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Abstract—This study aimed at developing a forecasting model on 

the number of Dengue Haemorrhagic Fever (DHF) incidence in 
Northern Thailand using time series analysis. We developed Seasonal 
Autoregressive Integrated Moving Average (SARIMA) models on 
the data collected between 2003-2006 and then validated the models 
using the data collected between January-September 2007. The 
results showed that the regressive forecast curves were consistent 
with the pattern of actual values. The most suitable model was the 
SARIMA(2,0,1)(0,2,0)12 model with a Akaike Information Criterion 
(AIC) of 12.2931 and a Mean Absolute Percent Error (MAPE) of 
8.91713. The SARIMA(2,0,1)(0,2,0)12 model fitting was adequate for 

the data with the Portmanteau statistic Q20 = 8.98644 (  = 
27.5871, P>0.05). This indicated that there was no significant 
autocorrelation between residuals at different lag times in the 
SARIMA(2,0,1)(0,2,0)12 model. 
 

Keywords—Dengue, SARIMA, Time Series analysis, Northern 
Thailand. 

I. INTRODUCTION 
ENGUE Fever (DF) and Dengue Haemorrhagic Fever 
(DHF) are caused by four antigenically distinct but 

related dengue virus serotypes transmitted primarily by Aedes 
aegypti and Ae. albopictus. DHF, the severe form of the 
disease, is endemic and frequently intensifies into epidemics 
in Southeast Asia, resulting in frequent hospitalisations and 
deaths [1], [2]. Recently, dengue has emerged as a substantial 
global health problem with increased incidences in new 
countries and tropical areas [3], [4]. 

DHF has been reported in Thailand since the late 1950s [5]-
[7]. There has been an upward trend in the incidence of DHF, 
an acute and severe form of dengue virus infection. Since the 
first DHF epidemic outbreak in 1958 [8], epidemics have been 
reported from almost all most regions of the country. The 
Bureau of Epidemiology has reported that there have been 

 
Manuscript received October 15, 2007. This work was supported in part by 

the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program 
(Grant No. PHD/0201/2548), CXKURUE, the Institute of Research and 
Development, Walailak University, The GLOBE program, IPST. 

S. Wongkoon is with School of Science, Walailak University, 222 
Thaiburi, Thasala District, Nakhon Si Thammarat 80161, Thailand (phone: 
+66 75 672 048; Fax: +66 75 672 038; e-mail: swongkoon@gmail.com). 

M. Pollar is with School of Science, Walailak University, 222 Thaiburi, 
Thasala District, Nakhon Si Thammarat 80161, Thailand (phone: +66 75 672 
075; Fax: +66 75 672 038; e-mail: m_pollar@hotmail.com). 

M. Jaroensutasinee is with School of Science, Walailak University, 222 
Thaiburi, Thasala District, Nakhon Si Thammarat 80161, Thailand (phone: 
+66 75 672 005; Fax: +66 75 672 004; e-mail: jmullica@gmail.com). 

K. Jaroensutasinee is with School of Science, Walailak University, 222 
Thaiburi, Thasala District, Nakhon Si Thammarat 80161, Thailand (phone: 
+66 75 672 005; Fax: +66 75 672 004; e-mail: krisanadej@gmail.com). 

several outbreaks reporting regularly in Thailand. The highest 
number of cases was reported in 1987 when the incidence rate 
was as high as 325 cases per 100,000 population based on the 
number of cases reported. The latest epidemic was in 1998 
when the incidence rate was as high as 211 cases per 100,000 
populations. This was the second highest incidence rate in the 
40 year history of DHF outbreaks [9]. 

The number of DHF incidence in Thailand from January-
September 2007 was 47,454 cases (75.53 cases per 100,000 
populations, Fatality rate was 0.13). In Northern Thailand, the 
number of DHF incidence was 6,713 cases (56.46 cases per 
100,000 populations, Fatality rate was 0.10) [10]. In June 
2007, the number of DHF incidence in Chiang Rai province, 
Northern Thailand was highest in Thailand (464 cases) [10]. 

Time series analysis has been used extensively in the 
assessment of the health sciences [11]-[13]. In health science 
research, there is often an obvious time lag between response 
and explanatory variables [14]. Some studies approach this by 
examining models with simultaneous multiple lags of the 
explanatory variables [15]. However, serial correlation 
between these variables may produce unstable estimates [14]. 

