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Abstract—Feature and model selection are in the center of 

attention of many researches because of their impact on classifiers’ 
performance. Both selections are usually performed separately but 
recent developments suggest using a combined GA-SVM approach to 
perform them simultaneously. This approach improves the 
performance of the classifier identifying the best subset of variables 
and the optimal parameters’ values. Although GA-SVM is an 
effective method it is computationally expensive, thus a rough 
method can be considered. The paper investigates a joined approach 
of Genetic Algorithm and kernel matrix criteria to perform 
simultaneously feature and model selection for SVM classification 
problem. The purpose of this research is to improve the classification 
performance of SVM through an efficient approach, the Kernel 
Matrix Genetic Algorithm method (KMGA). 

 
Keywords—Feature and model selection, Genetic Algorithms, 

Support Vector Machines, kernel matrix.  

I. INTRODUCTION 
HIS paper tackles feature and model selection problem for 
classification task through SVM. Due to the performance 

of SVM depends on the choice of parameters and variables 
[1]-[5] selecting the most predictive features and the right 
values of kernel parameters will improve classifiers 
performance. International literature suggests several 
approaches to improve the discrimination ability of 
classification methods focusing the attention on separate [6]-
[14] or joined [1], [2], [11], [15]-[20] feature and model 
selection approaches. Most of the proposed methods belong to 
one of the two problems thus for each method two important 
shortcomings arise. How to select features? How to choose 
parameters’ values? 

Evolutionary Algorithms answer these questions in an 
efficient way. In fact, to reach high accuracy classification 
methods need to estimate parameters values and to select the 
relevant variables. The main issue of these approaches is that 
they are applied separately. This means that some assumptions 
have to be introduced before employing them. Anyway, in this 
context a general method like Genetic Algorithm can be 
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helpful. Evolutionary Algorithms (and GA) took place in the 
Artificial Intelligence field and rapidly develop due to their 
simplicity and effectiveness. GAs are based on the principle of 
creatures’ evolution: different operators reproduce the 
biological functions that allow individuals to evolve 
accordingly to a specific criterion (i.e. a fitness function). A 
whole population evolves, the best individuals that survive the 
“natural” selection will contribute to the development of the 
next generation until an optimal solution is reached or 
stopping rules end the search. The idea of Genetic Algorithm 
applied to Machine Learning problems to solve feature and 
model selection for SVM classification task is recent [1], [21]-
[24]. 

In this paper an efficient approximated method (Kernel 
matrix Genetic Algorithm) is proposed to perform feature and 
model selection. Three kernel matrix-based criteria are 
analyzed to discover whether they can lead the evolutionary 
process to find the best subset of features and the best kernel’s 
parameters for SVM classification problem. 

The paper is organized as follows. Section II gives a brief 
introduction to Feature Selection and Model Selection 
problems for SVM providing some remarks about their 
combined approach. Section III describes the Genetic 
Algorithm and the SVM methods explaining the details of the 
GA-SVM joined approach. Section IV provides the detail of 
kernel matrix approach and section V the experiments 
conducted on four datasets.  

II. FEATURE AND MODEL SELECTION FOR SVM 

A. Feature Selection 
In machine learning problems feature selection is used to 

identify predictive variables and to reduce the dimension of 
the dataset removing irrelevant or highly correlated ones. This 
process has strong impacts on classification task because it 
allows to improve classifiers’ predictive and generalization 
ability and to reduce the computational time [2], [8], [10]-[12]. 

Many researchers [1], [2], [8], [10]-[12], [17], [24] 
investigate the factors that influence feature selection process 
through several approaches. Weston et al. [8] propose an 
optimization approach based on gradient descent. Moreover 
they underline the implications of irrelevant features in 
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classification process proving the negative effects of these 
variables on SVM classification performance. Reunanen [12] 
explains the limits of traditional feature selection methods 
investigating two approaches: Sequential Forward Selection 
(SFS) and Sequential Forward Floating Selection (SFFS). 
Comparing state-of-art methods Guyon and Elisseeff [11] 
discuss the problem of feature selection highlighting 
drawbacks and advantages. Rakotomamonjy [2] extends the 
SVM-RFE method proposed by [10] analyzing three SVM 
bounds. Cheng et al. [17] focus their research on feature 
selection with nonlinear relation between variables proposing 
the Relevance Feature Vector Machine (RFVM). Further 
researches suggest the use of evolutionary approaches. 
Fröhlich et al. [1] describe a feature selection method based on 
GA and SVM generalization error bounds. Variables are 
evaluated estimating an expected generalization error of the 
SVM. The main advantage of this procedure is its speed. In 
fact, the computation of bounds is faster than training n times 
a SVM. Tan et al. [24] suggest a hybrid method between GA 
and SVM with an improvement based on correlation filter 
approach to overcome the limitations of unfeasibility for large 
size problems and high risk of local optima falling of 
established methods (hill climbing and best-first search). 

Despite the results of these techniques an important remark 
has to be made: no model selection is performed. The value of 
parameters is defined a priori even if the set of variables 
changes. 

B. Model Selection 
The performance of SVM strictly depends on the right 

choice of the parameters: an adequate choice assures good 
results in terms of accuracy and generalization ability while a 
non-correct choice may have a harmful impact impairing the 
prediction. If the classification problem is simple (i.e. the 
instances are linearly separable) only the parameter that 
controls the generalization ability of the model has to be 
chosen. But if the complexity of the problem increases 
nonlinear classification is required so the number of 
parameters arises1 and the identification of the parameters 
values becomes hard [14]. 

