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Abstract—Most paddy rice fields in East Asia are small parcels, 

and the weather conditions during the growing season are usually 
cloudy. FORMOSAT-2 multi-spectral images have an 8-meter 
resolution and one-day recurrence, ideal for mapping paddy rice fields 
in East Asia. To map rice fields, this study first determined the 
transplanting and the most active tillering stages of paddy rice and 
then used multi-temporal images to distinguish different growing 
characteristics between paddy rice and other ground covers. The 
unsupervised ISODATA (iterative self-organizing data analysis 
techniques) and supervised maximum likelihood were both used to 
discriminate paddy rice fields, with training areas automatically 
derived from ten-year cultivation parcels in Taiwan. Besides original 
bands in multi-spectral images, we also generated normalized 
difference vegetation index and experimented with object-based 
pre-classification and post-classification. This paper discusses results 
of different image classification methods in an attempt to find a 
precise and automatic solution to mapping paddy rice in Taiwan. 
 

Keywords—paddy rice fields; multi-temporal; FORMOSAT-2 
images, normalized difference vegetation index, object-based 
classification. 

I. INTRODUCTION 
ADDY rice fields account for over 11% of global cropland 
area [1-2] . Over half of the world’s population live in 

major rice-producing countries of Asia, where rice represents 
over 35% of their daily caloric intake. Monitoring and mapping 
paddy rice agriculture in a timely and efficient manner is 
therefore important for agricultural and environmental 
sustainability, food and water security, and greenhouse gas 
emissions [2]. Paddy rice needs flooded soils during the 
growing period, so water resource management is also a major 
concern. Irrigation for agriculture accounts for over 80% of the 
fresh water withdrawals in South-East Asia and South Asia, 
with several countries in this region reporting over 95% of 
fresh water used for irrigation [3]. 

The Agriculture and Food Agency in Taiwan monitors 
cultivated paddy fields by manually interpreting aerial 
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photographs. This manual method, however, has some 
disadvantages. First, because field parcels in Taiwan are 
usually small, interpreting paddy fields in aerial photographs is 
both time and energy consuming. Second, the cloudy climate in 
Taiwan hinders the work of getting aerial photographs for the 
proper growing time. Third, although aerial photographs have a 
good resolution, each shot can cover only an area of 10 km2 
areas or less. As satellite technology has improved in recent 
years, satellite images have become good alternatives to aerial 
photographs. Unlike aerial photographs, satellite images can 
cover wide areas and have higher temporal resolutions.  

Various methods have been evaluated for assessing the 
potential of computer-aided classification for mapping 
traditionally-managed rice fields. Image-derived data such as 
the normalized difference vegetation index (NDVI) have 
improved classification of rice fields and other land covers [2, 
4-7]. The normalized difference water index (NDWI), when 
used with NDVI temporal anomalies, has shown to be effective 
for detecting flooding and rice transplanting [5]. The land 
surface water index (LSWI), enhanced vegetation index (EVI), 
and NDVI derived from MODIS images have also been used to 
identify changes in the mixture of surface water and green 
vegetation in paddy rice fields over time [2]. This study chose 
NDVI and differential NDVI (dNDVI) from primary images as 
possible aids for classifying paddy rice fields in Taiwan.  

Additionally, this study experimented with two other 
techniques. The first relates to the selection of training areas, a 
manual and often difficult task. Rather than interpreting 
satellite images with naked eyes or investigating in the field, we 
used published cultivation data and an overlay method to 
automatically select training areas. The second relates to the 
object-based approach. Besides pixels, we also used parcels as 
objects for both pre-classification and post-classification. For 
high-resolution imagery, the object-based analysis and 
segmentation allows homogeneous groups of pixels, such as 
cultivation parcels, to be classified as real objects of interest 
[8-10]. 

II.  STUDY AREA 
The 30 km2 study area is located in Yunlin County, Taiwan 

(120°22’28’’—120°25’31’’E and 23°37’30’’—23°40’30’’N) 
(Fig. 1). Paddy rice fields account for half of this study area; 
hence, paddy rice plays an important role for the livelihood of 
local inhabitants. In Yunlin County, there are first and second 
rice crops. Like most regions of East Asia, paddy rice goes 
through the stages of flooding, transplanting, tillering, 
flowering, and harvesting for each cultivation period. Paddy 
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fields during these specific stages have special spectral 
characteristics that can separate them from other land covers.  

