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Random Projections for Dimensionality Reduction
in ICA
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Abstract— In this paper we present a technique to speed up
ICA based on the idea of reducing the dimensionality of the data
set preserving the quality of the results. In particular we refer to
FastICA algorithm which uses the Kurtosis as statistical property
to be maximized. By performing a particular Johnson-Lindenstrauss
like projection of the data set, we find the minimum dimensionality
reduction rate ρ, defined as the ratio between the size k of the reduced
space and the original one d, which guarantees a narrow confidence
interval of such estimator with high confidence level. The derived
dimensionality reduction rate depends on a system control parameter
β easily computed a priori on the basis of the observations only.
Extensive simulations have been done on different sets of real world
signals. They show that actually the dimensionality reduction is very
high, it preserves the quality of the decomposition and impressively
speeds up FastICA. On the other hand, a set of signals, on which the
estimated reduction rate is greater than 1, exhibits bad decomposition
results if reduced, thus validating the reliability of the parameter β.
We are confident that our method will lead to a better approach to
real time applications.

Keywords— Independent Component Analysis, FastICA algo-
rithm, Higher-order statistics, Johnson-Lindenstrauss lemma.

I. INTRODUCTION

Independent Component Analysis (ICA) ([1], [2]) is a
method to identify a set of unknown and generally nongaussian
source signals whose mixtures are observed, under the only
assumption that they are independent. ICA has become more
and more popular and, thanks to the few assumptions needed
and its feasibility, it is applied in many areas such as blind
source separation (BSS) and feature extraction [3].

More in general, ICA field consists in describing a very
large set of data, like those involved in applications such as
the speech recognition or the imaging feature extraction, in
terms of variables that better capture the essential structure of
the problem. Due to the huge amount of data, it is crucial to
make ICA analysis as fast as possible. Many attempts have
been done to find more and more efficient algorithms [3].

Our aim is to speed up ICA from a different point of
view. We show that the high-dimensional data set can be
embedded into a lower dimensional space with a limited
loss in the results quality. In particular, our dimensionality
reduction preserves the Kurtosis of the original data which is
the statistical property maximized by the FastICA algorithm
[4], thus speeding up the overall computation.

We study how the Kurtosis is affected by our technique
with a probability approach. To this end we consider the step
of FastICA in which the Kurtosis is estimated looking for
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the minimum projection space size which guarantees a narrow
probability bound to its estimator with a high confidence.

In particular, we identify a specific parameter of the system
which is given by the ratio between the eighth norm and
the fourth one to the square (the standard l4 and l8 norms
defined in euclidean space) of the observations, from which the
dimensionality reduction rate ρ, defined as the ratio between
the reduced sample size k and the original one d, depends
on. Therefore, the reduction rate of the mixed signals can be
established a priori on the basis of the observations only. The
statistical meaning of such a system control parameter, which
we call β, is also investigated.

Section 2 reports a very short description of ICA formalism.
The proposed Johnson-Lindenstrauss like projection is showed
in Section 3 while the corresponding confidence intervals
obtained both with Chebyschev and Hoeffding inequalities are
derived in Section 4. In Section 5 we apply the method on a
large set of real data extracted from audio signals showing
the performance of the proposed method. Finally, Section 6 is
devoted to the conclusions.

II. ICA FORMULATION

Let �s(t) = [s1(t), . . . , sn(t)]T be a vector of source signals
at time t that are mutually statistically independent, with zero-
mean and at most one is gaussian. A vector of their linear
mixtures �x(t) = [x1(t), . . . , xn(t)]T is observed at time t with
t = 1, . . . , d.

The classical statistical approach consists of considering
each signal xi(t) as a set of d realizations of the random
variables xi. Thus, for each i the set �xi = {xi(1), . . . , xi(d)}
represents a sample of size d of xi.