Parameters tuning is a non trivial process, it has no 
theoretical foundations thus different methods were proposed 
to fill this gap. They can be grouped into five areas: 
Exhaustive Research, Random Search, Grid Search, 
Optimization-based methods and GA-based methods. 

The most known – but not feasible – approach is the 
Exhaustive Research which provides an accurate investigation 
of the parameters values. This method is extremely simple and 
effective but intractable for application purposes [9]. 

The Random Search is as simple and effective as 
Exhaustive search. Starting from the variables search space 
some points (i.e. solutions) are randomly picked and 
evaluated, the best one is chosen and the predictive model is 
then applied. This procedure must be repeated many times to 
ensure a good investigation of the parameters’ values. The 
random choice shows two main drawbacks represented by the 
random process extraction and the number of repetitions. 
 

1 The number of parameters depends on the type of kernel. 

Moreover, unless specific criteria are employed to select 
potential solutions, the control on the process is very 
shrunken. 

Another simple method to tune the parameters is the Grid 
Search. Parameters values are scanned in a pre-defined space: 
the research area is split in small blocks, the intersections of 
the grid are evaluated and the “global optimum” is located. 
The finer is the grid the greater will be the quality of the 
search. The main trouble is represented by the trade-off 
between efficiency and effectiveness. An application to a 
small space guarantees low consumption of time but hinder 
the research of the optimal solution. On the contrary, though a 
finer or a wider investigation is preferred the computational 
time increases a lot. Hence Grid Search is suitable for 
investigating very few parameters [9], [13]. 

Optimization based methods search for the best parameters’ 
values solving an optimization problem. During the last 
decade many Optimization-based methods were suggested [6]-
[7], [9], [14]. These techniques are fast and efficient providing 
good parameters’ values that increase the predictive ability of 
classifiers. Furthermore, some of them take advantages by the 
employed classification algorithm, like the approach described 
by Chapelle et al. [9]. However these methods introduce 
restrictive assumptions like differentiability of kernel 
functions or functions’ approximation (see [13] and [14]). 
Friedrichs and Igel [13] prove that Optimization methods 
based on the Gradient Descent suffer from three main 
problems related to kernel functions, score function and 
approximation induced by restrictive assumptions. The first is 
the differentiability of the kernel function and the second the 
differentiability of the score function respect to regularization 
and kernel parameters. Moreover the researchers assert that 
“Iterative gradient-based algorithms, which usually rely on 
smoothed approximations of a score function, do not ensure 
that the search direction points exactly to an optimum of the 
original, often discontinuous generalization performance 
measure”. Fröhlich and Zell [14] analyzing the research of 
Chapelle and Vapnik [7] and Chapelle et al. [9] provide 
similar remarks of Friedrichs and Igel [13] about the use of 
radius-margin and span bounds. 

As discussed before for feature selection impacts on SVM 
classification performance, similar remarks can be gleaned for 
model selection. Whether a linear classification problem is 
considered or a nonlinear model is required, the choice of the 
parameters improves or reduces the ability of the classifier to 
discriminate instances. 

C. Feature and Model Selection 
Many papers focused their attention on the role of feature 

and model selection [1], [2], [11], [15]-[20]. But these 
methods are, in general, “single target” approaches in which 
feature selection or model selection are performed separately. 
In other words they do not involve both procedures at the 
same time. Filters2 feature reduction do not consider 
classifier’s methods. In fact, they use general criteria to 
estimate the predictive ability, the relevance and the 

 
2 Filter, wrapper and embedded approaches are considered as in [25] and 

[11]. 
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redundancy of variables. On the contrary, wrapper and 
embedded approaches use SVM but with fixed parameters. 
This hypothesis is strong [1]-[5] because parameters’ values 
are optimal for a problem with fixed variables and instances. 
Changing just a small part of the problem may compromise 
the optimality of the solution (i.e. parameters’ values and 
selected variables may be different). Single target model 
selection methods have an opposite assumption, since they use 
a fixed set of variables and then look for the best parameters’ 
values. 

Besides the studies that investigate feature and model 
selection separately a new heuristic based research  area faced 
these problems. In this context Evolutionary Algorithms can 
settle at the same time the problem, of selecting relevant 
features and choosing the best parameters values [21]-[23]. 

III. GA-SVM METHOD 
SVM shows good performance but to reach better results 

adequate values of the parameters have to be chosen [1], [3]-
[5] and relevant variables have to be selected [2], [8], [11]-
[12], [15]. The GA and SVM process answers the problem of 
performing together feature and model selection. In fact, SVM 
can be employed in the “GA cycle” using its results in the 
fitness function computation. The next paragraphs describe the 
GA process, the SVM methods and the embedded method 
(GA-SVM). 

A. Genetic Algorithm 
Genetic Algorithm is a heuristic search method based on 

principles of natural selection [26], [27]. The GA approach 
makes a population evolve using an “indicator” that leads the 
evolution. Three operators control the evolutionary process 
making the chromosomes reproduce and mutate. The selection 
operator extracts the best chromosomes from the population; 
the crossover operator manages the exchange of genes 
between chromosomes; the mutation operator modifies the 
genes applying small variations to their value. This procedure 
(Fig. 1) emulates the natural selection and forces the 
individuals (chromosomes) to converge toward an optimal 
solution. 