 
Fig. 1 The study area in Yunlin County, Taiwan 

 

 
Fig. 2 The schematic flowchart of the methodology 

III. DATA AND METHOD 
Following the flowchart in Fig. 2, this study gathered past 

ten-year cultivation parcel data, used cultivation parcels as an 
overlay to extract training sites, and applied ISODATA 
(iterative self-organizing data analysis techniques) to purify the 
spectral signature information from four different combinations 
of imagery data. Then we used the maximum likelihood 
classification to classify the four different combinations of 
imagery data. Besides the pixel-based classification method, 
we also experimented with object-based pre-classification and 
post-classification. 

 

A. Cultivation parcels 
The Agriculture and Food Agency in Taiwan has more than 

ten-year cultivation parcel data produced by the Chinese 
Society of Photogrammetry and Remote Sensing. Based on the 
digitized boundaries of cultivation parcels, these data record for 
every parcel if it is paddy field or not. The accuracy of these 
data is claimed to be 96% or higher. We acquired cultivation 
parcel data of Yunlin County from 1996 to 2006 for this study. 
The data from 1996 to 2005 were used to produce training areas 
for the supervised classification, and the data of 2006 to 
validate the classification results. 

 

B. FORMOSAT-2 satellite images processing 
It is hard to recognize the texture of agricultural crops 

directly on FORMOSAT-2 multi-spectral satellite images. 
Fortunately, paddy rice has special growing characteristics that 
are different from most other crops. Different spectral 
characteristics occur in the transplanting stage and, especially, 
the most active tillering stage. Hence this study acquired 
FORMOSAT-2 satellite images for the following two periods: 
March 10, 2006, representing the transplanting stage; and April 
7, 2006, representing the most active tillering stage. Images 
from these two periods were stacked into one image with 
8-layer spectral information for the supervised classification. In 
addition to the stacked image, we also included NDVI values 
during the transplanting and tillering stages to create the 
following two combinations for classification: 

(1) 8-layer stacked images from the transplanting and 
tillering stages; and 

(2) 8-layer stacked images and NDVI data during the 
transplanting stage; 

 

C. Training sites extraction with GIS overlay mapping 
According to the experience of the Agriculture and Food 

Agency, if farmers cultivate rice this year, they will most likely 
cultivate rice during the same periods in the next year. The 
longer the farmers have cultivated rice, the more likely the 
farmers will repeat the rice crop in the next year. This study 
therefore made the following two assumptions for the selection 
of training areas: (1) a field, which had been a paddy field for 
the past ten years (1996 to 2005), will still be a paddy field for 
this year (2006); (2) a field, which had been a non-paddy field 
for the past ten years, will not be a paddy field for this year. 

Specifically, training areas were selected by executing the 
following steps: 

(1) intersect cultivation data from 1996 to 2005; 
(2) dissolve the intersected results to eliminate the shared 

boundaries between two adjacent paddy fields;  
(3) produce inside buffer zones of the dissolved results to 

select areas, where mixed pixels may exist; and  
(4) erase the buffer zones in the dissolved results to get 2006 

training areas. 
 

Taiwan

Yunlin County 

Study Area 
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D. Image Classification 
This study used the pixel-based classification as well as 

object-based pre-classification and post-classification. For the 
pixel-based classification, the stacked images from the 
transplanting and tillering stages were masked using the 
extracted rice and non-rice sites before acquiring the spectral 
information from these sites. Then we used the unsupervised 
ISODATA to classify the spectral information into 20 each of 
rice and non-rice categories. By this process, we got the 
statistics and covariances for all 40 categories. These spectral 
signatures were then used for the supervised classification. We 
classified the paddy rice information into 20 categories because, 
if we regarded all paddy rice spectral information as one 
category, the information might easily be mixed with the 
non-rice spectral information. The same would happen if we 
regarded all non-rice information as one category. In other 
words, the unsupervised classification separated mixed spectral 
information into pure categories. The 40-category signature 
information was then used with the maximum likelihood 
algorithm to classify the stacked images. The classification 
resulted in 40 categories of which the first 20 categories 
represented rice paddy classes and the last 20 categories 
non-rice classes. Finally, we recoded the results into rice and 
non-rice classes. 

For object-based pre-classification (pre-classification 
hereafter), cultivation parcel rather than pixel was the 
classification unit. We first found pixels that were contained in 
each parcel before calculating their mean values. The mean 
values represented the average of every original band and the 
average NDVI value during the transplanting stage. The 
training areas were the same as for the pixel-based 
classification method, but the spectral information was 
calculated from every parcel in the training site. 

