=0
bjiLji(x); solve the algebraic linear system,

(Dω2i
φN,i,2)(xi−1 + hizk) = 0,

φN,i,2(xi) = −1, , k = 1, 2, ..., N

d) construct yNi = c1iφN,i,1e
ω1ix + c2iφN,i,2e

ω2ix;

{c1i, c2i} are fixed by left-end conditions

yNi(xi−1) = yN,i−1(xi−1)

y
′

Ni(xi−1) = y
′

N,i−1(xi−1)}

C. Case 3: y
′′

+ a(x)y
′

+ b(x)y = f(x)

Let us explain how to extend ELGT to solve nonhomoge-

nous 2nd order o.d.e.

(Dy)(x) := y
′′

+ a(x)y
′

+ b(x)y = f(x), x ≥ a (16)

y(a) = α0, y
′

(a) = α1

The general solution of (16) is written as

y = const1u1(x) + const2u2(x) + Y (x)

where {u1, u2} are two particular solutions of Dy = 0 and

Y (x) is a particular solution of Dy = f .

The ELGT solution takes the form,

yN = c1φ1,N (x)eω1x + c2φ2,N (x)eω2x + YN (x)

where c1 and c2 are fixed by the initial conditions.

To generate this approximation, replace step (d) by (d)-(e).

ALGORITHM 3 – Algorithm 2 +

(d) compute the coefficients {cji, j = 0, 1, . . . , N + 1} of

YN,i =

N/2
∑

j=0

cjiLji(x)eω1ix +

N/2
∑

j=0

cN/2+1+j,iLji(x)eω2ix

by solving

(DYN,i)(xi−1 + hizk) = f(xi−1 + hizk)
YN,i(xi−1) = 0, k = 1, 2, . . . , N

Y
′

N,i
(xi−1) = 1

(e) compute yNi = c1iφN,i,1e
ω1ix + c2iφN,i,2e

ω2ix + YN,i

where {c1i, c2i} are fixed by left-end conditions

yNi(xi−1) = yN,i−1(xi−1)

y
′

Ni(xi−1) = y
′

N,i−1(xi−1)

Example 1.

Let us resolve problem (3) using ELGT(392,2). The com-

mitted errors along those of LGT(392,2) and the frequencies

ωk are listed in Table II. One can easily appreciate the

significant improvement in the errors over the whole interval

and at the right end point of interval of integration.

k xk ωk er(xk) er
′

(xk)
√

er2 + er′
2

8 2.0 0.77+3.90i 1.64E-6 1.69E-5 1.70E-5
16 3.0 0.51+5.88i 4.91E-6 1.01E-4 1.01E-4
24 4.0 0.38+7.88i 5.99E-6 1.47E-4 1.47E-4
32 5.0 0.30+9.88i -8.47E-6 -2.75E-4 2.76E-4
72 10.0 0.15+19.87i -2.03E-5 -1.19E-3 1.19E-3
112 15.0 0.10+29.87i -1.69E-4 -2.78E-3 2.78E-3
152 20.0 0.075+39.87i -9.09E-5 -7.01E-3 7.01E-3
192 25.0 0.060+49.87i 6.42E-4 1.44E-2 1.44E-2
232 30.0 0.050+59.87i -4.70E-4 9.65E-2 9.65E-2
272 35.0 0.043+69.87i -1.80E-3 -6.80E-2 6.81E-2
312 40.0 0.037+79.87i 4.472E-4 -1.85E-1 1.85E-1
352 45.0 0.033+89.87i 1.74E-3 1.76E-1 1.76E-1

392 50.0 0.030+99.87i -3.35E-3 -8.75E-2 8.75E-2

Classical LGT(2,0.05) result:
392 50.0 2.68E+164 1.71E+166 1.71E+166

TABLE II
ELGT(392,2) ERRORS FOR y = x sinx2 + 2x IN [1,50].

V. STURM-LIOUVILLE PROBLEMS

In this section we shall consider equations of this form

y
′′

+ (E − V (x))y = 0, x ∈ [a, b]
y(a) = y(b) = 0,

where V (x) is a given function called potential and the value

of E is not specified. Finding the values of E for which there

exists a solution y �= 0 is a part of the so called Sturm-

Liouville problem SLP. Many important problems, (e.g quan-

tum physics, quantum chimestry, geophysical applications,

vibration and heat flows problems) can be modeled by means

of one-dimensional SLP.

