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Accuracy of Divergence Measures for Detection of
Abrupt Changes

P. Bergl

Abstract–Numerous divergence measures (spectral distance, cep-
stral distance, difference of the cepstral coefficients, Kullback-Leibler
divergence, distance given by the General Likelihood Ratio, distance
defined by the Recursive Bayesian Changepoint Detector and the
Mahalanobis measure) are compared in this study. The measures are
used for detection of abrupt spectral changes in synthetic AR signals
via the sliding window algorithm. Two experiments are performed;
the first is focused on detection of single boundary while the second
concentrates on detection of a couple of boundaries. Accuracy of
detection is judged for each method; the measures are compared
according to results of both experiments.

Keywords–Abrupt changes detection, autoregressive model, di-
vergence measure.

I. INTRODUCTION

A divergence measure can be used for detection of
abrupt changes in signals. For many applications (speech

recognition, EEG analysis), spectral changes are the most
interesting. It is well known that a great number of real
signals can be modeled as an autoregressive (AR) model.
This approach is used in this study; synthetic AR signals with
abrupt spectral changes are generated. Our task is to compare
some chosen detectors according to the accuracy of detection.
A similar topic has been described for many types of distance
or divergence measure, e.g. [1]. This work is unique in its use
of a large number of measures; each measure is used with
a variety of adjustments.

II. METHODS AND EXPERIMENTS

Let’s assume a distance measure d(s1, s2), where s1 and s2

is a signal; the value of d(s1, s2) is equal to spectral divergence
of the signals. The simplest example of such a measure is
difference of spectra dFFT = 1

N

√
S1 − S2, where N is length

of the signal (the same length of the signals is assumed for
simplicity), S1 and S2 is spectra calculated via the FFT (Fast
Fourier Transformation).

A distance measure can be used for analyzing a signal via
the sliding window algorithm. Initially a window of length L is
positioned at the beginning of the signal, signal s1 is defined
by the left half of the window, signal s2 is defined by the
right half. The distance measure can be then calculated. In
the next step of the algorithm, the sliding window is moved
one sample forward. New signals s1 and s2 are established
and the distance measure is calculated again. This step is
repeated until the end of the signal is reached. Finally, a set
of values of the distance measure is obtained, each value

Fig. 1. Position of poles in complex z–plane and frequency response for
r = 0.9, ϕ = 30◦.

defines spectra difference in the left and right half of the
sliding window with respect to the position of the window.
These values can be plotted as a curve, where the time
coordinate of the distance measure value is defined by the
middle of the sliding window, meaning that the L/2 first and
L/2 last samples of the curve are zero. The most important
feature of the curve is that remarkable changes in spectra
of the signal are indicated with local maxima of the curve.
A demonstration of a synthetic autoregressive (AR) signal with
abrupt spectral changes, its spectrogram and some calculated
distance measures are displayed in Fig. 3.

The AR model is defined by the following

s(n) = −
p∑

i=1

bis(n− i)+G · e(n), n = p, . . . , N − 1, (1)

where p is the order of the model; coefficients bi are called lin-
ear predictive coefficients (lpc); e(n) is white noise (i.e. with
the Gaussian distribution, zero mean value and uncorrelated),
G stands for gain. AR model assumes, that actual sample of the
signal (s(n)) is a linear combination of preceding p samples
with additive noise e(n). The AR model can be easily used
for generating synthetic signals with defined spectral qualities.
The definition (equation 1) is similar to formula of the IIR
filtration; an AR signal can be generated using an IIR filter
fed with white noise, with system function H(z) given by the
parameters of the AR model:

H(z) =
G

1 + b1z−1 + . . . + bpz−p
. (2)

The simplest case is for p = 2, then the system function is
defined by a couple of complex poles. Position of the poles in
complex z–plane is defined by two coordinates, radius r, and
angle ϕ (see Fig. 1).
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Fig. 2. Structure for generating of AR signal with three abrupt changes.