For object-based post-classification (post-classification 
hereafter), we also used parcel as the classification unit but 
determined the class of a parcel by using the pixel-based 
classification results. If half of the pixels covered in one parcel 
are rice, then the parcel is assigned the class of rice, and vice 
versa. 

 

E. Accuracy assessment 
The reference data used for accuracy assessment was 

cultivation data for the first rice crop in 2006. The file format of 
cultivation data is vector-based ArcInfo coverage. For accuracy 
assessment of pixel-based results, we converted the reference 
data into grid file format with a cell size of 8 meters (i.e. the 
same cell size as the spatial resolution of multi-spectral 
FORMOSAT-2 images). For accuracy assessment of 
object-based results, we calculated the areas (m2) rather than 
numbers of parcels with correct and incorrect classification 
results in order to compare with the pixel-based results. 

IV. RESULTS 
Table I(a) and (b) show the best and the worst of the error 

matrices of the pixel-based classification results. The overall 

accuracy ranges from 83.8% to 84.5%, and the kappa values 
from 0.613 to 0.632. Error! Reference source not found.. 3(a) 
and (b) show the omission errors of paddy rice, which occurred 
mostly in the northwest quadrant of the study area and also 
around each parcel. 

The overall accuracy of the pre-classification results ranges 
from 84.4% to 87.7%, and the kappa values from 0.558 to 
0.665. Table I(c) and (d) show the best and the worst of the 
error matrices. Unlike the pixel-based classification results, 
more commission errors, rather than omission errors, happened 
in the northwest quadrant of the study area shown in Fig. 3(c) 
and (d). Although the training areas of the pixel-based 
classification and pre-classification were the same, the 
classification performances were different. This might have 
been caused by different land cover features contained in some 
training sites and parcels, and these different land cover 
features might have different spectral characteristics, which 
could not be represented by the mean values. Although 
cultivation parcels are supposed to be homogeneous, some may 
not be so. 

 The overall accuracy of the post-classification results ranges 
from 91.2% to 91.3%, and the kappa values from 0.781 to 
0.785. Table I(e) and (f) show the best and the worst of the error 
matrices. Like the pixel-based classification results, the 
omission errors of paddy rice happened mostly in the northwest 
quadrant of the study area shown in Fig. 3(e) and (f). But 
compared with the pixel-based results, the accuracy increases 
considerably because the post classification decides the class of 
parcels by the majority class of pixels; thus, the minority of 
non-rice pixels (most likely mixed pixels) does not influence 
the classification of parcels. 

V. DISCUSSION 

A. Post-processing of thin and long parcels 
Many thin and long non-rice parcels are often classified 

erroneously as rice fields because of mixed pixels and 
imperfect registration between cultivation parcel data and 
satellite imagery. These errors also happen in the pixel-based 
and pre-classification results. 

According to cultivation parcel data over the years, parcels 
thinner than 8 meters (spatial resolution of FORMOSAT-2 
multi-spectral images) are mostly canals and paths in the fields 
and not paddy rice parcels; hence, we enforced parcels thinner 
than 8 meters to non-rice fields in post-processing. Table II 
shows the error matrices of the new results. Compared Table 
II(a) and (b) to the pre-classification results in Table I(c) and 
(d), the overall accuracy is increased by about 2% and the 
kappa values by about 5 to 7%. Compared Table I(e) and (f) to 
the post-classification results in Table II(c) and (d), the overall 
accuracy is increased by about 1% and the kappa values by 
about 3%. The degree of increase in accuracy is higher for the 
pre-classification, especially for the kappa values. These results 
show the feasibility and necessity of such a post-processing 
step. 
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B. Addition of NDVI 
Table 1 (a) ,(b), (e), and (f) show the addition of NDVI or 

differential NDVI did slightly improve the accuracy of the 
pixel-based and post-classification results. But the addition of 
NDVI actually degraded the accuracy of the pre-classification 
results in Table 1 (c) and (d). Although NDVI has been 
successfully used in many previous studies to map paddy rice 
[2, 5-6], it does not appear to have improved the classification 
accuracy in our case. This may be because some crops have the 
same spectral characteristics as paddy rice. This study did not 
use NDWI or LSWI, because FORMOSAT-2 images do not 
cover the needed bands of mid-infrared or shortwave infrared. 
EVI, on the other hand, uses the blue, red, and near-infrared 
bands, which are all covered by FORMOSAT-2 images. 
Further work may consider adding EVI for classification. 