Here we refer to the standard linear data model used in ICA
and BSS ([1], [2]):

�x(t) = A�s(t),

where A is an unknown n×n scalar matrix. ICA decomposes
�x(t) by estimating the matrix A which makes the sources as
independent as possible. That is, it finds the separating matrix
W in such a way that

�̂s(t) = W �x(t),

is an estimate of the independent components �s(t).
ICA’s basic idea is to exploit nongaussianity. According to

the central limit theorem, the mixtures xi of the independent
sources si are closer to gaussian than the sources themselves.
Thus ICA looks for the local maximum of nongaussianity
of the signals xi under the constraint that the variance is
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constant. Among the many algorithms proposed for ICA we
refer to the class of algorithms which uses the Kurtosis as
measure of nongaussianity. Furthermore, we are interested in
the applications involving very large set of data well analyzed
by the FastICA algorithm ([4]).

The only step in FastICA where the sample size is relevant
is when the Kurtosis is being estimated on the data set. Next
two sections show a suitable projection and its consequences
on the estimate of the Kurtosis in confidence intervals terms.

III. RANDOM PROJECTIONS PRESERVING INDEPENDENCE

AND KURTOSIS

In a seminal paper [5], Johnson and Lindenstrauss assert
that any set of n points in d-dimensional metric space can be
embedded into k-dimensional Euclidean space – where k is
logarithmic in n and independent from d – so that all pairwise
distances are maintained within an arbitrary small factor.

Lemma 3.1: (JL-lemma) Given ε > 0 and an integer n,
let k be a positive integer such that k = O(log n/ε2). For
every set P of n points in R

d there exists a random mapping
f : Rd → R

k such that, for all �u,�v ∈ P ,

(1−ε)‖�u−�v‖2 ≤ ‖f(�u)−f(�v)‖2 ≤ (1+ε)‖�u−�v‖2 . (1)
Over the years, the probabilistic method has allowed for
the original proof of JL-lemma to be greatly simplified and
sharpened, while at the same time giving conceptually simple
randomized algorithms for constructing the embeddings. The
key idea is to use extremely simple probability distributions
(e.g, gaussian) to perform random projections in the spirit
of JL-lemma. The mainstay of all these results consists in
the fact that squared length of a projected point f(�x) is
sharply concentrated about the squared length of �x, since
E

[
‖f(�x)‖2

]
= ‖�x‖2. Effectively, being R a random matrix

with independent entries, the squared inner product (�x · �rj)
2

of a point �x with each column �rj of R (1 ≤ j ≤ k) act as an
estimator of ‖�x‖2, and ‖f(�x)‖2 the sum of such estimators.

Unfortunately, it may be observed that doing such a projec-
tions even if the elements of �x are mutually independent the
same does not hold for the elements of f(�x), because each
one is a linear combination of �x themselves with a column of
R (inner product).

Another limit these kinds of embeddings are afflicted is that
the property showed for the l2 norm does not apply to other
norms as l4 norm or bigger. In fact, it is easy to show that
E

[
‖f(�x)‖4

4

]
�= ‖x‖4

4, making them ineffective for applications
in which preserving higher order moments or cumulants is
very important.

We propose a class of very easy random projection suitable
in dimensionality reduction while preserving both the inde-
pendence between the vector components and high order cu-
mulants. For these projections we show weaker concentration
results than those of Johnson and Lindenstrauss because they
depend on suitable parameters computed on the instance at
hand. The main advantage, in many cases is that computing
such a system control parameter and successively ICA on
reduced data is much less expensive than calculating ICA on
the original data.

To insert the ICA model in the Johnson-Lindenstrauss
framework we consider each signal �xi as a determined point
in R

d, thus obtaining n points in R
d, represented by a n × d

matrix X whose ith is �xi.
It is now natural to ask whether the high-dimensional point

set X ⊆ R
n×d could be embedded into a lower dimensional

space Y ⊆ R
n×k without suffering great distortion. As stated

in the previous section, it is not possible to proceed with
projections like those expressed in the JL-lemma because
the independence is not preserved. Hence, we construct an
embedding by picking a subset of coordinates of the original
space by mean of Bernoulli trials.