The GA evolves assessing individuals according to a 
specific function called fitness function. During the 
evolutionary process the fitness function is computed and the 
best chromosomes are at first selected and then put in the 
matting pool for reproduction. The next generation is created 
combining the genes of the past one and some random 
changes are introduced to make the worst individuals grow 
correctly. 

B. Support Vector Machine 
The SVM approach is a learning machine, originally 

developed by Vapnik [28], [29], based on the Structural Risk 
Minimization principle. In this paragraph the classification 
problem is described in order to introduce the recent 
development of GA and SVM approach. 

 

 
Fig. 1 Genetic Algorithm cycle 

 
Given a dataset of ݉ points ሺݔ௜, ,௜ሻݕ ݅ א ܯ ൌ ሼ1,2, … , ݉ሽ in 

Թ௡ାଵ where ݔ௜ is an ݊ -dimensional vector and ݕ௜ is a scalar 
that represents the class of the ݅-th instance where ݕ௜ א
ሼെ1, ൅1ሽ. The SVM problem for linear classification can be 
formulated as follows 
 

min
ఈ

1
2 ෍ ෍ ௝ݔ௜ݔ௝ߙ௜ߙ௝ݕ௜ݕ

௠

௜ୀଵ

௠

௜ୀଵ

െ ෍ ௜ߙ

௠

௜ୀଵ

.ݏ .ݐ ෍ ௜ߙ௜ݕ

௠

௜ୀଵ

ൌ 0

0 ൑ ௜ߙ ൑ ܥ ݅ ൌ 1, … , ݉

 (1) 

 
where ߙ௜ are the Lagrange multipliers. 

The linear problem (1) can be extended to nonlinear case 
using kernel functions. A kernel function (2) maps data from 
an input space to a high dimensional feature space in which a 
linear separation can be performed [30]. 
 

Φ ׷ Թ௡ ՜ Թ௞ (2) 
 

Kernel functions do not physically map data, they just 
perform an implicit mapping – kernel trick – of the variables 
in the feature space through inner product. Thus changing 
from a linear classifier (1) to a non linear one (4) is done 
replacing the dot product with a kernel function. This 
operation does not impair the advantages of the standard SVM 
and allows maintaining its properties. 
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where  ߶ሺݔ௜ሻ is defined Թ௡ ՜ Թ௞, ݇ ب ݊. 
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 (4) 

 
Where the kernel matrix, also known as Gram matrix, is a 
positive semi-definite matrix which respects the Mercer’s 
condition3. It is defined as 

ܭ ൌ ൛ۃ߶ሺݔ௜ሻ, ߶൫ݔ௝൯ۄൟ
௜ୀଵ,…,௠; ௝ୀଵ,…,௠

 (5) 
 

C. GA-SVM Details 
The GA approach performs feature and model selection 

making a population evolve through a leading SVM 
performance indicator, usually the accuracy or the error of the 
classification process. A set of solutions (i.e. a population) 
grows according to that fitness function which summarizes 
chromosome’s skill in a single value. Every generation the 
best chromosomes that survive the artificial selection are 
selected for reproduction4. Through their genes they will 
contribute to next generations’ solutions until the maximum 
number of generations is reached or other stopping criteria end 
the search. 

The GA-SVM process can be  – ideally – divided in two 
phases: the population evolution performed by the GA and the 
individuals’ evaluation performed by the SVM. Referring to 
Fig. 1 GA works like a carrier that brings the solutions to the 
SVM which – second phase – assesses them. The performance 
reached by the classifier defines the fitness value of each 
individual that settles the population.  

The population involved in the evolutionary process can be 
described by its internal frame and by its size. The structure of 
the chromosome (i.e. a single solution), depicted in Fig. 2, is 
composed of two parts: the first part represents the variables, 
while the second part the parameters. Each gene represents a 
single feature (gray squares) and single parameters (light blue 
squares). The number of parameters (݈) hinges on the chosen 
kernel functions.  The population size is influenced by the 
initialization policy and the nature of the investigated problem. 
In this paper individuals’ genes are randomly generated 
covering the entire search space: for the variables’ part a 
subset of features is selected while for the parameters’ part ݈ 
values are extracted from pre-defined parameters’ ranges. The 
nature of the problem plays a key role in dimension 
estimation. In fact, to guarantee a good search, the number of 
individuals must be adequate to the investigation space. In 
simple terms, more variables and more parameters entail a 
larger search space hence a larger population. Nevertheless 
further factors influence the population size like the amount of 
time at disposal and how fine the research is. 
 

3 See [28]. 
4 A high fitness value facilitates – but doesn’t assure – that a chromosome 

survives the (artificial) selection. 

 

 
Fig. 2 Chromosome’s structure 

 
In the common GA-SVM approach the fitness value is 

represented by the accuracy or the error of the SVM. Even if 
different fitness functions based on SVM performance 
indicators were suggested the most used criterion remains the 
accuracy. To compute the fitness function two main 
techniques are employed: the ݇-folds Cross Validation and the 
Leave One Out Cross Validation. But, because of the required 
time [31], the first one is usually preferred. 

To reproduce the natural evolution tournament selection, ݌-
points crossover and mutation operators were applied. The 
tournament selection allows increasing the pressure on the 
population forcing it to converge. Crossover and mutation 
operators are employed with a good probability of 
reproduction and low mutation occurrences. 