We are interested in approximating the eigenvalues E by

means of ELGT(M,N). To this end we adopt the following

strategy:

• Take a partition a = x0 < x1 < . . . < xM = b.

• Solve by ELGT(M,N) a sequence of i.v.p. with y(a) = 0
and y

′

(a) arbitrarily chosen.

• Compute the Ē’s that satisfy YMN (b, Ē) = 0.

• These Ē’s approximate the exact e.v. E’s.

Example 2.

Let us test ELGT on the following SLP:

y
′′

+ (E − V (x))y = 0, [0, xr]

where E is the energy to be determined and V (x) is the

Woods-Saxon potential,

V (x) = v0W (x)

[

1 −
1 − W (x)

a0

]

,

W (x) =

[

1 + exp(
x − x0

a0

)

]−1

v0 = −50, x0 = 7, a0 = 0.6

with the conditions (see [7])

y(0) = 0 and (
√

V (xr) − E)y(xr) + y
′

(xr) = 0

Since V (x) is negligible for x > 15 we can safely take xr =
15.
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ELGT(h,N=6) LPM[4,2]

M=15 M=30 M=60 M=120

Exact En h=1 h=1/2 h=1/4 h=1/8

-49.45778872808258 -2.8E-9 -6.3E-13 < 1.0E-14 <1.0E-14
-48.14843042000636 -1.5E-8 -4.28E-12 <1.0E-14 2.1E-14
-46.29075395446608 7.4E-9 -1.11E-11 <1.0E-14 <1.0E-14
-43.96831843181423 4.1E-8 -1.5E-11 <1.0E-14 -2.1E-14
-41.23260777218022 -1.2E-7 -1.4E-11 <1.0E-14 -5.0E-14
-38.12278509672792 1.6E-6 1.32E-10 1.1E-14 -8.0E-14
-34.67231320569966 4.0E-6 -6.29E-10 5.0E-14 -1.1E-13
-30.91224748790885 -1.5E-5 8.40E-10 2.6E-14 -1.2E-13
-26.87344891605987 -1.2E-5 4.81E-10 2.9E-14 -1.1E-13
-22.58860225769321 2.7E-5 -4.9E-9 2.2E-14 -8.5E-14
-18.09468828212442 1.3E-5 8.3E-9 -2.4E-13 -6.7E-14
-13.43686904025008 -7.4E-6 4.0E-9 9.9E-14 -3.4 E-14
-8.67608167073655 2.8E-5 -3.56E-8 7.4E-14 3.2E-14
-3.90823248120623 -7.3E-5 3.68E-8 1.6E-13 1.9E-13

TABLE III
WOODS-SAXON POTENTIAL: THE EXACT EIGNEVALUES AND THE ERRORS

FOR ELGT(M,N) FOR SEVERAL UNIFORM STEP SIZES. FOR

COMPARAISON, LPM[4,2] ERRORS REPORTED IN [7] ARE ALSO LISTED.

ELGT(M=15,N)

n N=6 N=7 N=8 N=9 N=10 N=11 N=12

0 -2.8E-9 3.8E-12 9.1E-13 1.5E-14 1.8E-16 3.0E-16 3.3E-16
1 -1.5E-8 -7.0E-11 1.9E-12 2.8E-13 -1.8E-15 -1.3E-15 -1.0E-15
2 7.4E-9 -8.4E-10 -1.2E-11 1.9E-12 -1.2E-14 -9.1E-15 -7.6E-15
3 4.1E-8 -2.6E-9 4.3E-11 6.8E-12 -3.9E-14 -7.7E-15 -3.0E-15
4 -1.2E-7 -2.7E-8 2.2E-10 2.2E-11 -8.9E-14 -5.7E-15 1.6E-15
5 1.6E-6 -1.2E-7 -6.6E-10 8.5E-11 4.3E-13 -1.0E-14 2.3E-16
6 4.0E-6 2.4E-7 -6.4E-9 -3.5E-10 2.8E-12 3.1E-13 8.0E-15
7 -1.5E-5 2.8E-7 3.5E-8 -2.6E-10 -3.4 E-11 -2.1E-13 1.8E-14
8 -1.2E-5 -1.2E-6 -8.7E-10 2.07E-9 5.4 E-11 -1.9E-12 -6.1E-14
9 2.7E-5 5.9E-7 -1.2 E-7 -2.6E-9 1.1 E-10 4.9E-12 1.8E-14