C. Discrepancy of paddy rice cultivation habits 
Some farmers planted rice earlier or later than other farmers. 

Therefore, in those ‘irregular’ areas, we cannot observe the 
transplanting pattern of rice in early March images and the 
tillering pattern in late April images. This discrepancy of 
cultivation habits may result in the omission errors of paddy 
rice. For example, the paddy rice parcel can show up in satellite 
imagery as a vegetation pattern during the transplanting stage 
and as a soil pattern during the tillering stage. This unusual 
growing pattern causes the omission errors of paddy rice.  

However, some unusual growing patterns of paddy rice can 
still be classified correctly. For example, the paddy rice parcel 
can also shows up as a vegetation pattern during the 
transplanting stage and as a water pattern during the tillering 
stage. This is because the GIS overlay method happened to 
choose this kind of crop growing pattern as paddy rice training 
sites. One advantage of the overlay method in selecting training 
sites is that it can cover various kinds of spectral characteristics 
that would be difficult to do artificially. 

D. Similarity of growing pattern for rice and non-rice crops 
Some crops have the same growing pattern as rice paddy, i.e. 

they show up as a water pattern during the transplanting stage 
but a vegetation pattern during the tillering stage. This kind of 
non-rice parcel contributes to the commission errors of paddy 
rice. 

E. Homogeneity of land features 
Tables I and II show that both the user’s accuracy and the 

producer’s accuracy of rice are usually higher than those of 

non-rice, perhaps due to the total area of paddy rice fields being 
larger than non-rice fields in this study area. Many and 
successive rice paddy fields tend to make homogeneous areas 
and ease the task of classifying satellite images. Fig. 3 shows 
that land cover features in the northwest quadrant, where many 
erroneous pixels are located, are smaller and more complex 
than other quadrants. This suggests that regional homogeneity 
can play an important role in image classification. . 

VI. CONCLUSIONS 
This study has experimented with NDVI, pre-classification, 

and post-classification for mapping paddy rice fields in 
Taiwan. The post-classification performed better than the 
pixel-based method, but the pre-classification did not. Because 
the post-classification involves relatively simple data 
processing, it can be used for future paddy rice mapping if land 
parcel data are available. The addition of NDVI or differential 
NDVI to original images did improve the performance of the 
pixel-based classification and the post-classification slightly 
but lowered the pre-classification performance. The usefulness 
of NDVI for paddy rice mapping, at least in Taiwan, is 
therefore questionable.  

Many classification errors in this study came from two 
conditions: the discrepancy of paddy rice cultivation habits, 
and the similarity of the growing pattern for rice and some 
non-rice crops. These errors may be reduced by adding more 
images from different time periods. By lengthening the 
temporal observation, it may help differentiate rice and other 
crops. Classification errors also happened because of mixed 
pixels and imperfect registration between cultivation parcel 
data and satellite imagery. These errors often occurred in thin 
and long parcels. In this study, we used 8 meters, the resolution 
of FORMOSAT-2 images, as the threshold to identify these 
parcels. Depending on the data source, this threshold can be 
changed in future work. 

  Defining homogenous area for growing paddy rice should 
be an important topic for future research, especially for large 
study areas. Given a large area, the degree of heterogeneity for 
paddy rice growing characteristics is likely to increase. In 
Taiwan, seedling centres provide seedlings for farmers before 
the transplanting stage starts. Each centre distributes seedlings 
at a specific time within a specific service area. Thus, farmers in 
the same service area start to cultivate paddy rice almost at the 
same time. The service area of a seedling centre can be a good 
reference for homogeneous area. 
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TABLE I 

THE BEST AND THE WORST OF THE ERROR MATRICES OF THE CLASSIFICATION RESULTS: (A) ORIGINAL 8-LAYER DATA FOR PIXEL-BASED CLASSIFICATION, (B) 
COMBINATIONS OF ORIGINAL 8-LAYER DATA AND FIRST-STAGE NDVI DATA FOR PIXEL-BASED CLASSIFICATION, (C) ORIGINAL 8-LAYER DATA FOR 

PRE-CLASSIFICATION, (D) COMBINATIONS OF ORIGINAL 8-LAYER DATA AND FIRST-STAGE NDVI DATA FOR PRE-CLASSIFICATION, (E) ORIGINAL 8-LAYER DATA FOR 
POST-CLASSIFICATION, AND (F) COMBINATIONS OF ORIGINAL 8-LAYER DATA AND FIRST-STAGE NDVI DATA FOR POST-CLASSIFICATION. 