IV. KERNEL MATRIX GENETIC ALGORITHM 
The common GA evolves according to the accuracy of the 

trained SVM thus to complete the evolution many SVM must 
be trained. Even if this technique ensures the best results the 
whole process is hard in terms of complexity and its 
application computational expensive thus speed and employed 
resources are very important. In order to deal with the high 
computational cost of GA-SVM method a new solution is 
proposed, the Kernel Matrix Genetic Algorithm. 

Since SVM method uses the kernel matrix (5) to define the 
optimization problem (4), it is interesting to directly 
investigate the goodness of the kernel. In this context kernel 
matrix-based criteria [32]-[34] are employed to evaluate the 
Gram matrix in order to estimate the performance of the 
classifier. Compared to GA-SVM approach they estimate 
SVM accuracy without solving an optimization problem thus 
the evolutionary time can be reduced. Cristianini et al. [32] 
were among the first researchers to propose a kernel matrix 
evaluation criterion for SVM. They suggest the Kernel Target 
Alignment (KTA) criterion that assesses the goodness of a 
kernel computing the alignment between the kernel matrix and 
the target matrix. Nguyen and Ho [33] widen this idea and 
suggest a less restrictive criterion the FSM. Moreover, Jia and 
Liao [34] advise to use a modification of FSM, the FCMC 
criterion, that catches the inner distance of a class and the 
inner distance between two classes. These criteria, if 
compared to GA-SVM – that requires a complete 
classification process –, are faster to be computed so a 
complete evolution can be done in a shorter time. This will 
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positively impact on the GA process, which requires a great 
number of assessments. 

A. Kernel Matrix Criteria 
Referring to KMGA problem three kernel based criteria are 

investigated. Some notations have to be introduced before 
explaining the criteria. Without loss of generality, consider a 
binary classification problem and a dataset as defined in the 
Support Vector Machine paragraph. The training set can be 
sorted arranging +1 class at first rows5. The number of 
elements that belong to +1 class is ݊ା (from ݕଵ to ݕ௠ା) 
whereas those one that belong to –1 class are ݊ି (from ݕ௠ାଵ 
to ݕ௠)6. Therefore the vector of classes becomes as follows 
 

ݕ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

ଵݕ
ڭ

௠ାݕ
௠ାଵݕ

ڭ
௠ݕ ے
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ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
൅1

ڭ
൅1
െ1

ڭ
െ1ے

ۑ
ۑ
ۑ
ۑ
ې

 (6) 

 

B. Kernel Target Alignment 
Cristianini et al. [32] introduce the Kernel Target 

Alignment (KTA) in order to estimate the performance of a 
SVM. This criterion esteems the goodness of a kernel 
comparing the kernel matrix with the target matrix. The higher 
the resemblance between the kernel matrix and the target 
matrix is the better the classification performance of a SVM 
classifier will be. The similarity measure is computed through 
the Frobenius inner product defined as: 

,ܭۃ ிۄܶ ൌ ෍ ෍ ݇௜௝ݐ௜௝

௠

௝ୀଵ

௠

௜ୀଵ

 (7) 

 
Where ܭ is the kernel matrix and ܶ is the target matrix 
defined as: 
 

ܶ ൌ ݕ ·  (8) ′ݕ
 

KTA is defined as the normalized Frobenius inner product: 
 

,ܭሺܣ ሻݕ ൌ
,ܭۃ ிۄܶ

ඥܭۃ, ,ܶۃிۄܭ ிۄܶ
 (9) 

 
and it range7 is ሾ0,1ሿ. A high value indicates a good kernel 
matrix so high expected accuracy of the classifier, while a low 
value reveals low expected accuracy thus a bad kernel. 

In order to compare KTA with the other criteria an 
estimation of the classifier’s error is provided: 
 

௘௥௥ܣܶܭ ൌ 1 െ ,ܭሺܣ  ሻ (10)ݕ
 

 
5 This procedure is required by FSM and FCMC not by KTA. 
6 The number of the elements of both classes is ݊ା ൅ ݊ି ൌ ݊. 
7 Nguyen and Ho [33]  referring to Crisitanini et al. [32] advise that KTA 

range is െ1 ൑ ,ܭሺܣ ሻݕ ൑ 1. 

C. Feature Space-based Kernel Matrix Evaluation 
Measure 

Nguyen and Ho [33] suggest using a surrogate of KTA that 
overcomes its drawbacks. They agree on the simplicity and 
efficiency of KTA but advise about the conditions of its 
applicability. Nguyen and Ho argue that KTA is only a 
sufficient condition but not a necessary one therefore a kernel 
matrix can be good even if  KTA assumes low values. To 
overcome this limitation and to provide a more general 
criterion they relax some hypotheses introducing a new 
indicator called Feature Space-based kernel matrix evaluation 
Measure (FSM). In addition, they build the FSM to make it 
invariant to linear operators in the feature space and to 
preserve the proprieties of efficiency and error bound. 

FSM is based on the within class variance and the relative 
positions of class centers hence, in order to compute the FSM, 
three elements are required: the kernel function ሺ߶ሻ and the 
centers of positive and negative class instances (11). 
 

߶ା ൌ
∑ ߶ሺݔ௜ሻ௡శ

௜ୀଵ
݊ା

߶ି ൌ
∑ ߶ሺݔ௜ሻ௡

௜ୀ௡శାଵ

݊ି

 (11) 

 
Nguyen and Ho define the FSM as the ratio of the total 

within class variance in the direction between the class centers 
to the distance between the class centers. 
 