Definition 3.1: Let �r be a vector of d i.i.d. Bernoulli random
variables of parameter ρ and I�r = {t : ri = 1} the set of
indexes of the non zero components of �r. An independence
preserving random map f : Rd → R

k gives the vector

f(�x) = (xi(t1), . . . , xi(tk)),

where its coordinates tj ∈ I�r for all j ∈ [1, . . . , k] and
k =

∑d
i=1 ri = |Ir|, obtained by the product between each

component of �r with the correspondent component of �xi

Observe that the dimension k of the space of projection has
expected value E [k] = ρd, allowing to control this dimension
by ρ.

In this setting, it is possible to show that all moments are
preserved by this random map. In particular, this is true for a
classical measure of nongaussianity used in ICA as the sample
kurtosis, defined as

kurt [f(�xi)] =
1

k

k∑
t=1

f(xi(t))
4 − 3

(
1

k

k∑
t=1

f(xi(t))
2)

)2

=
1

k
‖f(�xi)‖

4
4 −

3

k2
‖f(�xi)‖

4
2

where ‖�x‖p denotes the norm lp of the vector �x.
Theorem 3.1: Let f be the random map defined above, then

for each signal �xi it holds:

E [kurt [f(�xi)]] = kurt [�xi] .
Proof: Using the fact that every variable ri is idempotent

it is easy to show that

E [rp
i ] = E [ri] = ρ and var [rp

i ] = var [ri] = ρ(1−ρ).

We obtain that

E
[
‖f(�xi)‖

p
p

]
= E

[
d∑

t=1

(xi(t)rt)
p

]
=

d∑
t=1

xp
i (t)E [rp

t ]

= ρ

d∑
i=1

xi(t)
p = ρ‖�xi‖

p
p.

Analogously, since the rt are mutually independent, the vari-
ance is

var
[
‖f(�xi)‖

p
p

]
= var

[
d∑

t=1

(xi(t)rt)
p

]
=

d∑
t=1

xi(t)
2pvar [rp

t ]

= ρ(1 − ρ)‖�xi‖
2p
2p .
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Hence, from the definition of kurtosis on the sample f(�xi) we
have that:

E [kurt [f(�xi)]] = E
[

1

k
‖f(�xi)‖

4
4 −

3

k2
‖f(�xi)‖

4
2

]

=
1

ρd
E

[
‖f(�xi)‖

4
4

]
−

3

(ρd)2
E

[
‖f(�xi)‖

4
2

]
=

1

d
‖�xi‖

4
4 −

3

d2
‖�xi‖

4
2

= kurt [�xi] .

Thus the proposed random map preserves all the moments
in mean, its variability will be study as probability bounds in
next section.

IV. PROBABILITY BOUNDS

Since the kurtosis is a linear combination of the second and
the fourth moment, we give a bound for both the moments
by means of two classical probability inequalities, that is
the Chebyschev1 and the Hoeffding2 ones. The first uses the
variance and for our purpose gives more tight bound for a low
number of points or signals (n < 10 circa). Vice versa the
Hoeffding inequality is better for a greater number of signals
because its negative exponential behavior.

In general, by applying Chebyschev inequality to the mo-
ment of order p we obtain the probability bounds:

Pr
{∣∣∣‖f(�xi)‖

p
p − ρ‖�xi‖

p
p

∣∣∣ ≥ ερ‖�xi‖
p
p

}
≤

var
[
‖f(�xi)‖

p
p

]
ε2ρ2‖�xi‖

2p
p

≤
1 − ρ

ρε2

‖�xi‖
2p
2p

‖�xi‖
2p
p

.

By using instead the Hoeffding inequality to the moment of
order p we obtain:

Pr
{∣∣∣‖f(�xi)‖

p
p − ρ‖�xi‖

p
p

∣∣∣ ≥ ερ‖�xi‖
p
p

}
≤ −2e

−2ε2ρ2 ‖�xi‖
2p
2p

‖�xi‖
2p
p .