Forecasting DHF incidence in Northern Thailand by using 
time series models would provide useful information. The 
main characteristic of the time series modelling is that time 
series analysis only models the relationship between the 
observed DHF incidence at time t (yt) from the past 
observations (y1, y2, …, yt-1), without using any other variables 
[16]. This study aimed at developing time series models to 
forecast the monthly DHF incidence in Northern Thailand, 
based on reported incidence available from 2003-2006 and 
then validated the models using the data collected between 
January-September 2007. This forecasting offers the potential 
for improved contingency planning of public health 
intervention in Northern Thailand. 

II. MATERIALS AND METHODS 

A. Study Site 
Northern Thailand covers an area of 170,000 km2 and is 

located at latitude 16-21 °N and longitude 97-101 °E. This 
area is mostly high mountainous and covered with forest with 
several flat river basins, bordering on the territories of Laos 
and Myanmar. The region divided into 17 provinces with a 
local population of 11,842,299 and a density of 69.7 
people/km2 [17]. The climate of Northern Thailand is 
dominated by two tropical monsoons: southwest and northeast 
monsoon. Southwest monsoon starts in May whereas northeast 
monsoon begins in November. As a result of these two 
monsoons, the seasonal weather for Northern Thailand 
consists of three seasons: summer season (February-May), 
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rainy season (May-October) and winter season (October-
February) [18]. 

B. Data Collection 
The monthly DHF incidence in Northern Thailand from 

January 2003-September 2007 was provided by the 
Department of Medical Science, Ministry of Public Health. 

C. Statistical Analysis 
For modelling, the monthly DHF incidence in Northern 

Thailand was divided into two parts: (1) DHF data observed 
during January 2003-December 2006 were used for 
developing the models, and (2) DHF data during January-
September 2007 were used for validating the time series 
models. The original time series of monthly DHF incidence in 
Northern Thailand at time t (yt) was (y1, y2, …, yt-1) (Fig. 2). 
The monthly DHF incidences were transformed to become 
stationary input series with respect to yearly periodicity by 
seasonally differencing before being modelled (Fig. 3). 

Seven main parameters were selected when fitting the 
SARIMA (p,d,q)(P,D,Q)s model: the order of autoregression 
(p) and seasonal autoregression (P), the order of integration 
(d), seasonal intergration (D), the order of moving average (q), 
seasonal moving average (Q), and the length of seasonal 
period (s). All analyses were performed using the 
Mathematica software with Time Series application. 

There were five steps to perform in order to obtain the 
coefficients in Table I [19]: 

(a) Series Stationarity. ARMA modelling was used 
correctly if the time series was Wide Sense Stationary (WSS). 
Exponential decreasing of autocorrelation function across lags 
was a strong indication of time series stationarity [19]. 
Therefore, the first step was to transform the time series data 
by seasonal differencing in order to achieve time series 
stationarity. 

(b) Identification. We estimated the order of AR and MA 
using autocorrelation (ACF) and partial autocorrelation 
functions (PACF). 

(c) Optimisation. The model coefficients were calculated 
using a training group by means of the autocorrelation 
computed in the previous step. 

(d) Selection. The most suitable models were chosen based 
on their adequate predictions. In order to evaluate models, data 
were split into two groups: training and validation. The 
training group was used to build the time series model, and the 
validation group was used to evaluate the time series model. 
Akaike Information Criterion (AIC) based on information 
theory was used to achieve a trade-off between an adequate 
prediction and a few number of parameters [20]. 

(e) Residues. Autocorrelation and the mean absolute percent 
error (MAPE) of the residues were calculated to test whether 
they were statistically relevant (1). 