,ܭሺܯܵܨ ሻݕ ൌ
ݎܽݒ

ԡ߶ିെ߶ାԡ (12) 

 
Where ܭ  is the kernel matrix, ݕ is the vector of classes and 
 is ݎܽݒ

ݎܽݒ ൌ ඨ
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݊ା െ 1

൅ ඨ
∑ ௜ሻݔሺ߶ۃ െ ߶ି, ଶ௡ۄ݁

௜ୀ௡శାଵ

݊ି െ 1
 

(13) 

 
Where ݁ is the unit vector in the direction between class 
centers, defined as 
 

݁ ൌ
߶ିെ߶ା

ԡ߶ିെ߶ାԡ (14) 

 
The estimation of the SVM performance is given by the 

 :௘௥௥ܯܵܨ
 

௘௥௥ܯܵܨ ൌ
,ܭሺܯܵܨ ሻଶݕ

1 ൅ ,ܭሺܯܵܨ  ሻଶ (15)ݕ

 
 ௘௥௥ assumes values between 0 and 1 where low valuesܯܵܨ
entail a low expected error rate.  
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D. Feature Distance based Combinatorial Kernel Matrix 
Evaluation Criterion 

Jia and Liao [34], inspired by the research activities of 
Nguyen and Ho [33] and Kandola et al. [35], extend the 
remarks made by Cristianini et al. [32] about the KTA 
introducing a new measure for combinatorial kernel matrix: 
the Feature distance based Combinatorial kernel Matrix 
evaluation Criterion (FCMC).  

To explain FCMC criterion some introductory elements 
have to be defined. The (linear) combination of kernel, defined 
in (16), is composed of ݄ kernels (ܭ) of weights (݌). 

 

ሻ݌ሺܭ ൌ ෍ ௛݌

௞

௛ୀଵ

௛ܭ ൌ ൛ۃ߶௣ሺݔ௜ሻ, ߶௣൫ݔ௝൯ۄൟ
௜,௝ୀଵ,…,௠

 (16) 

 
Where ݌௛ ൒ 0. 

The function ߶௣ projects the subset of the training 
algorithm ሼݔ௜ሽ௬ୀାଵ and ሼݔ௜ሽ௬ୀିଵ into ߶௣

ା and ߶௣
ି respectively. 

Where ߶௣
ା e ߶௣

ି  represent the centers of the classes. 
 

߶௣
ା ൌ

1
݉ା

෍ ߶௣ሺݔ௜ሻ
௡శ

௜ୀଵ

߶௣
ି ൌ

1
݉ି

෍ ߶௣ሺݔ௜ሻ
௡

௜ୀ௡శାଵ

 (17) 

 
The distance between the two classes is 
 

݀௢௨௧ ൌ ԡߟԡଶ (18) 
 
Where ߟ ൌ ߶௣

ା ൅ ߶௣
ି . 

The sum of the distances between features and their centers 
within a class ሺ݀௜௡

ା  and ݀௜௡
ି ሻ are 
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௡
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Now the FCMC measure can be defined 
 

,ሺܺܥܯܥܨ ,ሻ݌ሺܭ ܶሻ ൌ
݀௜௡

ା ൅ ݀௜௡
ି

݀௢௨௧
 (20) 

 
Where ܺ is the data matrix, ܭሺ݌ሻ is the combination of 
kernels and ܶ is the target matrix as defined in (8).  

Jia and Liao compare their measure with KTA and prove 
that for small values of FCMC the SVM reaches a low error 
rate. FCMC criterion assumes values in a positive range. Jia 
and Liao do not provide an indicator for the error, so in order 
to compare it to ܣܶܭ௘௥௥ and ܯܵܨ௘௥௥ the ܥܯܥܨ௘௥௥ has to be 
introduced.  The formulation is the same of ܯܵܨ௘௥௥: 

 

௘௥௥ܥܯܥܨ ൌ
,ሺܺܥܯܥܨ ,ሻ݌ሺܭ ܶሻଶ

1 ൅ ,ሺܺܥܯܥܨ ,ሻ݌ሺܭ ܶሻଶ (21) 

  

V. EXPERIMENTS 
The target of the experiments is to estimate the goodness of 

kernel matrix-based criteria in selecting features and kernel 
parameters’ values. To do this the KMGA is applied to four 
kernels (linear, polynomial, RBF and sigmoid) on four binary 
datasets (Australian credit approval, Diabete Indian, Heart and 
Ionosphere). 

 
Linear ׷ ,௜ݔ൫ܭ ௝൯ݔ ൌ ௜ݔ ·  ௝ (22)ݔ

  

RBF ׷ ,௜ݔ൫ܭ ௝൯ݔ ൌ exp ൭െ
ฮx୧ െ x୨ฮ

ଶ

2σଶ ൱ (23) 

  

Polynomial ׷ ,௜ݔ൫ܭ ௝൯ݔ ൌ ቀσ൫ݔ௜ · ௝൯ቁݔ
ୢ
 (24) 

  
Sigmoid ׷ ,௜ݔ൫ܭ ௝൯ݔ ൌ ൫σ൫ݔ௜ · ௝൯ݔ ൅ θ൯ (25) 

 
KMGA consists of three kernel matrix-based criteria: 

FCMC, FSM and KTA. These methods are compared against 
the GA-SVM using the classification error on training and test 
set and the number of retained features as performance 
indicators. Kernel matrix criteria provide an estimation of the 
classifier’s error and can be employed as chromosomes’ 
fitness value during the evolutionary process. They speed up 
the GA evolution but introduce a restriction. They do not 
consider the parameter that controls the complexity of the 
SVM (the so called C parameter). Thus, in order to evaluate 
the information provided by these criteria the value of the C 
parameter will be fixed at 1. 