Thanks to the usual centering and prewhitening procedures
each signal �xi has zero mean and unitary variance. Thus the
relevant moment is the fourth one for which we have the
probability bounds.

Pr
{∣∣∣‖f(�xi)‖

4
4 − ρ‖�xi‖

4
4

∣∣∣ ≥ ερ‖�xi‖
4
4

}
≤

1

n2

when we link the confidence level to the number of signals as
1

n2 .
Finally we derive the dimensionality reduction rate ρ by

Chebyschev:

1 − ρ

ρε2
βxi

≤
1

n2
⇒ ρ ≥

βn2

ε + βxi
n2

,

and by Hoeffding

1The Chebyschev inequality for a given random variable X indicates that
Pr {|X − E [X] | ≥ λ} ≤ var[X]

λ2 .
2The Hoeffding inequality for a given set of independent observation

X1, . . . , Xn such that ai ≤ Xi ≤ bi and S =
P

i
Xi, indicates that

Pr {|S − E [S] | ≥ λ} ≤ 2e
−

2λ2
P

i(bi−ai)2 .

−2e−
2ε2ρ2

β ≤
1

n2
⇒ ρ ≥

1

ε

√
βxi

ln 2n.

where βxi
=

‖�xi‖
8
8

‖�xi‖8
4

is the system control parameter. Its
statistical meaning is related to the variance of the estimator
of the fourth moment computed on the whole sample as:

var [kurt [xi]] =
1

d2
(‖xi‖

8
8 −

1

d
‖xi‖

8
4).

Of course a low variance implies a good estimate and the
possibility of highly reducing the data set. Since it holds that:

1

d
≤

‖xi‖
8
8

‖xi‖8
4

≤ 1,

we note that the best ratio for the variance occurs when

‖xi‖
8
8 ≈

1

d
‖xi‖

8
4.

On the other side, the variance of the estimate is high when

‖xi‖
8
8 ≈ ‖xi‖

8
4.

Thus if βxi
is small, say near 1

d
it means that our original

sample is very suitable to be well reduced. When it is high,
say near 1, it is not.

V. SIMULATION RESULTS

In this section we report the summary of extensive com-
puter simulations obtained from the executions of FastICA on
different sets of sampled source signals: speech, musical and
environmental sounds of various nature, mixed with randomly
generated matrix. The goal is to give experimental evidence
and validity to the intuition that the information underlying
sampling on large number is often redundant. All the exper-
iments have been carried out through software environment
MATLAB 7.0.1.

The purpose of the first experiment is to show the degree of
reduction (up to 100 times) without decreasing the reconstruct-
ing ability of FastICA too much. To give a quantitative mea-
sure which reflects the real impact of the dimension reduction
we use two kinds of performance index: a particular Signal
to Noise Ratio (SNR or relative error) on the reconstructed
signals and an index (absolute error), called performance
index, which refers to the accuracy of the reconstructed mixing
matrix for a given sample size [6].

The SNR for a given signal xi and a reconstructed signal
yi is defined as

SNRxi
=

E
[
(si − yi)

2
]

E [s2
i ]

,

while the overall SNR index, for the set of signals
{x1, . . . , xn} is obtained by averaging SNRxi

, that is,

SNR =
1

n

n∑
i=1

SNRxi
.

Let W ≈ A−1 denote the matrix carried out by FastICA,
then a plausible measure of distance is represented by the
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performance index given by the discrepancy between the
product P = AW and the identity matrix, defined as:

Err =
n∑

i=1

⎛
⎝ n∑

j=1

|pij |

maxk |pik|
− 1

⎞
⎠−

n∑
j=1

(
n∑

i=1

|pij |

maxk |pkj |
− 1

)

Table 1 shows the tests on different groups of n high-
dimensional signals (with 2 ≤ n ≤ 35]), each of length
d = 106. All the values are obtained at confidence level of
0.9 and accuracy 0.1.