A. Experiment no.1: Abrupt Changes With Increasing Value
of Spectral Divergence

A signal with abrupt spectral changes can be easily gen-
erated using various IIR filters with different position of the
poles. A structure for generating the AR signal with three
abrupt changes is shown in Fig. 2. It is made up of four IIR
filters; all are fed with the same white noise. We subsequently
switch from output of one filter to output of the next filter
in defined time instants (for n = 2000, 4000, 6000), the total
length of the signal is 8000 samples; AR order 2 is assumed,
parameters of the filters are following

• filter no. 1: r = 0.9, ϕ = 30◦;
• filter no. 2: r = 0.9, ϕ = 40◦;
• filter no. 3: r = 0.9, ϕ = 60◦;
• filter no. 4: r = 0.9, ϕ = 90◦.
Difference between the angles is increasing (it is 10◦ for

the first change, 20◦ for the second and 30◦ for the third).
It implies that value of the spectral divergence is increasing
as well, meaning the first change is ”small”, the second one
is ”medium” and the third one is ”large”. An example of the
signal is displayed in Fig. 3.

A total number of 200 signals are generated, each one to be
analyzed with numerous types of divergence measures, each
measure is used with various settings (L stands for window
length in samples):

• dBay given by Recursive Bayesian Autoregressive
Changepoint Detector (RBACDN), see [3], [4];
L ∈ {600, 800, 1000};

• dGLR given by General Likelihood Ratio, see [2];
L ∈ {400, 600, 800};

• dFFT ;
L ∈ {600, 800, 1000};

• dCep = 1
N

√
c1 − c2, where c1, c2 stands for cepstrum of

the signal;
L ∈ {600, 800, 1000};

• dCC , given by difference of cepstral coefficients derived
from coefficients of the AR model;
L ∈ {400, 600, 800};

• dKull given by the Kullback-Leibler divergence, see [6];
L ∈ {400, 600, 800};

• dMah defined by the Mahalanobis measure, see [5];
L ∈ {400, 600, 800};

Note: The order of the AR model equals 2 for all methods
which use the AR model.

Altogether 30 curves are obtained for each signal from the
training set. The positions of three local maxima are detected
in each curve. These maxima represent the estimated positions

Fig. 3. Curves for all distance measures; dashed lines represent the real
position of changes; solid lines represent positions of maxima.

TABLE I
MEAN VALUE μ AND STANDARD DEVIATION σ. ”GOOD” VALUES FOR μ

ARE DISPLAYED IN BOLD.

change ”small” ”medium” ”large”
position 2000 4000 6000
method μ/σ μ/σ μ/σ

dBay 2012/201 4018/200 6006/77
dGLR 1994/70 3998/10 5999/6
dFFT 2389/1660 3994/1960 5608/1496
dCep 2774/1005 4498/811 6123/354
dCC 2003/325 4012/139 5998/8
dKull 2051/393 4053/354 5991/26
dMah 1983/332 4021/227 5994/14

of abrupt changes. The window length L with the best results
has been chosen (the one underlined in the previous list). An
example of the curves for the chosen L with detected maxima
is demonstrated in Fig. 3.

Now we will calculate mean value μ and standard devi-
ation σ for each position. The mean value should be equal
to the real position of the change (2000, 4000, 6000). These
statistics are stated in table I, where good results for μ (i.e.
values that are close to the real position) are displayed in bold.

Let’s define set Mξ by the following

Mξ = {m̂i : |m̂i − m| ≤ ξ}, (3)

where m̂i stands for the estimated position, m stands for
the real position, ξ is a tolerance (typically tens of samples).
Set Mξ is made up of estimates which are close to the real
position. The average ”number of hits” (number of cases in
which the estimated position is close to the real one) is

Aξ = 100 · ||Mξ||
Tsig

, (4)
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TABLE II
AVERAGE ”NUMBER OF HITS” IN PERCENT. ”GOOD” VALUES ARE

DISPLAYED IN BOLD.

change ”small” ”medium” ”large”
position 2000 4000 6000
method A24/A48 A24/A48 A24/A48

dBay 74%/85% 93%/98% 98%/99%
dGLR 78%/92% 95%/100% 99%/100%
dFFT 4%/5% 5%/5% 14%/16%
dCep 17%/28% 48%/57% 71%/80%
dCC 63%/78% 95%/98% 99%/100%
dKull 62%/78% 80%/93% 89%/97%
dMah 61%/74% 88%/96% 92%/98%

where ||Mξ|| stands for number of elements in Mξ, Tsig is
the total number of signals; e.g. A24 is the average number
of cases in which difference between the estimated and real
position is less or equal to 24 samples (3 ms for 8 kHz
sampling frequency). Values for A24 and A48 are stated in
table II, ”good” results (values ≥ 90%) are displayed in bold.