In the experiments’ description paragraph the details of the 
processes are provided while the results of the KMGA are 
shown in the last three paragraphs. The terms “kernel 
performance” will be referred to  SVM performance obtained 
using a specific kernel and criterion. 

A. Description 
Experiments were conducted using a simple GA method 

written in MATLAB code and libsvm [36] to perform SVM 
classification method. The analyzed datasets have been taken 
from the UCI machine learning Repository [37]. All the 
datasets were normalized, shuffled and split in training set 
(70%) and test set (30%), except the Ionosphere dataset for 
which the original partitions were used. Categorical variables 
were converted in binary ones. Only binary classification 
problems were considered and no cost matrices were 
employed. The starting population was randomly chosen: each 
individual was composed of a subset of the whole variables 
and parameters’ values were uniformly drawn from a pre-
defined range. The population’s size depended on the 
dimension of the dataset and on the kernel used. The number 
of generations was chosen according to the size of the problem 
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and to the parameters’ search space. The crossover and 
mutation operator probability were set to 0.8 and to 0.04 
respectively. The selection operation was carried out by 
tournament selection with 40% of chromosomes involved in 
the matches. The elitist strategy was applied, the percentage of 
elite chromosomes was 4%. The evolution of the GA is 
performed using the classification error for the GA-SVM and 
the estimation of the error computed, as described in (10), (15) 
and (21), for KMGA approaches. The stopping criterion of the 
GA was the number of generations. 

The Australian dataset shows 5% of missing values, 
replaced by the mode and the mean for categorical and 
numerical attributes respectively. The Diabete Indian and 
Heart-Statlog datasets were used without employing the cost 
matrix. 

The experiments were conducted ten times each and, in 
order to reduce the computational time, the GA-SVM was 
applied using 10-folds cross validation instead of Leave-One-
Out Cross Validation. 

 
Fig. 3 Mean cross validation errors and estimated error on training set 

B. Experiments’ Results on Training Set 
Fig. 3 shows the results of the experiments on the training 

set comparing the CV error computed by the GA-SVM to the 
estimated errors of the KMGA. The kernel matrix criteria 
estimate correctly the CV error two times: for Australian and 
Ionosphere datasets. In the second case all the criteria follow 
the CV error, except for the KTA that shows a higher value for 
the polynomial kernel. 

 
Fig. 4 Mean classification errors on test set 

 
It is interesting to analyze two extremes in the kernel 

matrix-based criteria behavior. Considering the Australian 
dataset the lowest error is obtained by the RBF kernel even if 
the other three kernels show similar performances. KTA 
assumes steady values but shows the minimum for the RBF 
kernel; FCMC and FSM follow the CV error but sometimes 
they overestimate it. In the Diabete Indian dataset kernel 
matrix criteria reach the same results performing well for the 
RBF kernel estimation but fail identifying the lowest CV 
error. 

Some general remarks can be made. The RBF kernel shows 
the best performance overall, the CV error and the kernel 
matrix criteria tend to estimate its performance more than 
other kernels. KTA shows less variations, it seems the more 
conservative criterion. FSM and FCMC values, if compared 
with KTA, are closer to CV error but tend to overestimate the 
SVM performance. In fact, three times out of four they show 
lower values of error. FCMC criterion follows the GA-SVM 
error better then KTA and FSM. 

C. Experiments Results on Test Set 
This paragraph provides the results on test set using the 

retained variables and the parameters’ values suggested by 
GA-SVM and KMGA methods. The term “solution” will be 
referred to the combination of selected features and 
parameters’ values. 

With the purpose of investigating the ability of KMGA to 
discover good solutions classifiers’ results on test set are 
reported in Fig. 4. The errors computed by the GA-SVM 
(circle points) are considered as benchmarks for KMGA 

Australian

Er
ro

r

lin
ea

r

po
ly rb
f

si
gm

oi
d

0.0

0.2

0.4

0.6

0.8

1.0

Diabete Indian

Er
ro

r

lin
ea

r

po
ly rb
f

si
gm

oi
d

0.0

0.2

0.4

0.6

0.8

1.0

Heart

Er
ro

r

lin
ea

r

po
ly rb
f

si
gm

oi
d

0.0

0.2

0.4

0.6

0.8

1.0

Ionosphere

Er
ro

r

lin
ea

r

po
ly rb
f

si
gm

oi
d

0.0

0.2

0.4

0.6

0.8

1.0

Error
KTAerr
FSMerr
FCMCerr

Australian

Er
ro

r

lin
ea

r

po
ly rb
f

si
gm

oi
d

0.0

0.1

0.2

0.3

0.4

0.5

Diabete Indian

Er
ro

r

lin
ea

r

po
ly rb
f

si
gm

oi
d

0.0

0.1

0.2

0.3

0.4

0.5

Heart

Er
ro

r

lin
ea

r

po
ly rb
f

si
gm

oi
d

0.0

0.1

0.2

0.3

0.4

0.5

Ionosphere

Er
ro

r

lin
ea

r

po
ly rb
f

si
gm

oi
d

0.0

0.1

0.2

0.3

0.4

0.5

Error
KTAerr
FSMerr
FCMCerr



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

662

 

 

performed through kernel matrix criteria. As it can be seen 
from Fig. 4 KMGA approaches are able to perform as well as 
GA-SVM one. A deeper analysis clarifies the results: 

• KTA provides the best estimation performance. 
Moreover, it gives the most reliable results: the error of 
the classifier computed with the solution provided by 
KTA evolution is at least small and at best better than the 
GA-SVM method. 