TABLE I

PERFORMANCE INDEX OF FASTICA ON VARIOUS GROUPS OF SIGNALS

(FROM 2 TO 35): SECOND COLUMN REPORTS THE VALUES OF β , THE

THIRD COLUMN REPORTS THE VARIOUS REDUCTION RATE ρ < 1

(DEPENDING ON β), WHILE THE LAST TWO COLUMNS REPORTS THE

PERFORMANCE INDEX BOTH WITH FULL AND REDUCED SAMPLE SIZE.

n β × 103 ρ < 1 Error (ρ = 1) Error (ρ < 1)

2 0.037 0.007 0.01 0.01

3 0.328 0.098 0.06 0.12

4 0.183 0.073 0.10 0.10

5 0.296 0.148 0.22 0.46

10 0.100 0.105 1.36 1.63

15 0.047 0.046 9.47 21.39

20 0.039 0.038 9.33 17.70

25 0.042 0.041 13.98 26.02

30 0.031 0.030 36.22 60.38

35 0.064 0.064 50.73 89.13

In the table the errors referred by the performance index are
reported. The second column shows the value of parameter β,
the third column shows the value of ρ obtained as a function
of β and the last two columns report the error, in terms of
performance index we obtain with the whole sample (ρ = 1)
and with the sample of reduced size (ρ < 1). We can observe
that

1) when β is sufficiently small (ranging from 10−5 to
10−4), it allows to reduce the sample size up to one
hundred times, while preserving the confidence and the
accuracy.

2) the error increases very slowly with n and however it
guarantees no explosion of the distortion when measured
in terms of signal to noise ratio. On the contrary, as
shown in Figure 1, the SNR index seems not affected
by this sensible reduction of the dimension.

3) On the other hand, the computation time of FastICA
hardly depends on the size of the sample, as shown in
Figure 2.

To test the reliability of β we use a set of signals whose
beta values are very big, i.e., near to 1, which represents, as
explained in the previous section, its better value in terms of
variance. As a consequence the rate of reduction ρ is greater
than one and then no reduction is admitted. We force however
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Fig. 1 The SNR for a group of signals of full and reduced size
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Fig. 2 Simulation times (in seconds) of FastICA

the reduction to ρ = 0.01 and calculate the performance error
and report the data in Table 2. To show the goodness of β
as system control parameter, it can be noted that, since the
variance is very high, the error grows significantly both for
the whole sample and for the reduced sample, giving a very
poor performance of FastICA in each case.

As a consequence, we have that the ratio SNR grows as
shown in Figure 3.

VI. CONCLUSIONS

Concluding, we can assert that it is possible to execute
the FastICA algorithm on a set of data reduced by projection
in a lower dimensional space yet preserving the higher-order
statistics. The rate of reduction ρ depends particularly on the
value of the parameter β which is calculated on particular
instance of signals and whose meaning has been exploited.
Simulations confirm the reliability of the method and show a
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TABLE II

PERFORMANCE INDEX OF FASTICA ON VARIOUS GROUPS OF SIGNALS

(FROM 2 TO 10) WITH HIGH VALUES OF THE β PARAMETER: SECOND

COLUMN REPORTS THE VALUES OF β , WHILE THE LAST TWO COLUMNS

REPORTS THE PERFORMANCE INDEX BOTH WITH FULL AND REDUCED

SAMPLE SIZE.

n β Error (ρ = 1) Error (ρ = 0.01)

2 0.009 2.22 2.20

3 0.419 5.06 6.38

4 0.446 10.79 10.29

5 0.446 17.99 17.48

6 0.373 24.31 26.32

7 0.029 34.26 35.03

8 0.045 44.78 48.12

9 0.022 56.27 60.13

10 0.030 71.22 72.63
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Fig. 3 The SNR for a group of signals of very high
 values of the beta parameter

so relevant speeding up of FastICA that it makes our technique
suitable to real time applications.
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