We can draw the following conclusions from values in
tables I and II:

• The ”small” change has been successfully detected only
by the GLR distance dGLR (A48 = 92%).

• Best results for the ”medium” change have been obtained
for the GLR distance dGLR, the Bayesian detector dBay

and difference of cepstral coefficients dCC (A24 → 95%).
But also results for the Kullback divergence and the
Mahalanobis distance are not bad (A48 → 95%).

• The ”large” change has been successfully detected by all
the detectors except the spectral distance dFFT and the
cepstral distance dCep.

• Accuracy of the detection for dGLR, dBay , dCC and
dMah is outstanding (see values displayed in bold in
table I).

• An important quality for most of the detectors is that
values of the maxima are increasing together with value
of the change (peak in the curve is higher for the ”large”
change than for the ”small” change).

B. Experiment no.2: Pairs of Abrupt Changes With Increasing
Distance

Only two filters are used in this experiment. Parameters are
following

• filter no. 1: r = 0.9, ϕ = 40◦;
• filter no. 2: r = 0.9, ϕ = 60◦.

Positions of changes are 1850, 2000, 3700, 4000, 5550
and 6000; we switch from one filter to other one in each
position (see Fig. 4). This setup will lead to a signal, where

Fig. 4. Structure for generating of AR signal with abrupt changes.

three pairs of changes take place; the distance within the pairs
is growing; meaning distance between boundaries of the first

Fig. 5. Curves for all distance measures; dashed lines represent the real
position of changes; solid lines represent positions of maxima.

TABLE III
AVERAGE ”NUMBER OF HITS” IN PERCENT. ”GOOD” VALUES ARE

DISPLAYED IN BOLD.

change ”short” ”medium” ”long”
position 2000 4000 6000
method A24/A48 A24/A48 A24/A48

dBay 4%/8% 87%/97% 85%/98%
dGLR 8%/69% 90%/98% 92%/99%
dFFT 0%/1% 1%/3% 8%/21%
dCep 2%/6% 54%/74% 49%/73%
dCC 5%/65% 89%/99% 89%/98%
dKull 4%/6% 26%/32% 26%/36%
dMah 4%/8% 25%/29% 20%/30%

couple is ”short” (150 samples), ”medium” (300 samples) for
the second couple and ”long” (450 samples) for the last pair.
Note that value of the spectral divergence for each change is
approximately the same as for the ”medium” change in the
experiment no.1. An example of the signal is displayed in
Fig. 5.

A total number of 200 signals are generated, each one will
be analyzed using the same divergence measures and settings
as in the experiment no.1; six maxima are detected in each
curve.

The modified ”number of hits” A24 and A48 are displayed
in table III; A24 is number of cases in which both boundaries
have been detected correctly (difference between the estimated
and real position is ≤ 24 samples); definition for A48 is the
same.

We can draw the following conclusions from values in
table III:

• No method has been able to detect the ”short” change
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with satisfactory results. Best values were obtained for the
GLR distance and difference of cepstral coefficients dCC

(A48 → 65%).
• The GLR distance dGLR, the Bayesian detector dBay

and difference of cepstral coefficients dCC are able
to detect both ”medium” and ”long” change very pre-
cisely (A48 → 98%).

• The other methods are not able to detect any of the
changes. This result is surprising especially for the
Kullback divergence dKull and the Mahalanobis dis-
tance dMah; results for these methods are not bad in
experiment no.1. The problem is most likely in detection
of the second boundary in the pairs (see the curves in
Fig. 5).

III. CONCLUSION

According to the statistics for both experiments, we can
divide the methods into three groups; the GLR distance dGLR,
the Bayesian detector dBay and difference of cepstral coef-
ficients dCC belong into the first one. These methods have
outstanding results for the detection of single boundaries
(experiment no.1) and very good results for the detection of
pairs of boundaries (experiment no.2). Accuracy of detection
is excellent for these methods.

The Kullback divergence and the Mahalanobis distance are
members of the second group. They are able to detect single
boundary very well but results for ”couples” are quite bad.
Especially detection of the second boundary in the couples is
often unsuccessful.

The last group is made up of the cepstral and spectral
distance (dCep and dFFT ). Results for both have been un-
satisfactory, especially for dFFT . This poor quality can be
a consequence of the fact that these methods do not use the
AR model. On the other hand, this might be an advantage
for analysis of real signals, which are poorly described by the
AR model.
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