• FSM and FCMC provide good predictions of classifier’s 
performance, especially for linear and polynomial 
kernels. Furthermore, they show the same behavior.  

• Kernel matrix criteria were not able to find a good 
solution for the Diabete Indian dataset. This could be due 
to the number of selected features, 64% for GA-SVM 
and 35% for KMGA. 

 
TABLE I 

SUMMARY OF THE EXPERIMENTS ON AUSTRALIAN AND DIABETE INDIAN 
DATASETS. BOLD VALUES REPRESENT THE BEST SOLUTIONS FOR EACH 

KERNEL 
Error Attributes 

Data Ker Crite-
rion CV Test Tot 

# 
       % 
 retained Mean±sd Min Max

A
us

tr
al

ia
n 

L
in

ea
r 

 Error 0,128 0,174 42 56% 24±2 19 27 
 FCMC 0,093 0,184 42 69% 29±0 29 29 
 FSM 0,387 0,184 42 67% 28±0 28 28 
 KTA 0,615 0,174 42 14% 6±0 6 6 

Po
ly

 

 Error 0,092 0,181 42 40% 17±3 14 25 
 FCMC 0,078 0,181 42 73% 31±2 29 37 
 FSM 0,368 0,181 42 76% 32±2 30 36 
 KTA 0,615 0,176 42 10% 4±0 4 5 

R
bf

 

 Error 0,090 0,173 42 45% 19±3 15 23 
 FCMC 0,000 0,287 42 70% 30±3 26 36 
 FSM 0,004 0,285 42 70% 29±3 25 34 
 KTA 0,606 0,174 42 17% 7±1 6 9 

Si
gm

oi
d  Error 0,112 0,173 42 54% 23±3 19 26 

 FCMC 0,086 0,401 42 47% 20±2 17 25 
 FSM 0,380 0,378 42 51% 22±1 20 24 
 KTA 0,622 0,198 42 24% 10±2 6 13 

D
ia

be
te

 In
di

an
 

L
in

ea
r 

 Error 0,364 0,313 8 48% 4±2 2 7 
 FCMC 0,622 0,313 8 38% 3±0 3 3 
 FSM 0,719 0,313 8 38% 3±0 3 3 
 KTA 0,940 0,313 8 13% 1±0 1 1 

Po
ly

 

 Error 0,247 0,214 8 66% 5±0 5 6 
 FCMC 0,622 0,313 8 38% 3±0 3 3 
 FSM 0,719 0,313 8 38% 3±0 3 3 
 KTA 0,926 0,313 8 14% 1±0 1 2 

R
bf

 

 Error 0,339 0,260 8 91% 7±0 7 8 
 FCMC 0,374 0,313 8 41% 3±0 3 4 
 FSM 0,602 0,313 8 43% 3±1 3 4 
 KTA 0,846 0,313 8 91% 7±1 6 8 

Si
gm

oi
d  Error 0,364 0,313 8 50% 4±2 1 6 

 FCMC 0,614 0,313 8 38% 3±0 3 3 
 FSM 0,716 0,313 8 38% 3±0 3 3 
 KTA 0,926 0,313 8 14% 1±0 1 2 

 
Some additional observations can be made. The Ionosphere 

dataset shows a gap between kernel matrix criteria estimations 
and GA-SVM test error for RBF kernel. FSM and FCMC have 

some problems in estimating RBF and sigmoid kernels. 
Comparing to GA-SVM method, KTA guarantees similar 
results with very few attributes. Moreover, even if KTA is an 
approximated indicator, it performs better in the Heart dataset 
for linear and RBF kernels and in the Ionosphere dataset for 
the polynomial kernel.  

 
TABLE II 

SUMMARY OF THE EXPERIMENTS OF HEART AND IONOSPHERE DATASETS. 
BOLD VALUES REPRESENT THE BEST SOLUTIONS FOR EACH KERNEL 

  Error Attributes 

Data Ker Crite-
rion CV Test Tot 

# 
       % 
 retained Mean±sd Min Max

H
ea

rt
 (S

ta
tlo

g)
 

L
in

ea
r 

 Error 0,161 0,165 25 42% 11±2 7 15 
 FCMC 0,250 0,161 25 56% 14±0 14 14 
 FSM 0,535 0,161 25 56% 14±0 14 14 
 KTA 0,779 0,136 25 40% 10±0 10 10 

Po
ly

 

 Error 0,141 0,174 25 48% 12±3 7 15 
 FCMC 0,245 0,195 25 66% 16±3 13 24 
 FSM 0,530 0,224 25 82% 21±4 15 24 
 KTA 0,752 0,185 25 68% 17±0 17 17 

R
B

F 
 Error 0,167 0,272 25 44% 11±2 7 13 
 FCMC 0,000 0,482 25 66% 16±3 12 19 
 FSM 0,000 0,482 25 60% 15±4 6 20 
 KTA 0,723 0,240 25 32% 8±1 7 9 