 

                               (1) 
 
 
 

 
Fig. 1 Map of Northern Thailand 

 

 
Fig. 2 The number of DHF incidences in Northern Thailand from 

January 2003-September 2007 
 

 
 

Fig. 3 Seasonally differencing 2nd order with 12 months of DHF 
incidence in Northern Thailand from January 2003-December 2006 

 

III. RESULTS AND DISCUSSION 
ACF and PACF of DHF time series were exponentially 

tailing off (Fig. 4, 5). These results indicate the 2nd order of 
differenced time series model. 
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Fig. 4 ACF of DHF incidence in Northern Thailand between January 

2003-December 2006 (--- represented 95% upper and lower 
confidence intervals) 

 

 
Fig. 5 PACF of DHF incidence in Northern Thailand between 

January 2003-December 2006 (--- represented 95% upper and lower 
confidence intervals) 

 
There were six suitable time series models for forecasting 

the number of DHF incidence in Northern Thailand (Table I). 
We selected time series models based on the lowest AIC and 
MAPE values (Table I). SMA(1) model had the lowest AIC 
and SARIMA(2,0,1)(0,2,0)12 model had lowest MAPE. The 
ACF of residuals at different lag times in SMA(1) model was 
differed from zero (Fig. 6a). ACF of residuals at different lag 
times in SARIMA(2,0,1)(0,2,0)12 model was not differed from 
zero (Portmanteau statistic Q20 = 8.98644,  = 27.5871, 
P>0.05). The graphic analysis of residuals showed that the 
residuals in the model appeared to fluctuate randomly around 
zero with no obvious trend in variation as the predicted 
incidence values increased (Fig. 6b). This indicates that the 
most suitable model for predicting DHF incidence in Northern 
Thailand was the SARIMA(2,0,1)(0,2,0)12 model: 

(1-B)(1-B12)Yt = 0.18 + (1-0.06B)(1-0.61B12)Zt   (2) 
 

The observed and predicted DHF cases from January-
September 2007 matched reasonably well. The predicted DHF 
cases for the year 2007 increased and reached a maximum 
predicted case in July 2007 (Fig. 7). 
 

TABLE I 
MAPE AND AIC OF TIME SERIES MODELS 

Models MAPE AIC 
SMA(1) 9.68048 12.2222 
SARIMA(1,0,1)(0,2,0)12 9.51984 12.2546 
SMA(2) 9.58155 12.2937 
SARIMA(2,0,1)(0,2,0)12 8.91713 12.2931 
SARIMA(1,0,2)(0,2,0)12 9.45025 12.3351 
SARIMA(2,0,2)(0,2,0)12 9.50031 12.3746 
 

 
Fig. 6 (a) The correlation function of residuals from SMA(1) model (-

-- represented 95% upper and lower confidence intervals) 
 

 
Fig. 6 (b) The correlation function of residuals from 

SARIMA(2,0,1)(0,2,0)12 model (--- represented 95% upper and lower 
confidence intervals) 

 

 
Fig. 7 The number of DHF incidences in Northern Thailand from 

January 2003-September 2007. ─ represented actual data, --- 
represented predicted data 
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The results of this study indicate that SARIMA model 
allows for more complex description of the seasonality and 
autocorrelation structure of the series and appears to be 
suitable in predicting the number of DHF incidences in 
Northern Thailand. The SARIMA model fits the observed 
DHF incidences well. The residuals did not deviate 
significantly from a zero mean white noise process. 

There has been a remarkable advance in modelling 
approaches on public health and epidemiology [21]-[23]. The 
development of mathematical models has been very useful in 
the control and prevention of infectious diseases. Some 
models have been developed to predict the likelihood of 
vector-disease epidemic using weather and environmental data 
[24]-[26]. It is crucial to use adequate research methodology 
in the assessment of possible impacts of environmental 
variability on disease transmission. Recently, increasing 
attention has focused on the use of the Box-Jenkins modelling 
strategy to construct (SARIMA) models for vector-borne 
disease [27]-[29]. 

The SARIMA model approach has several advantages over 
others such as moving average, exponential smoothing, neural 
network and fuzzy logic, in particular, its forecasting 
capability and its richer information on time-related changes 
[30], [31]. The steps of model identification, parameter 
estimation, and diagnostic checking are performed as 
recommended [30], [32]. 

SARIMA modelling is useful for interpreting and applying 
surveillance data in disease control and prevention [27]-[29], 
[33]. However, one of the most important for the SARIMA 
modelling approach is the necessity of large amount of data 
(i.e., a minimum of 50 observations) to build reasonable 
SARIMA model [34]. In this study we used 48 observations to 
develop the model. If more data are available, this SARIMA 
model can be improved. 
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