10 1.3E-5 3.1E-6 6.6E-8 -2.2E-9 -3.4E-10 -3.1E-12 2.8E-13
11 -7.4E-6 -4.1E-6 9.5E-8 1.3E-8 1.6 E-10 -9.7E-12 -6.5E-13
12 2.8E-5 -1.4E-6 -1.3E-7 -1.4E-8 2.6E-10 2.9E-11 5.0E-13
13 -7.3E-5 2.7E-6 2.0E-7 2.1E-9 -4.2E-10 -4.0E-11 1.6E-13

TABLE IV
WOODS-SAXON POTENTIAL: THE ERROR IN THE COMPUTED

EIGENVALUES Ẽn OBTAINED BY ELGT(M=15,N) FOR N =6,7,...,12.

We solved this problem by means of ELGT(M,6) for M =
15, 30, 60 and 120; (that is h =,1, 1

2
, 1

4
and 1

8
).

Table III displays the errors committed by ELGT(M,N)

along the errors obtained by Ledoux et al [7] for the Linear

Perturbation Method LPM that employs the Airy functions to

construct the eigenfunctions.

In order to observe the behaviour of ELGT(M,N) in terms

of N , we solved Example 2 for fixed step size h = 1, (M=15),

and for N =6, 7, 8, 9, 10, 11 and 12. The exact errors are listed

in Table IV. Figure 2 shows the variation of ln |Ek − Ẽk,N |,

for k = 5, 9, 13 along the curve of ln |
1

N !cN

N

|, N = 6, 7, ..., 12

where cN

N
denotes the leading coefficient of L∗

N
(x). This is

an experimental evidence that the ELGT(M,N) errors has an

exponential decay as a function of N .

Example 3.

We wish to solve SLP with potential function of Coffey-

Evans form ([10]):

V (x) = −2β cos 2x + β2 sin2 2x, β = 20

7 8 9 10 11 12
N

�35

�30

�25

�20

�15

�10

ln��EN�E
�

N�

Fig. 2. Experimental evidence for the order of ELGT(M=15,N) in terms

of N . Variation of ln |Ek − Ẽk,N |, for k = 5, 9, 13 along the curve of

ln | 1

N!cN

N

|, N = 6, 7, ...,12. CN

N
=leading coefficient of L∗

N
(x).

ELGT(M,N=6) SLCPM12

M=15 M=30 M=28

n ẼN h = π/15 h = π/30 h = π/38

0 5.2185E-11 6.8E-7 5.0E-11 -6.9E-10
1 77.91619567704743 1.7E-6 -9.7E-11 -1.3E-9
2 151.46277834649058 -6.1E-6 3.4E-11 2.0E-10
3 151.46322365755634 -5.5E-7 -1.0E-10 -3.6E-10
4 151.46366898838570 -6.0E-6 3.4E-11 2.0E-10
5 220.15422983550180 1.9E-5 2.4E-10 1.2E-9
6 283.09481469529091
7 283.25074374324649
8 283.40873540331631
9 339.37066565320982

TABLE V
COFFEY-EVANS POTENTIAL: THE ERROR IN THE COMPUTED E.VSẼn

OBTAINED BY ELGT(M,N=6) FOR h = π/15 AND h = π/30. THE LAST

COLUMN LISTS RESULTS FROM IXARU [3] OBTAINED BY SLCPM12. NO

REFERENCE IS AVAILABLE TO COMPARE THE LAST COMPUTED 4 E.VS.

in interval [a, b] where a = −π/2 and b = π/2 and where

y(a) = y(b) = 0.

The approximate eigenvalues ẼN of this problem were

obtained by means of ELGT(M,N) (see Table V). It is obvious

that ẼN are close triplets {Ẽ2, Ẽ3, Ẽ4} and {Ẽ6, Ẽ7, Ẽ8}, a

characteristic of the (Coffey-Evans) exact eigenvalues.

VI. CONCLUSION

Exponentially Weighted Legendre-Gauss Tau Method

ELGT for approximating ODE with strongly oscillatory so-

lution is developed. ELGT procedure produces approximate

solution that involves weights {e±ωx
} where the frequencies

{ω} are determined by the quadratic equation associated with

Constant reference equation. This method is proven to be of

high degree of accuracy when used to solve Sturm-Liouville

problems and when the interval of integration has a large size.
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