Si
gm

oi
d  Error 0,163 0,201 25 50% 12±2 9 17 

 FCMC 0,256 0,482 25 58% 14±2 12 18 
 FSM 0,539 0,452 25 56% 14±2 10 17 
 KTA 0,793 0,225 25 31% 8±2 6 11 

Io
no

sp
he

re
 

L
in

ea
r 

 Error 0,180 0,098 34 54% 18±2 13 20 
 FCMC 0,198 0,097 34 42% 14±0 14 15 
 FSM 0,468 0,143 34 41% 14±0 14 14 
 KTA 0,844 0,099 34 15% 5±0 5 5 

Po
ly

 

 Error 0,069 0,059 34 46% 16±2 12 18 
 FCMC 0,068 0,084 34 47% 16±0 15 16 
 FSM 0,345 0,076 34 43% 15±1 13 16 
 KTA 0,880 0,043 34 56% 19±1 18 20 

R
B

F 

 Error 0,055 0,038 34 51% 17±3 14 21 
 FCMC 0,000 0,179 34 79% 27±5 18 33 
 FSM 0,000 0,179 34 78% 27±7 13 33 
 KTA 0,704 0,179 34 28% 10±4 4 15 

Si
gm

oi
d  Error 0,145 0,101 34 52% 18±3 13 21 

 FCMC 0,197 0,179 34 42% 14±1 14 15 
 FSM 0,446 0,179 34 41% 14±0 13 15 
 KTA 0,848 0,113 34 17% 6±1 5 7 

 

D. Experiments’ Results – Number of Retained Features 
TABLE  and TABLE  summarize the performance obtained 

by the GA-SVM and the KMGA approaches. In this paragraph 
the focus is on the number of retained features. 

The analysis of Australian dataset shows that FCMC and 
FSM have the highest number of retained feature, KTA the 
lowest and GA-SVM is placed “in the middle”. This trend is 
confirmed also for Diabete Indian and Heart while the 
Ionosphere dataset gives unclear results. Among the kernel 
matrix criteria the evolution performed by the KTA greatly 
reduces the number of features of the final solution (low 
values of percentage). Only in two cases, for Heart and 
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TABLE III 
HEART DATASET COMPUTATIONAL TIME (S). VALUES ARE EXPRESSED AS MEAN±SD AND  

PERCENTAGE OF REQUIRED TIME OVER THE GA-SVM ERROR TIME 
linear poly rbf sigmoid 

 Error 610±85 100% 1786±460 100% 1618±113 100% 3305±197 100% 
 FCMC 202±3 33% 177±3 10% 615±17 38% 642±93 19% 
 FSM 200±5 33% 182±12 10% 611±45 38% 656±21 20% 
 KTA 190±1 31% 186±5 10% 496±18 31% 560±15 17% 

 
 
Ionosphere datasets, KTA selects more attributes than other 
approaches both with polynomial kernel. Furthermore, KTA 
shows stable results (low standard deviation). On the contrary, 
FSM and FCMC show an average percentage of selected 
attributes higher than KTA and GA-SVM and less stable 
results. 

E. Experiments’ Results – Computational Time 
In order to compare, in term of requested time, the GA-

SVM and the KMGA the results on Heart dataset are 
provided. To make the comparison reliable only the maximum 
number of generations was used as stopping rule. 
 

 
Fig. 5 Heart dataset computational time 

 
Fig. 5 summarizes the time expenditure to perform a full 

evolution. The KMGA takes at worst 38% time and at best 
10% of the GA-SVM, proving the efficiency of the joined 
kernel matrix and GA approach. Three important remarks can 
be deduced from Fig. 5 and Table III: 

• the computational effort required by KMGA methods is 
similar; 

• the evolution driven by KTA is usually faster than the 
ones led out by FSM and FCMC because of the number 
of selected features; 

• KMGA shows the best performance with the polynomial 
kernel. Kernel matrix-based criteria perform the 
estimation ten times faster than through GA-SVM. 

 
 
 

VI. CONCLUSION 
This paper presents the KMGA, a joined GA and Kernel 

Matrix criteria approach to perform simultaneously feature 
and model selection to improve the classification performance 
of SVM. 

To select variables and to tune SVM and kernel parameters 
literature suggests using the GA-SVM approach. Even if it 
proves its effectiveness, it is computationally expensive 
because training a classifier means solving an optimization 
problem. Thus, in order to reduce the efforts a kernel matrix 
approach can be considered. Furthermore, since the SVM 
depends on the kernel to map data into a high dimensional 
space, the kernel matrix becomes a “natural” proxy of SVM 
classification ability. In this context KMGA approach 
provides an efficient method that overcomes the GA-SVM 
drawback of the required computational time. 

Experiments confirm that KMGA improves the SVM 
classification performance. In fact, the error on the test set 
obtained by the best solution estimated with kernel matrix 
criteria is better – or close to – the GA-SVM error. Among the 
kernel matrix criteria KTA shows the best performance and, 
even if its estimations on the training set are not promising, on 
the test set its errors are at least equal to GA-SVM and for 
three times better than that. FSM and FCMC show a different 
behavior: despite some difficulties with RBF and sigmoid 
kernels they perform well on linear and polynomial ones 
reaching similar results on the test set. In addition, analyzing 
kernel matrix criteria effects on selected variables it is not 
possible to define a unique impact on the evolutionary process 
because the number of retained variables differs both in 
datasets and kernel’s types. 

KMGA approach is able to compete with state-of-the-art 
methods, like GA-SVM, providing an effective tool to identify 
the best subset of features and the optimal kernel’s parameters 
and to reduce the whole computational time. 
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