 
 (a) 

 
Reference data  

Rice Non-rice total User’s
accuracy

Classifie
d result 

Rice 238771 24999 263770 90.52%

Non-rice 37507 83888 121395 69.10%

total 276278 108887 385165

 Producer’s 
accuracy 86.42% 77.04% 83.77%

    Kappa 0.613 

(b) 

 
Reference data  

Rice Non-rice total User’s
accuracy

Classified 
result 

Rice 239976 23276 263252 91.16%

Non-rice 36302 85611 121913 70.22%

total 276278 108887 385165

 Producer’s
accuracy 

86.86% 78.62% 84.53%

    Kappa 0.632 
 (c) 

 
Reference data  

Rice Non-rice total User’s
accuracy

Classifie
d result 

Rice 17180271 2528469 19708740 87.17%

Non-rice 481663.4 4337631 4819295 90.01%

total 17661934 6866100 24528034

 
Producer’s 
accuracy 

97.27% 63.17% 87.73%

   Kappa 0.665

(d) 

 
Reference data  

Rice Non-rice total 
User’s

accuracy

Classified 
result 

Rice 17228346 3389505 20617851 83.56%

Non-rice 447372 3550546 3997918 88.81%

total 17675718 6940051 24615769

 
Producer’s
accuracy

97.47% 51.16% 84.41%

 Kappa 0.558 

(e) 
 

 
Reference data  

Rice Non-rice total User’s
accuracy

Classifie
d result 

Rice 16624918 1131790 17756708 93.63%

Non-rice 1047155 5825407 6872562 84.76%

total 17672073 6957197 24629270

 
Producer’s 
accuracy 

94.07% 83.73% 91.15%

   Kappa 0.781

(f) 
 

 
Reference data  

Rice Non-rice total 
User’s

accuracy

Classifie
d result 

Rice 16626330 1097926 17724256 93.81%

Non-rice 1047323 5855808 6903131 84.83%

total 17673653 6953734 24627387

 
Producer’s
accuracy

94.07% 84.21% 91.29%

 Kappa 0.785 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 

 

Fig. 3 pixel- and object-based classification results: (a) Original 8-layer data for pre-classification, (b) combinations of original 8-layer data and 
first-stage NDVI data for pre-classification, (c) Original 8-layer data for pre-classification, (d) combinations of original 8-layer data and 
first-stage NDVI data for pre-classification, (e) original 8-layer data for post-classification, and (f) combinations of original 8-layer data and 
first-stage NDVI data for post-classification. 
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TABLE II 

ERROR MATRICES OF OBJECT-BASED CLASSIFICATION AFTER ENFORCING THIN AND LONG PARCELS TO NON-RICE: (A) ORIGINAL 8-LAYER DATA FOR 
PRE-CLASSIFICATION; (B) COMBINATIONS OF ORIGINAL 8-LAYER DATA AND FIRST-STAGE NDVI DATA FOR POST-CLASSIFICATION, (C) ORIGINAL 8-LAYER DATA FOR 

PRE-CLASSIFICATION, AND (D) COMBINATIONS OF ORIGINAL 8-LAYER DATA AND FIRST-STAGE NDVI DATA FOR POST-CLASSIFICATION 
 

 (a) 

 
Reference data  

Rice Non-rice total User’s
accuracy

Classifie
d result 

Rice 17149467 2111797 19261264 89.04%

Non-rice 522178 4838357 5360535 90.26%

total 17671645 6950154 24621799  

 Producer’s 
accuracy 

97.05% 69.62%  89.30%

    Kappa 0.716 

(b) 

 
Reference data  

Rice Non-rice total User’s
accuracy

Classified 
result 

Rice 17192671 2842288 20034959 85.81%

Non-rice 487041 4127249 4614290 89.44%

total 17679712 6969537 24649249  

 Producer’s
accuracy 

97.25% 59.22%  86.49%

    Kappa 0.629 
 (c) 

 
Reference data  

Rice Non-rice total User’s
accuracy

Classifie
d result 

Rice 16601246 852798 17454044 95.11%

Non-rice 1075506 6116528 7192034 85.05%

total 17676752 6969326 24646078  

 
Producer’s 
accuracy 

93.92% 87.76%  92.18%

   Kappa 0.809

(d) 

 
Reference data  

Rice Non-rice total 
User’s

accuracy

Classified 
result 

Rice 16602582 811153 17413735 95.34%

Non-rice 1075748 6155290 7231038 85.12%

total 17678330 6966443 24644773  

 
Producer’s
accuracy

93.91% 88.36%  92.34%

 Kappa 0.813 
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